1
|
Gao M, Zhao X. Insights into the tissue repair features of MAIT cells. Front Immunol 2024; 15:1432651. [PMID: 39086492 PMCID: PMC11289772 DOI: 10.3389/fimmu.2024.1432651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are a subset of innate-like non-conventional T cells characterized by multifunctionality. In addition to their well-recognized antimicrobial activity, increasing attention is being drawn towards their roles in tissue homeostasis and repair. However, the precise mechanisms underlying these functions remain incompletely understood and are still subject to ongoing exploration. Currently, it appears that the tissue localization of MAIT cells and the nature of the diseases or stimuli, whether acute or chronic, may induce a dynamic interplay between their pro-inflammatory and anti-inflammatory, or pathogenic and reparative functions. Therefore, elucidating the conditions and mechanisms of MAIT cells' reparative functions is crucial for fully maximizing their protective effects and advancing future MAIT-related therapies. In this review, we will comprehensively discuss the establishment and potential mechanisms of their tissue repair functions as well as the translational application prospects and current challenges in this field.
Collapse
Affiliation(s)
- Mengge Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaosu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
2
|
Aldehoff AS, Karkossa I, Goerdeler C, Krieg L, Schor J, Engelmann B, Wabitsch M, Landgraf K, Hackermüller J, Körner A, Rolle-Kampczyk U, Schubert K, von Bergen M. Unveiling the dynamics of acetylation and phosphorylation in SGBS and 3T3-L1 adipogenesis. iScience 2024; 27:109711. [PMID: 38840842 PMCID: PMC11152682 DOI: 10.1016/j.isci.2024.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 04/06/2024] [Indexed: 06/07/2024] Open
Abstract
Obesity, characterized by enlarged and dysfunctional adipose tissue, is among today's most pressing global public health challenges with continuously increasing prevalence. Despite the importance of post-translational protein modifications (PTMs) in cellular signaling, knowledge of their impact on adipogenesis remains limited. Here, we studied the temporal dynamics of transcriptome, proteome, central carbon metabolites, and the acetyl- and phosphoproteome during adipogenesis using LC-MS/MS combined with PTM enrichment strategies on human (SGBS) and mouse (3T3-L1) adipocyte models. Both cell lines exhibited unique PTM profiles during adipogenesis, with acetylated proteins being enriched for central energy metabolism, while phosphorylated proteins related to insulin signaling and organization of cellular structures. As candidates with strong correlation to the adipogenesis timeline we identified CD44 and the acetylation sites FASN_K673 and IDH_K272. While results generally aligned between SGBS and 3T3-L1 cells, details appeared cell line specific. Our datasets on SGBS and 3T3-L1 adipogenesis dynamics are accessible for further mining.
Collapse
Affiliation(s)
- Alix Sarah Aldehoff
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Cornelius Goerdeler
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Laura Krieg
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Jana Schor
- Department of Computational Biology and Chemistry, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Beatrice Engelmann
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Hospital for Children and Adolescents Ulm, Ulm, Germany
| | - Kathrin Landgraf
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jörg Hackermüller
- Department of Computational Biology and Chemistry, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
- Department of Computer Science, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz-Centre Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Fazzone B, Anderson EM, Rozowsky JM, Yu X, O’Malley KA, Robinson S, Scali ST, Cai G, Berceli SA. Short-Term Dietary Restriction Potentiates an Anti-Inflammatory Circulating Mucosal-Associated Invariant T-Cell Response. Nutrients 2024; 16:1245. [PMID: 38674935 PMCID: PMC11053749 DOI: 10.3390/nu16081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Short-term protein-calorie dietary restriction (StDR) is a promising preoperative strategy for modulating postoperative inflammation. We have previously shown marked gut microbial activity during StDR, but relationships between StDR, the gut microbiome, and systemic immunity remain poorly understood. Mucosal-associated invariant T-cells (MAITs) are enriched on mucosal surfaces and in circulation, bridge innate and adaptive immunity, are sensitive to gut microbial changes, and may mediate systemic responses to StDR. Herein, we characterized the MAIT transcriptomic response to StDR using single-cell RNA sequencing of human PBMCs and evaluated gut microbial species-level changes through sequencing of stool samples. Healthy volunteers underwent 4 days of DR during which blood and stool samples were collected before, during, and after DR. MAITs composed 2.4% of PBMCs. More MAIT genes were differentially downregulated during DR, particularly genes associated with MAIT activation (CD69), regulation of pro-inflammatory signaling (IL1, IL6, IL10, TNFα), and T-cell co-stimulation (CD40/CD40L, CD28), whereas genes associated with anti-inflammatory IL10 signaling were upregulated. Stool analysis showed a decreased abundance of multiple MAIT-stimulating Bacteroides species during DR. The analyses suggest that StDR potentiates an anti-inflammatory MAIT immunophenotype through modulation of TCR-dependent signaling, potentially secondary to gut microbial species-level changes.
