1
|
Schenker M, Burotto M, Richardet M, Ciuleanu TE, Gonçalves A, Steeghs N, Schoffski P, Ascierto PA, Maio M, Lugowska I, Lupinacci L, Leary A, Delord JP, Grasselli J, Tan DSP, Friedmann J, Vuky J, Tschaika M, Konduru S, Vemula SV, Slepetis R, Kollia G, Pacius M, Duong Q, Huang N, Doshi P, Baden J, Di Nicola M. Randomized, open-label, phase 2 study of nivolumab plus ipilimumab or nivolumab monotherapy in patients with advanced or metastatic solid tumors of high tumor mutational burden. J Immunother Cancer 2024; 12:e008872. [PMID: 39107131 PMCID: PMC11308901 DOI: 10.1136/jitc-2024-008872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND Checkpoint inhibitor therapy has demonstrated overall survival benefit in multiple tumor types. Tumor mutational burden (TMB) is a predictive biomarker for response to immunotherapies. This study evaluated the efficacy of nivolumab+ipilimumab in multiple tumor types based on TMB status evaluated using either tumor tissue (tTMB) or circulating tumor DNA in the blood (bTMB). PATIENTS AND METHODS Patients with metastatic or unresectable solid tumors with high (≥10 mutations per megabase) tTMB (tTMB-H) and/or bTMB (bTMB-H) who were refractory to standard therapies were randomized 2:1 to receive nivolumab+ipilimumab or nivolumab monotherapy in an open-label, phase 2 study (CheckMate 848; NCT03668119). tTMB and bTMB were determined by the Foundation Medicine FoundationOne® CDx test and bTMB Clinical Trial Assay, respectively. The dual primary endpoints were objective response rate (ORR) in patients with tTMB-H and/or bTMB-H tumors treated with nivolumab+ipilimumab. RESULTS In total, 201 patients refractory to standard therapies were randomized: 135 had tTMB-H and 125 had bTMB-H; 82 patients had dual tTMB-H/bTMB-H. In patients with tTMB-H, ORR was 38.6% (95% CI 28.4% to 49.6%) with nivolumab+ipilimumab and 29.8% (95% CI 17.3% to 44.9%) with nivolumab monotherapy. In patients with bTMB-H, ORR was 22.5% (95% CI 13.9% to 33.2%) with nivolumab+ipilimumab and 15.6% (95% CI 6.5% to 29.5%) with nivolumab monotherapy. Early and durable responses to treatment with nivolumab+ipilimumab were seen in patients with tTMB-H or bTMB-H. The safety profile of nivolumab+ipilimumab was manageable, with no new safety signals. CONCLUSIONS Patients with metastatic or unresectable solid tumors with TMB-H, as determined by tissue biopsy or by blood sample when tissue biopsy is unavailable, who have no other treatment options, may benefit from nivolumab+ipilimumab. TRIAL REGISTRATION NUMBER NCT03668119.
Collapse
Affiliation(s)
- Michael Schenker
- Sf Nectarie Oncology Center and University of Medicine and Pharmacy, Craiova, Romania
| | | | - Martin Richardet
- Fundación Richardet Longo, Instituto Oncológico de Córdoba, Córdoba, Argentina
| | - Tudor-Eliade Ciuleanu
- Department of Oncology, Oncology Institute Prof Dr Ion Chiricuta, Cluj-Napoca, Romania
- Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anthony Gonçalves
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Patrick Schoffski
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Michele Maio
- Department of Oncology, University of Siena and Center for Immuno-Oncology, Siena, Italy
| | - Iwona Lugowska
- Department of Early Phase Clinical Trials, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Alexandra Leary
- Université Paris-Saclay and Institut Gustave‑Roussy, Villejuif, France
| | - Jean-Pierre Delord
- Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, Toulouse, France
| | - Julieta Grasselli
- Center for Medical Education and Clinical Research (CEMIC) University Hospital, Buenos Aires, Argentina
| | - David S P Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
- Cancer Science Institute, National University of Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore
| | - Jennifer Friedmann
- Segal Cancer Center, Jewish General Hospital, Montreal, Québec, Canada
- Rossy Cancer Network, McGill University, Montreal, Québec, Canada
| | - Jacqueline Vuky
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | | | | | - Quyen Duong
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Ning Huang
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Parul Doshi
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | - Massimo Di Nicola
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
2
|
