1
|
Ji L, Li T, Chen H, Yang Y, Lu E, Liu J, Qiao W, Chen H. The crucial regulatory role of type I interferon in inflammatory diseases. Cell Biosci 2023; 13:230. [PMID: 38124132 PMCID: PMC10734085 DOI: 10.1186/s13578-023-01188-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Type I interferon (IFN-I) plays crucial roles in the regulation of inflammation and it is associated with various inflammatory diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and periodontitis, impacting people's health and quality of life. It is well-established that IFN-Is affect immune responses and inflammatory factors by regulating some signaling. However, currently, there is no comprehensive overview of the crucial regulatory role of IFN-I in distinctive pathways as well as associated inflammatory diseases. This review aims to provide a narrative of the involvement of IFN-I in different signaling pathways, mainly mediating the related key factors with specific targets in the pathways and signaling cascades to influence the progression of inflammatory diseases. As such, we suggested that IFN-Is induce inflammatory regulation through the stimulation of certain factors in signaling pathways, which displays possible efficient treatment methods and provides a reference for the precise control of inflammatory diseases.
Collapse
Affiliation(s)
- Ling Ji
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Tianle Li
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Huimin Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
- Division of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Jieying Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Qiao
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| | - Hui Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
2
|
Zhou X, Wei R, Wang R. Characterization of human tear proteome reveals differentially abundance proteins in thyroid-associated ophthalmopathy. PeerJ 2022; 10:e13701. [PMID: 35846879 PMCID: PMC9285480 DOI: 10.7717/peerj.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/17/2022] [Indexed: 01/17/2023] Open
Abstract
Background Thyroid-associated ophthalmopathy (TAO) is a common orbital inflammatory disease, but the abnormal expression of proteins in tears of TAO patients has not been systematically studied. The purpose of this study is to compare and analyze the total tear protein profile of TAO patients and to provide protein cues for TAO pathogenesis. Methods Tear samples were isolated from 30 TAO patients with obvious ocular surface damage and 30 healthy control subjects. Tear samples from 30 individuals were mixed and divided into three sample pools. Easy nano-scale LC-MS/MS based on labeling-free quantitative technology was utilized to profile tear proteome. Results Here, electrospray ionization mass spectra and SDS-PAGE results confirmed the good parallelisms among samples. A total of 313 proteins were obtained from six tear pools, among them, 103 differential abundance proteins (DAPs) were identified, including 99 up-regulated DAPs (including APOA1, HV103, IGH, and Transferrin variant) and four down-regulated DAPs (including FABA, VCC1, NUCB2, and E-cadherin) in the TAO group compared with the control group. GO analysis showed that up-regulated DAPs were mainly enriched in lipid metabolism and platelet molecular function, and down-regulated DAPs were involved in binding, cell junction, and cellular process. KEGG results indicated that DAPs were involved in 117 kinds of signal transduction pathways, among which the immune-related pathway of complement and coagulation cascades had the greatest relevance. Conclusion In conclusion, label-free LC-MS/MS is an effective strategy for profiling tear proteins component. Our study provides proteins and pathways altered in TAO and provides protein cues for further study on the precise mechanism of TAO pathogenesis.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- Department of Ophthalmology, Shanghai Changzheng Hospital, Shanghai, Shanghai, China
| | - Ruili Wei
- Department of Ophthalmology, Shanghai Changzheng Hospital, Shanghai, Shanghai, China
| | - Rui Wang
- Proteome Research Cente, Shanghai Applied Protein Technology, Shanghai, Shanghai, China
| |
Collapse
|