1
|
Kaur S, Sohnen P, Kumar S, Vohra M, Swamynathan S, Swamynathan S. The Secreted Ly6/uPAR-Related Protein-1 (SLURP1) Protects the Cornea From Oxidative Stress. Invest Ophthalmol Vis Sci 2025; 66:30. [PMID: 40094657 PMCID: PMC11925223 DOI: 10.1167/iovs.66.3.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Purpose Previously, we reported that the secreted Ly6/uPAR-related protein-1 (SLURP1), abundantly expressed by the corneal epithelium (CE) and secreted into the tear fluid, suppresses NF-κB signaling in healthy corneas and is downregulated in response to a variety of stressors, allowing helpful inflammation to progress. Here we investigate whether SLURP1 manifests its broad protective effects by promoting corneal redox homeostasis. Methods Oxidative stress was induced in the wild-type (WT) and Slurp1-null (Slurp1X-/-) mouse corneas using 1350 J/m2 UV-B, and in human corneal limbal epithelial (HCLE) and SLURP1-overexpressing HCLE-SLURP1 cells with 100 J/m2 UV-B, 0.4 µg/mL mitomycin-C, or 0-100 µM H2O2. We evaluated their (i) redox status (GSH:GSSG ratio) using O-phthalaldehyde; (ii) reactive oxygen species (ROS) accumulation using 2',7'-dichlorodihydrofluorescein diacetate; (iii) antioxidants GPX4, CAT, and SOD2 expression by qRTPCR; (iv) lipid peroxidation by staining for 4-hydroxynonenol, malondialdehyde, and BODIPY-C11; and (v) DNA damage and NF-κB activation by immunostaining for γH2AX, 8-OHdG, NF-κB, and IκB. Results Slurp1 was significantly downregulated in the UV-B-irradiated WT corneas. Oxidatively stressed HCLE-SLURP1 cells displayed relatively less ROS accumulation, lipid peroxidation, DNA damage and NF-κB activation, and a higher GSH/GSSG ratio and antioxidant gene expression than the similarly treated control HCLE cells. UV-B-irradiated Slurp1X-/- corneas displayed relatively more ROS accumulation, DNA damage and less GPX4 expression than the similarly treated WT corneas. Conclusions Collectively, these results elucidate that SLURP1 serves as an insult-agnostic immunomodulator that upregulates antioxidants and suppresses ROS accumulation to promote redox homeostasis in corneal epithelial cells and protect them from diverse genotoxic stressors.
Collapse
Affiliation(s)
- Satinder Kaur
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, United States
| | - Peri Sohnen
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, United States
| | - Simran Kumar
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, United States
| | - Mehak Vohra
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, United States
| | - Sudha Swamynathan
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, United States
| | - Shivalingappa Swamynathan
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, United States
| |
Collapse
|
2
|
Rommel FR, Tumala S, Urban AL, Siebenhaar F, Kruse J, Gieler U, Peters EMJ. Stress Affects Mast Cell Proteases in Murine Skin in a Model of Atopic Dermatitis-like Allergic Inflammation. Int J Mol Sci 2024; 25:5738. [PMID: 38891925 PMCID: PMC11171663 DOI: 10.3390/ijms25115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Stress exposure worsens allergic inflammatory diseases substantially. Mast cells (MCs) play a key role in peripheral immune responses to neuroendocrine stress mediators such as nerve growth factor (NGF) and substance P (SP). Mast cell proteases (MCPs) and cholinergic factors (Chrna7, SLURP1) were recently described to modulate MC stress response. We studied MCPs and Chrna7/SLURP1 and their interplay in a mouse model for noise induced stress (NiS) and atopic dermatitis-like allergic inflammation (AlD) and in cultured MC lacking Chrna7. We found that the cholinergic stress axis interacts with neuroendocrine stress mediators and stress-mediator cleaving enzymes in AlD. SP-cleaving mMCP4+ MC were upregulated in AlD and further upregulated by stress in NiS+AlD. Anti-NGF neutralizing antibody treatment blocked the stress-induced upregulation in vivo, and mMCP4+ MCs correlated with measures of AlD disease activity. Finally, high mMCP4 production in response to SP depended on Chrna7/SLURP1 in cultured MCs. In conclusion, mMCP4 and its upstream regulation by Chrna7/SLURP1 are interesting novel targets for the treatment of allergic inflammation and its aggravation by stress.