Zhang WN, Liang WJ, Zhang Y, Liang MJ, Zhang MJ, Chen Q, Mo ZP, Wu MY, Weng XZ, Han R, Liang YN, Ke ML, Lin WQ. Molecular characteristics of patients with colorectal signet-ring cell carcinoma with different ABO blood groups. Heliyon 2024; 10:e34220. [PMID: 39091930 PMCID: PMC11292530 DOI: 10.1016/j.heliyon.2024.e34220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Background Colorectal signet-ring cell carcinoma (SRCC) is a rare subtype of malignant adenocarcinoma, accounting for approximately 1 % of colorectal cancer (CRC) cases. Its biomarkers and molecular characteristics remain controversial, and there are no specific therapeutic targets or strategies for its clinical treatment. Methods A retrospective study was conducted between January 2010 and December 2021. 1058 colorectal cancer cases from the Sun Yat-sen University Cancer Center and 489 cases from the Tumor Genome Atlas Project were included in the analysis, of which 64 were SRCC. Data extraction included patient demographics, blood types and risk factors, including clinical variables and genomics (either a 19-gene panel NGS or 1021-gene panel NGS). Univariate analyses were performed to identify factors significantly associated with overall survival. Results The blood groups of 27 (42.2 %), 18 (28.1 %), 12 (18.8 %), and seven (10.9 %) patients were classified as O, A, B, and AB, respectively. We found that O was a unique blood group characterized by a low frequency of KRAS mutations, a high frequency of heterozygosity at each HLA class I locus, and a high tumor mutational burden (TMB). Patients in blood group A with high-frequency KRAS mutations and those in blood group B with anemia and metabolic abnormalities required targeted treatment. Furthermore, genetic alterations in SRCC differed from those in adenocarcinoma and mucinous adenocarcinoma. Conclusions Our study revealed genomic changes in SRCC patients across different blood groups, which could advance the understanding and precise treatment of colorectal SRCC.
Collapse
Affiliation(s)
- Wan-Ning Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei-Jie Liang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Ying Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ming-Jian Liang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ming-Juan Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qi Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhou-Pei Mo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Mei-Yi Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xue-Zi Weng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Han
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yong-Neng Liang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Miao-La Ke
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wen-Qian Lin
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| |
Collapse
|
3
|
Nie M, Sun Z, Li N, Zhou L, Wang S, Yuan M, Chen R, Zhao L, Li J, Bai C. Genomic and T cell repertoire biomarkers associated with malignant mesothelioma survival. Thorac Cancer 2024; 15:1502-1512. [PMID: 38798202 PMCID: PMC11219294 DOI: 10.1111/1759-7714.15326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) is an exceedingly rare tumor with poor prognosis due to the limited availability of effective treatment. Immunotherapy has emerged as a novel treatment approach for MM, but less than 40% of the patients benefit from it. Thus, it is necessary to identify accurate and effective biomarkers that can predict the overall survival (OS) and immunotherapy efficacy for MM. METHODS DNA sequencing was used to identify the genomic landscape based on the data from 86 Chinese patients. T cell receptor (TCR) sequencing was used to characterize MM TCR repertoires of 28 patients between October 2016 and April 2023. RESULTS Patients with TP53, NF2, or CDKN2A variants at the genomic level, as well as those exhibiting lower Shannon index (<6.637), lower evenness (<0.028), or higher clonality (≥0.194) according to baseline tumor tissue TCR indexes, demonstrated poorer OS. Furthermore, patients with TP53, CDKN2A, or CDKN2B variants and those with a lower evenness (<0.030) in baseline tumor tissue showed worse immunotherapy efficacy. The present study is the first to identify five special TCR Vβ-Jβ rearrangements associated with MM immunotherapy efficacy. CONCLUSIONS The present study reported the largest-scale genomic landscape and TCR repertoire of MM in Chinese patients and identified genomic and TCR biomarkers for the prognosis and immunotherapy efficacy in MM. The study results might provide new insights for prospective MM trials using specific genes, TCR indexes, and TCR clones as biomarkers and offer a reference for future antitumor drugs based on TCR-specific clones.