Collapse
Affiliation(s)
- Brian Fazzone
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
| | - Erik M. Anderson
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
| | - Jared M. Rozowsky
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
| | - Xuanxuan Yu
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Kerri A. O’Malley
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL 32608, USA
| | - Scott Robinson
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL 32608, USA
| | - Salvatore T. Scali
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL 32608, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Scott A. Berceli
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL 32608, USA
| |
Collapse
|
4
|
Marzano P, Balin S, Terzoli S, Della Bella S, Cazzetta V, Piazza R, Sandrock I, Ravens S, Tan L, Prinz I, Calcaterra F, Di Vito C, Cancellara A, Calvi M, Carletti A, Franzese S, Frigo A, Darwish A, Voza A, Mikulak J, Mavilio D. Transcriptomic profile of TNFhigh MAIT cells is linked to B cell response following SARS-CoV-2 vaccination. Front Immunol 2023; 14:1208662. [PMID: 37564651 PMCID: PMC10410451 DOI: 10.3389/fimmu.2023.1208662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Higher frequencies of mucosal-associated invariant T (MAIT) cells were associated with an increased adaptive response to mRNA BNT162b2 SARS-CoV-2 vaccine, however, the mechanistic insights into this relationship are unknown. In the present study, we hypothesized that the TNF response of MAIT cells supports B cell activation following SARS-CoV-2 immunization. Methods To investigate the effects of repeated SARS-CoV-2 vaccinations on the peripheral blood mononuclear cells (PBMCs), we performed a longitudinal single cell (sc)RNA-seq and scTCR-seq analysis of SARS-CoV-2 vaccinated healthy adults with two doses of the Pfizer-BioNTech BNT162b2 mRNA vaccine. Collection of PBMCs was performed 1 day before, 3 and 17 days after prime vaccination, and 3 days and 3 months following vaccine boost. Based on scRNA/TCR-seq data related to regulatory signals induced by the vaccine, we used computational approaches for the functional pathway enrichment analysis (Reactome), dynamics of the effector cell-polarization (RNA Velocity and CellRank), and cell-cell communication (NicheNet). Results We identified MAIT cells as an important source of TNF across circulating lymphocytes in response to repeated SARS-CoV-2 BNT162b2 vaccination. The TNFhigh signature of MAIT cells was induced by the second administration of the vaccine. Notably, the increased TNF expression was associated with MAIT cell proliferation and efficient anti-SARS-CoV-2 antibody production. Finally, by decoding the ligand-receptor interactions and incorporating intracellular signaling, we predicted TNFhigh MAIT cell interplay with different B cell subsets. In specific, predicted TNF-mediated activation was selectively directed to conventional switched memory B cells, which are deputed to high-affinity long-term memory. Discussion Overall, our results indicate that SARS-CoV-2 BNT162b2 vaccination influences MAIT cell frequencies and their transcriptional effector profile with the potential to promote B cell activation. This research also provides a blueprint for the promising use of MAIT cells as cellular adjuvants in mRNA-based vaccines.