Collapse
Affiliation(s)
- Frank R. Rommel
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Susanne Tumala
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Anna-Lena Urban
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, 12203 Berlin, Germany
| | - Johannes Kruse
- Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Uwe Gieler
- Department of Dermatology, University Hospital Giessen, 35392 Giessen, Germany
| | - Eva M. J. Peters
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
- Charité Center 12 for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
3
|
Wu Q, Xia Y, Guo MS, Au TY, Yuen GKW, Kong I, Wang Z, Lin Y, Dong TTX, Tsim KWK. Acetylcholinesterase is regulated by exposure of ultraviolet B in skin keratinocytes: A potential inducer of cholinergic urticaria. FASEB J 2024; 38:e23641. [PMID: 38690717 DOI: 10.1096/fj.202400146r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Cholinergic urticaria is a dermatological disease characterized by the presence of large patches of red skin and transient hives triggered by factors, such as exercise, sweating, and psychological tension. This skin problem is hypothesized to be attributed to a reduced expression of acetylcholinesterase (AChE), an enzyme responsible for hydrolyzing acetylcholine (ACh). Consequently, ACh is thought to the leak from sympathetic nerves to skin epidermis. The redundant ACh stimulates the mast cells to release histamine, triggering immune responses in skin. Here, the exposure of ultraviolet B in skin suppressed the expression of AChE in keratinocytes, both in in vivo and in vitro models. The decrease of the enzyme was resulted from a declined transcription of ACHE gene mediated by micro-RNAs, that is, miR-132 and miR-212. The levels of miR-132 and miR-212 were markedly induced by exposure to ultraviolet B, which subsequently suppressed the transcriptional rate of ACHE. In the presence of low level of AChE, the overflow ACh caused the pro-inflammatory responses in skin epidermis, including increased secretion of cytokines and COX-2. These findings suggest that ultraviolet B exposure is one of the factors contributing to cholinergic urticaria in skin.
Collapse
Affiliation(s)
- Qiyun Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen, China
| | - Yingjie Xia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Maggie Suisui Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tsz Yu Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gary K W Yuen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ivan Kong
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhengqi Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yingyi Lin
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina T X Dong
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen, China
| | - Karl W K Tsim
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen, China
| |
Collapse
|
4
|
Theoharides TC, Twahir A, Kempuraj D. Mast cells in the autonomic nervous system and potential role in disorders with dysautonomia and neuroinflammation. Ann Allergy Asthma Immunol 2024; 132:440-454. [PMID: 37951572 DOI: 10.1016/j.anai.2023.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Mast cells (MC) are ubiquitous in the body, and they are critical for not only in allergic diseases but also in immunity and inflammation, including having potential involvement in the pathophysiology of dysautonomias and neuroinflammatory disorders. MC are located perivascularly close to nerve endings and sites such as the carotid bodies, heart, hypothalamus, the pineal gland, and the adrenal gland that would allow them not only to regulate but also to be affected by the autonomic nervous system (ANS). MC are stimulated not only by allergens but also many other triggers including some from the ANS that can affect MC release of neurosensitizing, proinflammatory, and vasoactive mediators. Hence, MC may be able to regulate homeostatic functions that seem to be dysfunctional in many conditions, such as postural orthostatic tachycardia syndrome, autism spectrum disorder, myalgic encephalomyelitis/chronic fatigue syndrome, and Long-COVID syndrome. The evidence indicates that there is a possible association between these conditions and diseases associated with MC activation. There is no effective treatment for any form of these conditions other than minimizing symptoms. Given the many ways MC could be activated and the numerous mediators released, it would be important to develop ways to inhibit stimulation of MC and the release of ANS-relevant mediators.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida; Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts.