Collapse
Affiliation(s)
- Muwen Nie
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ningning Li
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Liangrui Zhou
- Department of Pathology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | | | | | | | - Lin Zhao
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ji Li
- Department of Pathology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
4
|
Miao YD, Quan WX, Tang XL, Shi WW, Li Q, Li RJ, Wang JT, Gan J, Dong X, Hao L, Luan WY, Zhang F. Uncovering the flip side of immune checkpoint inhibitors: a comprehensive review of immune-related adverse events and predictive biomarkers. Int J Biol Sci 2024; 20:621-642. [PMID: 38169638 PMCID: PMC10758091 DOI: 10.7150/ijbs.89376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have generated considerable excitement as a novel class of immunotherapeutic agents due to their remarkable efficacy in treating various types of cancer. However, the widespread use of ICIs has brought about a number of safety concerns, especially the development of immune-related adverse events (irAEs). These serious complications could result in treatment discontinuation and even life-threatening consequences, making it critical to identify high-risk groups and predictive markers of irAEs before initiating therapy. To this end, the current article examines several potential predictive markers of irAEs in important organs affected by ICIs. While retrospective studies have yielded some promising results, limitations such as small sample sizes, variable patient populations, and specific cancer types and ICIs studied make it difficult to generalize the findings. Therefore, prospective cohort studies and real-world investigations are needed to validate the potential of different biomarkers in predicting irAEs risk. Overall, identifying predictive markers of irAEs is a crucial step towards improving patient safety and enhancing the management of irAEs. With ongoing research efforts, it is hoped that more accurate and reliable biomarkers will be identified and incorporated into clinical practice to guide treatment decisions and prevent the development of irAEs in susceptible patients.
Collapse
Affiliation(s)
- Yan-Dong Miao
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2 nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Wu-Xia Quan
- Yantai Affiliated Hospital of Binzhou Medical University, The 2 nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Xiao-Long Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Wei-Wei Shi
- Yantai Affiliated Hospital of Binzhou Medical University, The 2 nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Qing Li
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2 nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Rui Jian Li
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2 nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Jiang-Tao Wang
- Department of Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2 nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Jian Gan
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, The 2 nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Xin Dong
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2 nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Liang Hao
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2 nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Wen-Yu Luan
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2 nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Fang Zhang
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2 nd Medical College of Binzhou Medical University, Yantai 264100, China
| |
Collapse
|
5
|
Wang S, Ma P, Jiang N, Jiang Y, Yu Y, Fang Y, Miao H, Huang H, Tang Q, Cui D, Fang H, Zhang H, Fan Q, Wang Y, Liu G, Yu Z, Lei Q, Li N. Rare tumors: a blue ocean of investigation. Front Med 2023; 17:220-230. [PMID: 37185946 DOI: 10.1007/s11684-023-0984-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/05/2023] [Indexed: 05/17/2023]
Abstract
Advances in novel drugs, therapies, and genetic techniques have revolutionized the diagnosis and treatment of cancers, substantially improving cancer patients' prognosis. Although rare tumors account for a non-negligible number, the practice of precision medicine and development of novel therapies are largely hampered by many obstacles. Their low incidence and drastic regional disparities result in the difficulty of informative evidence-based diagnosis and subtyping. Sample exhaustion due to difficulty in diagnosis also leads to a lack of recommended therapeutic strategies in clinical guidelines, insufficient biomarkers for prognosis/efficacy, and inability to identify potential novel therapies in clinical trials. Herein, by reviewing the epidemiological data of Chinese solid tumors and publications defining rare tumors in other areas, we proposed a definition of rare tumor in China, including 515 tumor types with incidences of less than 2.5/100 000 per year. We also summarized the current diagnosis process, treatment recommendations, and global developmental progress of targeted drugs and immunotherapy agents on the status quo. Lastly, we pinpointed the current recommendation chance for patients with rare tumors to be involved in a clinical trial by NCCN. With this informative report, we aimed to raise awareness on the importance of rare tumor investigations and guarantee a bright future for rare tumor patients.