Collapse
Affiliation(s)
- Paolo Marzano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simone Balin
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Valentina Cazzetta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Likai Tan
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francesca Calcaterra
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Clara Di Vito
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Assunta Cancellara
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michela Calvi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Anna Carletti
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandro Frigo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ahmed Darwish
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Biomedical Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
5
|
Wang NI, Ninkov M, Haeryfar SMM. Classic costimulatory interactions in MAIT cell responses: from gene expression to immune regulation. Clin Exp Immunol 2023; 213:50-66. [PMID: 37279566 PMCID: PMC10324557 DOI: 10.1093/cei/uxad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are evolutionarily conserved, innate-like T lymphocytes with enormous immunomodulatory potentials. Due to their strategic localization, their invariant T cell receptor (iTCR) specificity for major histocompatibility complex-related protein 1 (MR1) ligands of commensal and pathogenic bacterial origin, and their sensitivity to infection-elicited cytokines, MAIT cells are best known for their antimicrobial characteristics. However, they are thought to also play important parts in the contexts of cancer, autoimmunity, vaccine-induced immunity, and tissue repair. While cognate MR1 ligands and cytokine cues govern MAIT cell maturation, polarization, and peripheral activation, other signal transduction pathways, including those mediated by costimulatory interactions, regulate MAIT cell responses. Activated MAIT cells exhibit cytolytic activities and secrete potent inflammatory cytokines of their own, thus transregulating the biological behaviors of several other cell types, including dendritic cells, macrophages, natural killer cells, conventional T cells, and B cells, with significant implications in health and disease. Therefore, an in-depth understanding of how costimulatory pathways control MAIT cell responses may introduce new targets for optimized MR1/MAIT cell-based interventions. Herein, we compare and contrast MAIT cells and mainstream T cells for their expression of classic costimulatory molecules belonging to the immunoglobulin superfamily and the tumor necrosis factor (TNF)/TNF receptor superfamily, based not only on the available literature but also on our transcriptomic analyses. We discuss how these molecules participate in MAIT cells' development and activities. Finally, we introduce several pressing questions vis-à-vis MAIT cell costimulation and offer new directions for future research in this area.
Collapse
Affiliation(s)
- Nicole I Wang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Marina Ninkov
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
6
|
Kedia-Mehta N, Pisarska MM, Rollings C, O'Neill C, De Barra C, Foley C, Wood NAW, Wrigley-Kelly N, Veerapen N, Besra G, Bergin R, Jones N, O'Shea D, Sinclair LV, Hogan AE. The proliferation of human mucosal-associated invariant T cells requires a MYC-SLC7A5-glycolysis metabolic axis. Sci Signal 2023; 16:eabo2709. [PMID: 37071733 DOI: 10.1126/scisignal.abo2709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are an abundant population of innate T cells that recognize bacterial ligands and play a key role in host protection against bacterial and viral pathogens. Upon activation, MAIT cells undergo proliferative expansion and increase their production of effector molecules such as cytokines. In this study, we found that both mRNA and protein abundance of the key metabolism regulator and transcription factor MYC was increased in stimulated MAIT cells. Using quantitative mass spectrometry, we identified the activation of two MYC-controlled metabolic pathways, amino acid transport and glycolysis, both of which were necessary for MAIT cell proliferation. Last, we showed that MAIT cells isolated from people with obesity showed decreased MYC mRNA abundance upon activation, which was associated with defective MAIT cell proliferation and functional responses. Collectively, our data uncover the importance of MYC-regulated metabolism for MAIT cell proliferation and provide additional insight into the molecular basis for the functional defects of MAIT cells in obesity.
Collapse
Affiliation(s)
- Nidhi Kedia-Mehta
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Marta M Pisarska
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
- National Children's Research Centre, Dublin 12, Ireland
| | - Christina Rollings
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chloe O'Neill
- National Children's Research Centre, Dublin 12, Ireland
| | | | - Cathriona Foley
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Nicole A W Wood
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
- National Children's Research Centre, Dublin 12, Ireland
| | - Neil Wrigley-Kelly
- St. Vincent's University Hospital, Dublin 4, Ireland
- University College Dublin, Dublin 4, Ireland
| | | | - Gurdyal Besra
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Ronan Bergin
- National Children's Research Centre, Dublin 12, Ireland
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Donal O'Shea
- National Children's Research Centre, Dublin 12, Ireland
- St. Vincent's University Hospital, Dublin 4, Ireland
- University College Dublin, Dublin 4, Ireland
| | - Linda V Sinclair
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
- National Children's Research Centre, Dublin 12, Ireland
| |
Collapse
|
7