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| |
Collapse
|
5
|
He C, Zhou P, Nie Q. exFINDER: identify external communication signals using single-cell transcriptomics data. Nucleic Acids Res 2023; 51:e58. [PMID: 37026478 PMCID: PMC10250247 DOI: 10.1093/nar/gkad262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Cells make decisions through their communication with other cells and receiving signals from their environment. Using single-cell transcriptomics, computational tools have been developed to infer cell-cell communication through ligands and receptors. However, the existing methods only deal with signals sent by the measured cells in the data, the received signals from the external system are missing in the inference. Here, we present exFINDER, a method that identifies such external signals received by the cells in the single-cell transcriptomics datasets by utilizing the prior knowledge of signaling pathways. In particular, exFINDER can uncover external signals that activate the given target genes, infer the external signal-target signaling network (exSigNet), and perform quantitative analysis on exSigNets. The applications of exFINDER to scRNA-seq datasets from different species demonstrate the accuracy and robustness of identifying external signals, revealing critical transition-related signaling activities, inferring critical external signals and targets, clustering signal-target paths, and evaluating relevant biological events. Overall, exFINDER can be applied to scRNA-seq data to reveal the external signal-associated activities and maybe novel cells that send such signals.
Collapse
Affiliation(s)
- Changhan He
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Peijie Zhou
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
- Department of Cell and Developmental Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Shelukhina I, Siniavin A, Kasheverov I, Ojomoko L, Tsetlin V, Utkin Y. α7- and α9-Containing Nicotinic Acetylcholine Receptors in the Functioning of Immune System and in Pain. Int J Mol Sci 2023; 24:ijms24076524. [PMID: 37047495 PMCID: PMC10095066 DOI: 10.3390/ijms24076524] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) present as many different subtypes in the nervous and immune systems, muscles and on the cells of other organs. In the immune system, inflammation is regulated via the vagus nerve through the activation of the non-neuronal α7 nAChR subtype, affecting the production of cytokines. The analgesic properties of α7 nAChR-selective compounds are mostly based on the activation of the cholinergic anti-inflammatory pathway. The molecular mechanism of neuropathic pain relief mediated by the inhibition of α9-containing nAChRs is not fully understood yet, but the role of immune factors in this process is becoming evident. To obtain appropriate drugs, a search of selective agonists, antagonists and modulators of α7- and α9-containing nAChRs is underway. The naturally occurring three-finger snake α-neurotoxins and mammalian Ly6/uPAR proteins, as well as neurotoxic peptides α-conotoxins, are not only sophisticated tools in research on nAChRs but are also considered as potential medicines. In particular, the inhibition of the α9-containing nAChRs by α-conotoxins may be a pathway to alleviate neuropathic pain. nAChRs are involved in the inflammation processes during AIDS and other viral infections; thus they can also be means used in drug design. In this review, we discuss the role of α7- and α9-containing nAChRs in the immune processes and in pain.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuri Utkin
- Correspondence: or ; Tel.: +7-495-3366522
| |
Collapse
|
7
|
He C, Zhou P, Nie Q. exFINDER: identify external communication signals using single-cell transcriptomics data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.533888. [PMID: 37034624 PMCID: PMC10081188 DOI: 10.1101/2023.03.24.533888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Cells make decisions through their communication with other cells and receiving signals from their environment. Using single-cell transcriptomics, computational tools have been developed to infer cell-cell communication through ligands and receptors. However, the existing methods only deal with signals sent by the measured cells in the data, the received signals from the external system are missing in the inference. Here, we present exFINDER, a method that identifies such external signals received by the cells in the single-cell transcriptomics datasets by utilizing the prior knowledge of signaling pathways. In particular, exFINDER can uncover external signals that activate the given target genes, infer the external signal-target signaling network (exSigNet), and perform quantitative analysis on exSigNets. The applications of exFINDER to scRNA-seq datasets from different species demonstrate the accuracy and robustness of identifying external signals, revealing critical transition-related signaling activities, inferring critical external signals and targets, clustering signal-target paths, and evaluating relevant biological events. Overall, exFINDER can be applied to scRNA-seq data to reveal the external signal-associated activities and maybe novel cells that send such signals.
