1
|
Letonja J, Petrovič D. A Review of MicroRNAs and lncRNAs in Atherosclerosis as Well as Some Major Inflammatory Conditions Affecting Atherosclerosis. Biomedicines 2024; 12:1322. [PMID: 38927529 PMCID: PMC11201627 DOI: 10.3390/biomedicines12061322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
It is generally accepted that atherosclerosis is a chronic inflammatory disease. The link between atherosclerosis and other inflammatory diseases such as psoriasis, type 2 diabetes mellitus (T2DM), and rheumatoid arthritis (RA) via metabolic, inflammatory, and immunoregulatory pathways is well established. The aim of our review was to summarize the associations between selected microRNAs (miRs) and long non-coding RNAs (lncRNAs) and atherosclerosis, psoriasis, T2DM, and RA. We reviewed the role of miR-146a, miR-210, miR-143, miR-223, miR-126, miR-21, miR-155, miR-145, miR-200, miR-133, miR-135, miR-221, miR-424, let-7, lncRNA-H19, lncRNA-MEG3, lncRNA-UCA1, and lncRNA-XIST in atherosclerosis and psoriasis, T2DM, and RA. Extracellular vesicles (EVs) are a method of intracellular signal transduction. Their function depends on surface expression, cargo, and the cell from which they originate. The majority of the studies that investigated lncRNAs and some miRs had relatively small sample sizes, which limits the generalizability of their findings and indicates the need for more research. Based on the studies reviewed, miR-146a, miR-155, miR-145, miR-200, miR-133, and lncRNA-H19 are the most promising potential biomarkers and, possibly, therapeutic targets for atherosclerosis as well as T2DM, RA, and psoriasis.
Collapse
Affiliation(s)
- Jernej Letonja
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Danijel Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Wang S, Xu J, Guo Y, Cai Y, Zhu W, Meng L, Jiang C, Lu S. Successful Transfection of MicroRNA Mimics or Inhibitors in a Regular Cell Line and in Primary Cells Derived from Patients with Rheumatoid Arthritis. Bio Protoc 2023; 13:e4823. [PMID: 37753465 PMCID: PMC10518773 DOI: 10.21769/bioprotoc.4823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/28/2023] Open
Abstract
The transfection of microRNA (miRNA) mimics and inhibitors can lead to the gain and loss of intracellular miRNA function, helping us better understand the role of miRNA during gene expression regulation under specific physical conditions. Our previous research has confirmed the efficiency and convenience of using liposomes to transfect miRNA mimics or inhibitors. This work uses miR-424 as an example, to provide a detailed introduction for the transfection process of miRNA mimics and inhibitors in the regular SW982 cell line and primary rheumatoid arthritis synovial fibroblasts (RASF) cells from patients by using lipofection, which can also serve as a reference to miRNA transfection in other cell lines. Key features • MiRNA mimics and inhibitors transfection in regular SW982 cell line and primary RASF cells. • Treatment and culture of RASF primary cells before transfection. • Using liposomes for transfection purposes.
Collapse
Affiliation(s)
- Si Wang
- Clinical Laboratory, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jing Xu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuanxu Guo
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yongsong Cai
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Liesu Meng
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Congshan Jiang
- National Regional Children’s Medical Center (Northwest); Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province; Xi’an Key Laboratory of Children’s Health and Diseases, Shaanxi Institute for Pediatric Diseases; Xi’an Children’s Hospital, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shemin Lu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- National Regional Children’s Medical Center (Northwest); Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province; Xi’an Key Laboratory of Children’s Health and Diseases, Shaanxi Institute for Pediatric Diseases; Xi’an Children’s Hospital, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
McAlpine SM, Roberts SE, Hargreaves BKV, Bullock C, Ramsey S, Stringer E, Lang B, Huber A, György B, Erdélyi F, Issekutz TB, Dérfalvi B. Differentially Expressed Inflammation-Regulating MicroRNAs in Oligoarticular Juvenile Idiopathic Arthritis. J Rheumatol 2023; 50:227-235. [PMID: 35840148 DOI: 10.3899/jrheum.220160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To evaluate microRNA expression in synovial fluid (SF), plasma, and leukocytes from patients with juvenile idiopathic arthritis (JIA). METHODS MicroRNA expression in pooled JIA plasma and SF was assessed by absolute quantitative droplet digital PCR array. The results were validated in individual patient samples. MicroRNA content in leukocytes and extracellular vesicles was evaluated by real-time PCR in JIA blood and SF. Blood microRNA expression was compared with healthy controls (HCs). Principal component analysis was used to profile JIA plasma and SF microRNAs, and the potential biological consequences of microRNA dysregulation were investigated by pathway analysis. RESULTS MiR-15a-5p and miR-409-3p levels were higher in JIA plasma than in HC plasma. JIA SF contained elevated levels of miR-21-5p, miR-27a-3p, miR-146b-5p, miR-155-5p, and miR-423-5p, and decreased miR-192-5p and miR-451a, compared to JIA plasma. Extracellular vesicle analysis demonstrated variable encapsulation among selected microRNAs, with only miR-155-5p being represented substantially in extracellular vesicles. SF leukocytes also had higher expression of miR-21-5p, miR-27a-3p, miR-146b-5p, and miR-155-5p, and lower expression of miR-409-3p and miR-451a, relative to blood. No differences were observed between JIA and HC blood leukocytes. Clusters of microRNAs were commonly altered in JIA joint fluid and leukocytes compared to JIA blood samples. In silico analysis predicted that differentially expressed microRNAs in JIA target the transforming growth factor (TGF)-β pathway. CONCLUSION The expression of multiple microRNAs is dysregulated in JIA both locally and systemically, which may inhibit the TGF-β pathway. These findings advance our knowledge of JIA immunopathogenesis and may lead to the development of targeted therapies.