|
Jakob J, Kröger A, Klawonn F, Bruder D, Jänsch L. Translatome analyses by bio-orthogonal non-canonical amino acid labeling reveal that MR1-activated MAIT cells induce an M1 phenotype and antiviral programming in antigen-presenting monocytes. Front Immunol 2023; 14:1091837. [PMID: 36875139 PMCID: PMC9977998 DOI: 10.3389/fimmu.2023.1091837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
MAIT cells are multifunctional innate-like effector cells recognizing bacterial-derived vitamin B metabolites presented by the non-polymorphic MHC class I related protein 1 (MR1). However, our understanding of MR1-mediated responses of MAIT cells upon their interaction with other immune cells is still incomplete. Here, we performed the first translatome study of primary human MAIT cells interacting with THP-1 monocytes in a bicellular system. We analyzed the interaction between MAIT and THP-1 cells in the presence of the activating 5-OP-RU or the inhibitory Ac-6-FP MR1-ligand. Using bio-orthogonal non-canonical amino acid tagging (BONCAT) we were able to enrich selectively those proteins that were newly translated during MR1-dependent cellular interaction. Subsequently, newly translated proteins were measured cell-type-specifically by ultrasensitive proteomics to decipher the coinciding immune responses in both cell types. This strategy identified over 2,000 MAIT and 3,000 THP-1 active protein translations following MR1 ligand stimulations. Translation in both cell types was found to be increased by 5-OP-RU, which correlated with their conjugation frequency and CD3 polarization at MAIT cell immunological synapses in the presence of 5-OP-RU. In contrast, Ac-6-FP only regulated a few protein translations, including GSK3B, indicating an anergic phenotype. In addition to known effector responses, 5-OP-RU-induced protein translations uncovered type I and type II Interferon-driven protein expression profiles in both MAIT and THP-1 cells. Interestingly, the translatome of THP-1 cells suggested that activated MAIT cells can impact M1/M2 polarization in these cells. Indeed, gene and surface expression of CXCL10, IL-1β, CD80, and CD206 confirmed an M1-like phenotype of macrophages being induced in the presence of 5-OP-RU-activated MAIT cells. Furthermore, we validated that the Interferon-driven translatome was accompanied by the induction of an antiviral phenotype in THP-1 cells, which were found able to suppress viral replication following conjugation with MR1-activated MAIT cells. In conclusion, BONCAT translatomics extended our knowledge of MAIT cell immune responses at the protein level and discovered that MR1-activated MAIT cells are sufficient to induce M1 polarization and an anti-viral program of macrophages.
Collapse
Affiliation(s)
- Josefine Jakob
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andrea Kröger
- Innate Immunity and Infection, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Frank Klawonn
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
8
|
Abdeladhim M, Karnell JL, Rieder SA. In or out of control: Modulating regulatory T cell homeostasis and function with immune checkpoint pathways. Front Immunol 2022; 13:1033705. [PMID: 36591244 PMCID: PMC9799097 DOI: 10.3389/fimmu.2022.1033705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/16/2022] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are the master regulators of immunity and they have been implicated in different disease states such as infection, autoimmunity and cancer. Since their discovery, many studies have focused on understanding Treg development, differentiation, and function. While there are many players in the generation and function of truly suppressive Tregs, the role of checkpoint pathways in these processes have been studied extensively. In this paper, we systematically review the role of different checkpoint pathways in Treg homeostasis and function. We describe how co-stimulatory and co-inhibitory pathways modulate Treg homeostasis and function and highlight data from mouse and human studies. Multiple checkpoint pathways are being targeted in cancer and autoimmunity; therefore, we share insights from the clinic and discuss the effect of experimental and approved therapeutics on Treg biology.
Collapse
|
9
|
Lentz LS, Stutz AJ, Meyer N, Schubert K, Karkossa I, von Bergen M, Zenclussen AC, Schumacher A. Human chorionic gonadotropin promotes murine Treg cells and restricts pregnancy-harmful proinflammatory Th17 responses. Front Immunol 2022; 13:989247. [PMID: 36203576 PMCID: PMC9531259 DOI: 10.3389/fimmu.2022.989247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
An equilibrium between proinflammatory and anti-inflammatory immune responses is essential for maternal tolerance of the fetus throughout gestation. To study the participation of fetal tissue-derived factors in this delicate immune balance, we analyzed the effects of human chorionic gonadotropin (hCG) on murine Treg cells and Th17 cells in vitro, and on pregnancy outcomes, fetal and placental growth, blood flow velocities and remodeling of the uterine vascular bed in vivo. Compared with untreated CD4+CD25+ T cells, hCG increased the frequency of Treg cells upon activation of the LH/CG receptor. hCG, with the involvement of IL-2, also interfered with induced differentiation of CD4+ T cells into proinflammatory Th17 cells. In already differentiated Th17 cells, hCG induced an anti-inflammatory profile. Transfer of proinflammatory Th17 cells into healthy pregnant mice promoted fetal rejection, impaired fetal growth and resulted in insufficient remodeling of uterine spiral arteries, and abnormal flow velocities. Our works show that proinflammatory Th17 cells have a negative influence on pregnancy that can be partly avoided by in vitro re-programming of proinflammatory Th17 cells with hCG.