Collapse
Affiliation(s)
- Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peiwen Ma
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yale Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue Yu
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Huilei Miao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Huiyao Huang
- Phase I Clinical Trial Center, Fujian Medical University Cancer Hospital/Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Qiyu Tang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dandan Cui
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hong Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Huishan Zhang
- Phase I Clinical Trial Center, Fujian Medical University Cancer Hospital/Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Qi Fan
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuning Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Gang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zicheng Yu
- GenePlus-Shenzhen, Shenzhen, 518118, China
| | - Qi Lei
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
6
|
Chen M, Chen X, Zhang Y, Wang W, Jiang L. Clinical and molecular features of pulmonary NUT carcinoma characterizes diverse responses to immunotherapy, with a pathologic complete response case. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04621-5. [PMID: 36752907 DOI: 10.1007/s00432-023-04621-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE Nuclear protein in testis (NUT) carcinoma is an uncommon malignant cancer characterized by NUTM1 rearrangement. We aimed to investigate the clinicopathological and molecular features and immunotherapy of pulmonary NUT carcinoma. METHODS Immunohistochemistry (IHC) for NUT (C52B1) and programmed cell death ligand 1 (PD-L1: 22C3) and fluorescence in situ hybridization (FISH) for NUTM1 break and BRD4-NUTM1 fusion were performed on six pulmonary NUT carcinoma samples. RESULTS The 6 pulmonary NUT carcinoma samples were obtained from 5 males and 1 female, with ages ranging from 31 to 73 years (average, 46 years). Five tumors occurred in the lobes, with one in the trachea. Pathologically, all cases showed primitive-appearing round to epithelioid cells growing in nests and sheets. Squamous differentiation and abrupt keratinization were observed. All tumors expressed the NUT protein and p63, and 4 tumors showed focal synaptophysin, but PD-L1 expression was not observed. All cases displayed NUTM1 rearrangement, 5 had BRD4-NUTM1 fusion, and one had an unknown partner. Three patients presented regional lymph node involvement at diagnosis. Five patients underwent intensive radiation and/or chemotherapy. Furthermore, 2 patients (1 and 2) received a combination of PD-L1 inhibitor and chemotherapy. Patient 1 exhibited a poor response and soon showed tumor progression and metastasis; however, patient 2 responded remarkably and achieved pathologic complete response (pCR) without uncontrollable adverse events. The overall survival time was 2.9 months. CONCLUSIONS Pulmonary NUT carcinoma exhibits poorly differentiated morphological features with diffuse NUT staining, low PD-L1 expression, and NUTM1 rearrangement. Despite its poor prognosis, it presents a diverse response to immunotherapy. Immune checkpoint inhibitors (ICIs) need to be further explored in NUT carcinoma.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaohua Chen
- Department of Pathology, The Second People's Hospital of Yibin, Yibin, 644000, China
| | - Ying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Wang S, Jiang Y, Miao H, Fang Y, Jiang N, Yu Y, Ma P, Tang Q, Cui D, Fang H, Huang H, Fan Q, Sun C, Yu A, Miao S, Du J, Zhu J, Wang Y, Li N. Targeting rare tumors: new focus for clinical research in China. EMBO Mol Med 2023; 15:e16415. [PMID: 36437781 PMCID: PMC9832829 DOI: 10.15252/emmm.202216415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Rare tumor has a huge unmet medical need without standard regimens, calling for novel therapeutic interventions. The National Cancer Center of China identified a threshold of incidence for rare tumor as 2.5/100,000, based on the characteristics of Chinese population. Molecular profiles for rare tumor patients in China further provided prospects for precise and individualized targeted treatment. An ongoing phase II clinical trial, the PLATFORM study, is the first trial tailored for rare solid tumors in China, featured by molecule-guided therapeutics. With the promulgation of supportive policies to encourage the development of innovative drugs for rare tumors in China, opportunities will be provided for these patients and the gap will be filled in the treatment of rare tumors.