Collapse
Affiliation(s)
- Sarah M McAlpine
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada;
| | - Sarah E Roberts
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Breanna K V Hargreaves
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claire Bullock
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Suzanne Ramsey
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elizabeth Stringer
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bianca Lang
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam Huber
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bence György
- B. György, MD, PhD, Department of Ophthalmology, University of Basel, and Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | | | - Thomas B Issekutz
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Beáta Dérfalvi
- Beáta Dérfalvi, MD, PhD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada, and 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Stec M, Czepiel M, Lenart M, Piestrzyńska-Kajtoch A, Plewka J, Bieniek A, Węglarczyk K, Szatanek R, Rutkowska-Zapała M, Guła Z, Kluczewska A, Baran J, Korkosz M, Siedlar M. Monocyte subpopulations display disease-specific miRNA signatures depending on the subform of Spondyloarthropathy. Front Immunol 2023; 14:1124894. [PMID: 37138886 PMCID: PMC10149963 DOI: 10.3389/fimmu.2023.1124894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Spondyloarthropathies (SpA) are a family of rheumatic disorders that could be divided into axial (axSpA) and peripheral (perSpA) sub-forms depending on the disease clinical presentation. The chronic inflammation is believed to be driven by innate immune cells such as monocytes, rather than self-reactive cells of adaptive immune system. The aim of the study was to investigate the micro-RNA (miRNA) profiles in monocyte subpopulations (classical, intermediate and non-classical subpopulations) acquired from SpA patients or healthy individuals in search for prospective disease specific and/or disease subtype differentiating miRNA markers. Several SpA-specific and axSpA/perSpA differentiating miRNAs have been identified that appear to be characteristic for specific monocyte subpopulation. For classical monocytes, upregulation of miR-567 and miR-943 was found to be SpA-specific, whereas downregulation of miR-1262 could serve as axSpA-differentiating, and the expression pattern of miR-23a, miR-34c, mi-591 and miR-630 as perSpA-differentiating markers. For intermediate monocytes, expression levels of miR-103, miR-125b, miR-140, miR-374, miR-376c and miR-1249 could be used to distinguish SpA patients from healthy donors, whereas the expression pattern of miR-155 was identified as characteristic for perSpA. For non-classical monocytes, differential expression of miR-195 was recognized as general SpA indicator, while upregulation of miR-454 and miR-487b could serve as axSpA-differentiating, and miR-1291 as perSpA-differentiating markers. Our data indicate for the first time that in different SpA subtypes, monocyte subpopulations bear disease-specific miRNA signatures that could be relevant for SpA diagnosis/differentiation process and may help to understand SpA etiopathology in the context of already known functions of monocyte subpopulations.
Collapse
Affiliation(s)
- Małgorzata Stec
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Czepiel
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Agata Piestrzyńska-Kajtoch
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Jacek Plewka
- Department of Chemistry, Jagiellonian University, Krakow, Poland
| | - Agnieszka Bieniek
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Rafał Szatanek
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Zofia Guła
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Kluczewska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Jarosław Baran
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Mariusz Korkosz
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- *Correspondence: Maciej Siedlar,
| |
Collapse
|
5
|
Han JJ, Wang XQ, Zhang XA. Functional Interactions Between lncRNAs/circRNAs and miRNAs: Insights Into Rheumatoid Arthritis. Front Immunol 2022; 13:810317. [PMID: 35197980 PMCID: PMC8858953 DOI: 10.3389/fimmu.2022.810317] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Juan-Juan Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| | - Xin-An Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| |
Collapse
|