Collapse
Affiliation(s)
- Lea S. Lentz
- Experimental Obstetrics and Gynecology, Medical Faculty, Health Campus Immunology, Infectilogy and Inflammation (GC-I), Otto-von-Guericke University, Magdeburg, Germany
| | - Annika J. Stutz
- Experimental Obstetrics and Gynecology, Medical Faculty, Health Campus Immunology, Infectilogy and Inflammation (GC-I), Otto-von-Guericke University, Magdeburg, Germany
| | - Nicole Meyer
- Experimental Obstetrics and Gynecology, Medical Faculty, Health Campus Immunology, Infectilogy and Inflammation (GC-I), Otto-von-Guericke University, Magdeburg, Germany
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Ana C. Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Health Campus Immunology, Infectilogy and Inflammation (GC-I), Otto-von-Guericke University, Magdeburg, Germany
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Anne Schumacher
- Experimental Obstetrics and Gynecology, Medical Faculty, Health Campus Immunology, Infectilogy and Inflammation (GC-I), Otto-von-Guericke University, Magdeburg, Germany
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
- *Correspondence: Anne Schumacher,
| |
Collapse
|
10
|
Gao MG, Zhao XS. Mining the multifunction of mucosal-associated invariant T cells in hematological malignancies and transplantation immunity: A promising hexagon soldier in immunomodulatory. Front Immunol 2022; 13:931764. [PMID: 36052080 PMCID: PMC9427077 DOI: 10.3389/fimmu.2022.931764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved innate-like T cells capable of recognizing bacterial and fungal ligands derived from vitamin B biosynthesis. Under different stimulation conditions, MAIT cells can display different immune effector phenotypes, exerting immune regulation and anti-/protumor responses. Based on basic biological characteristics, including the enrichment of mucosal tissue, the secretion of mucosal repair protective factors (interleukin-17, etc.), and the activation of riboflavin metabolites by intestinal flora, MAIT cells may play an important role in the immune regulation effect of mucosal lesions or inflammation. At the same time, activated MAIT cells secrete granzyme B, perforin, interferon γ, and other toxic cytokines, which can mediate anti-tumor effects. In addition, since a variety of hematological malignancies express the targets of MAIT cell-specific effector molecules, MAIT cells are also a potentially attractive target for cell therapy or immunotherapy for hematological malignancies. In this review, we will provide an overview of MAIT research related to blood system diseases and discuss the possible immunomodulatory or anti-tumor roles that unique biological characteristics or effector phenotypes may play in hematological diseases.
Collapse
Affiliation(s)
- Meng-Ge Gao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- *Correspondence: Xiao-Su Zhao,
| |
Collapse
|
11
|
Wang H, Nelson AG, Wang B, Zhao Z, Lim XY, Shi M, Meehan LJ, Jia X, Kedzierska K, Meehan BS, Eckle SBG, Souter MNT, Pediongco TJ, Mak JYW, Fairlie DP, McCluskey J, Wang Z, Corbett AJ, Chen Z. The balance of interleukin‐12 and interleukin‐23 determines the bias of MAIT1
versus
MAIT17 responses during bacterial infection. Immunol Cell Biol 2022; 100:547-561. [PMID: 35514192 PMCID: PMC9539875 DOI: 10.1111/imcb.12556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/28/2022]
Abstract
Mucosal‐associated invariant T (MAIT) cells are a major subset of innate‐like T cells mediating protection against bacterial infection through recognition of microbial metabolites derived from riboflavin biosynthesis. Mouse MAIT cells egress from the thymus as two main subpopulations with distinct functions, namely, T‐bet‐expressing MAIT1 and RORγt‐expressing MAIT17 cells. Previously, we reported that inducible T‐cell costimulator and interleukin (IL)‐23 provide essential signals for optimal MHC‐related protein 1 (MR1)‐dependent activation and expansion of MAIT17 cells in vivo. Here, in a model of tularemia, in which MAIT1 responses predominate, we demonstrate that IL‐12 and IL‐23 promote MAIT1 cell expansion during acute infection and that IL‐12 is indispensable for MAIT1 phenotype and function. Furthermore, we showed that the bias toward MAIT1 or MAIT17 responses we observed during different bacterial infections was determined and modulated by the balance between IL‐12 and IL‐23 and that these responses could be recapitulated by cytokine coadministration with antigen. Our results indicate a potential for tailored immunotherapeutic interventions via MAIT cell manipulation.