Collapse
Affiliation(s)
- Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yale Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huilei Miao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuan Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yue Yu
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Peiwen Ma
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qiyu Tang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dandan Cui
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hong Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huiyao Huang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qi Fan
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chao Sun
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Anqi Yu
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shuangman Miao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jingting Du
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jingxiao Zhu
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuning Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
8
|
Wang S, Li Q, Ma P, Fang Y, Yu Y, Jiang N, Miao H, Tang Q, Yang Y, Xing S, Chen R, Yi X, Li N. KRAS Mutation in Rare Tumors: A Landscape Analysis of 3453 Chinese Patients. Front Mol Biosci 2022; 9:831382. [PMID: 35359599 PMCID: PMC8962378 DOI: 10.3389/fmolb.2022.831382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 01/30/2023] Open
Abstract
KRAS is the most commonly mutated oncogene in human cancers. Targeted therapy and immunotherapy for this gene have made remarkable progress in recent years. However, comprehensive molecular landscape analysis of KRAS in rare tumors is lacking. Retrospective analysis was performed on clinical samples from patients with rare tumors collected between September 2015 and September 2021, using hybrid-capture-based next-generation sequencing for genomic profiling and immunohistochemistry assay for PD-L1. Of the 3,453 patients included in analysis, KRAS mutations were identified in 8.7% patients in overall; mutation rate and mutation subtypes varied widely across tumor systems and subtypes. KRAS mutations included 21 missense mutations, of which G12D (29.2%), G12V (24.6%), and G13D (10.8%) were most common. Interestingly, KRAS G12C was observed in 0.6% patients overall, and in 5.7% of sarcomatoid carcinoma of the lung and 5.4% of clear cell ovarian cancer tumors, but none in small-bowel cancer tumors. 31.8% KRAS mutations and 36.4% KRAS G12C mutations co-occurred with other targetable alterations. No significant correlation was observed between TMB-H, MSI-H, PD-L1 status, and KRAS mutation status, which may be related to the high proportion of G12D. This study is the first KRAS mutation landscape study in rare tumors of large sample size in China and worldwide. Our results suggest that targeted therapy and immunotherapy are both feasible, albeit complex, in these patients. This information may have significant impact on the operation of clinical trials for rare tumor patients with KRAS mutations in China.
Collapse
Affiliation(s)
- Shuhang Wang
- Clinical Cancer Centre, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qin Li
- Geneplus-Beijing Institute, Beijing, China
| | - Peiwen Ma
- Clinical Cancer Centre, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Fang
- Clinical Cancer Centre, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Yu
- Clinical Cancer Centre, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Clinical Cancer Centre, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huilei Miao
- Clinical Cancer Centre, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiyu Tang
- Clinical Cancer Centre, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqi Yang
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Shujun Xing
- Clinical Cancer Centre, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China
- *Correspondence: Xin Yi, ; Ning Li,
| | - Ning Li
- Clinical Cancer Centre, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xin Yi, ; Ning Li,
| |
Collapse
|
9
|
Xu JX, Wu DH, Ying LW, Hu HG. Immunotherapies for well-differentiated grade 3 gastroenteropancreatic neuroendocrine tumors: A new category in the World Health Organization classification. World J Gastroenterol 2021; 27:8123-8137. [PMID: 35068858 PMCID: PMC8704278 DOI: 10.3748/wjg.v27.i47.8123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/28/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
According to the 2019 World Health Organization (WHO) classification, well-differentiated grade 3 (G3) gastroenteropancreatic (GEP) neuroendocrine tumors (NETs) are a new category of cancer of the digestive system. G3 GEP-NET research and treatment are not as robust as those of lower grade (G1/2) NETs and poorly differentiated neuroendocrine carcinomas (NECs). Previously, the management of high-grade NETs was mainly based on NEC therapies, as high-grade NETs were classified as NECs under the previous WHO classification. Despite this, G3 GEP-NETs are significantly less responsive to platinum-based chemotherapy regimens than NECs, due to their distinct molecular pathogenesis and course of pathological grade transition. Patients with advanced G3 GEP-NETs, who have progressed or are intolerant to chemotherapy regimens such as capecitabine plus temozolomide, have limited treatment choices. Immunotherapy has helped patients with a variety of cancers attain long-term survival through the use of immune checkpoint inhibitors. Immunotherapies, either alone or in combination with other therapies, do not have a clear function in the treatment of G3 GEP-NETs. Currently, the majority of immunotherapy studies, both prospective and retrospective, do not reliably differentiate G3 GEP-NETs from NECs. By contrast, a significant number of studies include non-GEP neuroendocrine neoplasms (NENs). Therefore, there is an urgent need to summarize and evaluate these data to provide more effective therapeutic approaches for patients with this rare tumor. The purpose of this mini-review was to screen and summarize information on G3 GEP-NETs from all studies on NENs immunotherapy.
Collapse
Affiliation(s)
- Jun-Xi Xu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - De-Hao Wu
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Li-Wei Ying
- Department of Orthopedic, Taizhou Hospital, Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Han-Guang Hu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|