Collapse
Affiliation(s)
- Changhan He
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Peijie Zhou
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
- Department of Cell and Developmental Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
8
|
The Association of Smoking with Contact Dermatitis: A Cross-Sectional Study. Healthcare (Basel) 2023; 11:healthcare11030427. [PMID: 36767002 PMCID: PMC9913980 DOI: 10.3390/healthcare11030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Contact dermatitis is a chronic inflammatory skin disorder with a highly variable prevalence worldwide. Smoking plays a crucial role in mediating inflammatory skin conditions such as contact dermatitis. The present study aimed to investigate the association between smoking status and contact dermatitis in the Saudi population. The patients in the present study were individuals older than 18 years who were diagnosed with contact dermatitis and received a patch test at the Department of Dermatology of King Saud University Medical City from March 2003 through February 2019. All patients were interviewed by phone to complete a specific pre-designed questionnaire to assess tobacco use or exposure history. The total number of enrolled patients in the study was 308 (91 males and 217 females), all with contact dermatitis. Data from the present study suggest that the prevalence of allergic contact dermatitis in smokers may be less than that in non-smokers. Moreover, the prevalence of irritant contact dermatitis in smokers is more significant than in non-smokers. Finally, left-hand contact dermatitis is significantly associated with smoking. Therefore, there is a strong association between smoking and irritant contact dermatitis, especially in the Saudi population, regarding the left hand. Further epidemiologic studies are needed to further explore the role of smoking in the occurrence of contact dermatitis and to explore the possible mechanisms.
Collapse
|
9
|
Wang H, Wang Q, Chen J, Chen C. Association Among the Gut Microbiome, the Serum Metabolomic Profile and RNA m6A Methylation in Sepsis-Associated Encephalopathy. Front Genet 2022; 13:859727. [PMID: 35432460 PMCID: PMC9006166 DOI: 10.3389/fgene.2022.859727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
Objective: To investigate the relationship among the gut microbiome, serum metabolomic profile and RNA m6A methylation in patients with sepsis-associated encephalopathy (SAE), 16S rDNA technology, metabolomics and gene expression validation were applied. Methods: Serum and feces were collected from patients with and without (SAE group and non-SAE group, respectively, n = 20). The expression of serum markers and IL-6 was detected by enzyme-linked immunosorbent assay (ELISA), and blood clinical indicators were detected using a double antibody sandwich immunochemiluminescence method. The expression of RNA m6A regulator were checked by Q-RTPCR. The gut microbiome was analyzed by 16S rDNA sequencing and the metabolite profile was revealed by liquid chromatography-mass spectrometry (LC-MS/MS). Results: In the SAE group, the IL-6, ICAM-5 and METTL3 levels were significantly more than those in the non-SAE group, while the FTO levels were significantly decreased in the SAE group. The diversity was decreased in the SAE gut microbiome, as characterized by a profound increase in commensals of the Acinetobacter, Methanobrevibacter, and Syner-01 genera, a decrease in [Eubacterium]_hallii_group, while depletion of opportunistic organisms of the Anaerofilum, Catenibacterium, and Senegalimassilia genera were observed in both groups. The abundance of Acinetobacter was positively correlated with the expression of METTL3. The changes between the intestinal flora and the metabolite profile showed a significant correlation. Sphingorhabdus was negatively correlated with 2-ketobutyric acid, 9-decenoic acid, and l-leucine, and positively correlated with Glycyl-Valine [Eubacterium]_hallii_group was positively correlated with 2-methoxy-3-methylpyazine, acetaminophen, and synephrine acetonide. Conclusion: The gut microbiota diversity was decreased. The serum metabolites and expression of RNA m6A regulators in PBMC were significantly changed in the SAE group compared to the non-SAE group. The results revealed that serum and fecal biomarkers could be used for SAE screening.