Collapse
Affiliation(s)
- Huimeng Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease Guangzhou Medical University Guangzhou China
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Adam G Nelson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Bingjie Wang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
- School of Medicine Tsinghua University Beijing China
| | - Zhe Zhao
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Xin Yi Lim
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Mai Shi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine Tsinghua University Beijing China
| | - Lucy J Meehan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Sidonia BG Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Michael NT Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Troi J Pediongco
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Jeffrey YW Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience The University of Queensland Brisbane QLDAustralia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging The University of Queensland Brisbane QLDAustralia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience The University of Queensland Brisbane QLDAustralia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging The University of Queensland Brisbane QLDAustralia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease Guangzhou Medical University Guangzhou China
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
12
|
Li Y, Du J, Wei W. Emerging Roles of Mucosal-Associated Invariant T Cells in Rheumatology. Front Immunol 2022; 13:819992. [PMID: 35317168 PMCID: PMC8934402 DOI: 10.3389/fimmu.2022.819992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an unconventional T cell subset expressing a semi-invariant TCR and recognize microbial riboflavin metabolites presented by major histocompatibility complex class 1-related molecule (MR1). MAIT cells serve as innate-like T cells bridging innate and adaptive immunity, which have attracted increasing attention in recent years. The involvement of MAIT cells has been described in various infections, autoimmune diseases and malignancies. In this review, we first briefly introduce the biology of MAIT cells, and then summarize their roles in rheumatic diseases including systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren’s syndrome, psoriatic arthritis, systemic sclerosis, vasculitis and dermatomyositis. An increased knowledge of MAIT cells will inform the development of novel biomarkers and therapeutic approaches in rheumatology.
Collapse
|
13
|
Schaffert A, Arnold J, Karkossa I, Blüher M, von Bergen M, Schubert K. The Emerging Plasticizer Alternative DINCH and Its Metabolite MINCH Induce Oxidative Stress and Enhance Inflammatory Responses in Human THP-1 Macrophages. Cells 2021; 10:cells10092367. [PMID: 34572016 PMCID: PMC8466537 DOI: 10.3390/cells10092367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023] Open
Abstract
The use of the plasticizer bis(2-ethylhexyl)phthalate (DEHP) and other plasticizers in the manufacture of plastic products has been restricted due to adverse health outcomes such as obesity, metabolic syndrome, and asthma, for which inflammation has been described to be a driving factor. The emerging alternative plasticizer 1,2-cyclohexanedioic acid diisononyl ester (DINCH) still lacks information regarding its potential effects on the immune system. Here, we investigated the effects of DINCH and its naturally occurring metabolite monoisononylcyclohexane-1,2-dicarboxylic acid ester (MINCH) on the innate immune response. Human THP-1 macrophages were exposed to 10 nM–10 μM DINCH or MINCH for 4 h, 16 h, and 24 h. To decipher the underlying mechanism of action, we applied an untargeted proteomic approach that revealed xenobiotic-induced activation of immune-related pathways such as the nuclear factor κB (NF-κB) signaling pathway. Key drivers were associated with oxidative stress, mitochondrial dysfunction, DNA damage repair, apoptosis, and autophagy. We verified increased reactive oxygen species (ROS) leading to cellular damage, NF-κB activation, and subsequent TNF and IL-1β release, even at low nM concentrations. Taken together, DINCH and MINCH induced cellular stress and pro-inflammatory effects in macrophages, which may lead to adverse health effects.
Collapse
Affiliation(s)
- Alexandra Schaffert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; (A.S.); (J.A.); (I.K.); (M.v.B.)
| | - Josi Arnold
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; (A.S.); (J.A.); (I.K.); (M.v.B.)
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; (A.S.); (J.A.); (I.K.); (M.v.B.)
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), 04318 Leipzig, Germany;
- Department of Endocrinology, Nephrology Rheumatology, University Hospital Leipzig Medical Research Center, 04318 Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; (A.S.); (J.A.); (I.K.); (M.v.B.)
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; (A.S.); (J.A.); (I.K.); (M.v.B.)
- Correspondence: ; Tel.: +49-341-235-1819
| |
Collapse
|