Collapse
|
10
|
Dai Y, Zheng X, Zhang Q, Hu X, Wang P, Yang S. Case Report: Challenges in the Diagnosis of a Case of Mal de Meleda and a Therapeutic Attempt of Ixekizumab and Adalimumab. Front Med (Lausanne) 2022; 9:821301. [PMID: 35360724 PMCID: PMC8961326 DOI: 10.3389/fmed.2022.821301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Background Mal de Meleda (MDM, OMIM 248300) is an autosomal recessive disease characterized by symmetrical and progressive palmoplantar hyperkeratosis soon after birth. Mutations in SLURP1 gene could lead to MDM. Clinically, MDM is easily misdiagnosed as other types of keratoderma due to phenotypic variation and overlap. Objective and Methods A patient with suspected MDM was confirmed by the combination of next-generation sequencing and Exomiser, and the patient was attempted with the treatment of Ixekizumab and Adalimumab. Results A homozygous mutation c.256G>A (p.Gly86Arg) in the SLURP1 gene was identified in the patient. The inflammatory erythemas on his hands, feet and buttocks were mildly relieved after the treatment of high dose of Ixekizumab. Conclusions Our findings helps to enhance the understanding of MDM. Ixekizumab may be a potential strategy to treat MDM.
Collapse
Affiliation(s)
- Yuwei Dai
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China,Institute of Dermatology, Anhui Medical University, Hefei, China,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China,Provincial Laboratory of Inflammatory and Immune Mediated Diseases, Hefei, China,Ferry Outpatient Department, The Ferry Skin Research Institute, Hefei, China
| | - Xiaodong Zheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China,Institute of Dermatology, Anhui Medical University, Hefei, China,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China,Provincial Laboratory of Inflammatory and Immune Mediated Diseases, Hefei, China
| | - Qi Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China,Institute of Dermatology, Anhui Medical University, Hefei, China,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China,Provincial Laboratory of Inflammatory and Immune Mediated Diseases, Hefei, China,Ferry Outpatient Department, The Ferry Skin Research Institute, Hefei, China
| | - Xia Hu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China,Institute of Dermatology, Anhui Medical University, Hefei, China,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China,Provincial Laboratory of Inflammatory and Immune Mediated Diseases, Hefei, China,Ferry Outpatient Department, The Ferry Skin Research Institute, Hefei, China
| | - Peiguang Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China,Institute of Dermatology, Anhui Medical University, Hefei, China,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China,Provincial Laboratory of Inflammatory and Immune Mediated Diseases, Hefei, China,*Correspondence: Peiguang Wang
| | - Sen Yang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China,Institute of Dermatology, Anhui Medical University, Hefei, China,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China,Provincial Laboratory of Inflammatory and Immune Mediated Diseases, Hefei, China,Ferry Outpatient Department, The Ferry Skin Research Institute, Hefei, China,Sen Yang
| |
Collapse
|
11
|
He X, Wang L, Liu L, Gao J, Long B, Chi F, Hu T, Wan Y, Gong Z, Li L, Zhen P, Zhang T, Cao H, Huang SH. Endogenous α7 nAChR Agonist SLURP1 Facilitates Escherichia coli K1 Crossing the Blood-Brain Barrier. Front Immunol 2021; 12:745854. [PMID: 34721415 PMCID: PMC8552013 DOI: 10.3389/fimmu.2021.745854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Alpha 7 nicotinic acetylcholine receptor (α7 nAChR) is critical for the pathogenesis of Escherichia coli (E. coli) K1 meningitis, a severe central nervous system infection of the neonates. However, little is known about how E. coli K1 manipulates α7 nAChR signaling. Here, through employing immortalized cell lines, animal models, and human transcriptional analysis, we showed that E. coli K1 infection triggers releasing of secreted Ly6/Plaur domain containing 1 (SLURP1), an endogenous α7 nAChR ligand. Exogenous supplement of SLURP1, combined with SLURP1 knockdown or overexpression cell lines, showed that SLURP1 is required for E. coli K1 invasion and neutrophils migrating across the blood-brain barrier (BBB). Furthermore, we found that SLURP1 is required for E. coli K1-induced α7 nAChR activation. Finally, the promoting effects of SLURP1 on the pathogenesis of E. coli K1 meningitis was significantly abolished in the α7 nAChR knockout mice. These results reveal that E. coli K1 exploits SLURP1 to activate α7 nAChR and facilitate its pathogenesis, and blocking SLURP1-α7 nAChR interaction might represent a novel therapeutic strategy for E. coli K1 meningitis.
Collapse
Affiliation(s)
- Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Infectious Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| | - Lei Wang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Liqun Liu
- Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Infectious Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| | - Beiguo Long
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Feng Chi
- Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Tongtong Hu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Wan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zelong Gong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li Li
- Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, China
| | - Peilin Zhen
- Department of Infectious Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| | - Tiesong Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Sheng-He Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, China
| |
Collapse
|
12
|
Bychkov ML, Shulepko MA, Shlepova OV, Kulbatskii DS, Chulina IA, Paramonov AS, Baidakova LK, Azev VN, Koshelev SG, Kirpichnikov MP, Shenkarev ZO, Lyukmanova EN. SLURP-1 Controls Growth and Migration of Lung Adenocarcinoma Cells, Forming a Complex With α7-nAChR and PDGFR/EGFR Heterodimer. Front Cell Dev Biol 2021; 9:739391. [PMID: 34595181 PMCID: PMC8476798 DOI: 10.3389/fcell.2021.739391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Secreted Ly6/uPAR-related protein 1 (SLURP-1) is a secreted Ly6/uPAR protein that negatively modulates the nicotinic acetylcholine receptor of α7 type (α7-nAChR), participating in control of cancer cell growth. Previously we showed, that a recombinant analogue of human SLURP-1 (rSLURP-1) diminishes the lung adenocarcinoma A549 cell proliferation and abolishes the nicotine-induced growth stimulation. Here, using multiplex immunoassay, we demonstrated a decrease in PTEN and mammalian target of rapamycin (mTOR) kinase phosphorylation in A549 cells upon the rSLURP-1 treatment pointing on down-regulation of the PI3K/AKT/mTOR signaling pathway. Decreased phosphorylation of the platelet-derived growth factor receptor type β (PDGFRβ) and arrest of the A549 cell cycle in the S and G2/M phases without apoptosis induction was also observed. Using a scratch migration assay, inhibition of A549 cell migration under the rSLURP-1 treatment was found. Affinity extraction demonstrated that rSLURP-1 in A549 cells forms a complex not only with α7-nAChR, but also with PDGFRα and epidermal growth factor receptor (EGFR), which are known to be involved in regulation of cancer cell growth and migration and are able to form a heterodimer. Knock-down of the genes encoding α7-nAChR, PDGFRα, and EGFR confirmed the involvement of these receptors in the anti-migration effect of SLURP-1. Thus, SLURP-1 can target the α7-nAChR complexes with PDGFRα and EGFR in the membrane of epithelial cells. Using chimeric proteins with grafted SLURP-1 loops we demonstrated that loop I is the principal active site responsible for the SLURP-1 interaction with α7-nAChR and its antiproliferative effect. Synthetic peptide mimicking the loop I cyclized by a disulfide bond inhibited ACh-evoked current at α7-nAChR, as well as A549 cell proliferation and migration. This synthetic peptide represents a promising prototype of new antitumor drug with the properties close to that of the native SLURP-1 protein.
Collapse
Affiliation(s)
- Maxim L. Bychkov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Mikhail A. Shulepko
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Olga V. Shlepova
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmitrii S. Kulbatskii
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Irina A. Chulina
- Group of Peptide Chemistry, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Alexander S. Paramonov
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Ludmila K. Baidakova
- Group of Peptide Chemistry, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Viatcheslav N. Azev
- Group of Peptide Chemistry, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Sergey G. Koshelev
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Zakhar O. Shenkarev
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Ekaterina N. Lyukmanova
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|