1
|
Mao Y, Liao Q, Zhu Y, Bi M, Zou J, Zheng N, Zhu L, Zhao C, Liu Q, Liu L, Chen J, Gu L, Liu Z, Pan X, Xue Y, Feng M, Ying T, Zhou P, Wu Z, Xiao J, Zhang R, Leng J, Sun Y, Zhang X, Xu J. Efficacy and safety of novel multifunctional M10 CAR-T cells in HIV-1-infected patients: a phase I, multicenter, single-arm, open-label study. Cell Discov 2024; 10:49. [PMID: 38740803 DOI: 10.1038/s41421-024-00658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/02/2024] [Indexed: 05/16/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells have been proposed for HIV-1 treatment but have not yet demonstrated desirable therapeutic efficacy. Here, we report newly developed anti-HIV-1 CAR-T cells armed with endogenic broadly neutralizing antibodies (bNAbs) and the follicle-homing receptor CXCR5, termed M10 cells. M10 cells were designed to exercise three-fold biological functions, including broad cytotoxic effects on HIV-infected cells, neutralization of cell-free viruses produced after latency reversal, and B-cell follicle homing. After demonstrating the three-fold biological activities, M10 cells were administered to treat 18 HIV-1 patients via a regimen of two allogenic M10 cell infusions with an interval of 30 days, with each M10 cell infusion followed by two chidamide stimulations for HIV-1 reservoir activation. Consequently, 74.3% of M10 cell infusions resulted in significant suppression of viral rebound, with viral loads declining by an average of 67.1%, and 10 patients showed persistently reduced cell-associated HIV-1 RNA levels (average decrease of 1.15 log10) over the 150-day observation period. M10 cells were also found to impose selective pressure on the latent viral reservoir. No significant treatment-related adverse effects were observed. Overall, our study supported the potential of M10 CAR-T cells as a novel, safe, and effective therapeutic option for the functional cure of HIV-1/AIDS.
Collapse
Affiliation(s)
- Yunyu Mao
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qibin Liao
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Youwei Zhu
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mingyuan Bi
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jun Zou
- AIDS Clinical Treatment Center, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
| | - Nairong Zheng
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lingyan Zhu
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chen Zhao
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qing Liu
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Li Liu
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ling Gu
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhuoqun Liu
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xinghao Pan
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ying Xue
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Meiqi Feng
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tianlei Ying
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Pingyu Zhou
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
| | - Zhanshuai Wu
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Department of Medical Immunology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jian Xiao
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Department of Medical Immunology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Renfang Zhang
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Jing Leng
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Department of Medical Immunology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Xiaoyan Zhang
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Jianqing Xu
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Zhang Y, Ji J, Xie K, Cai M, Wang R, Zhang X, Chen X, Zhang Y, Wu H, Wang W, Li Z, Zhang T. Pathological proliferation: a potential mechanism for poor CD4 + T cell recovery in people living with HIV. Front Cell Infect Microbiol 2024; 14:1344778. [PMID: 38601742 PMCID: PMC11004319 DOI: 10.3389/fcimb.2024.1344778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024] Open
Abstract
Background People living with HIV (PLWH) fail to achieve normalization of CD4+ T cell counts and function, especially in immunological non-responders (INRs). The frequencies of Ki67+CD4+ T cells were inversely associated with CD4+ T cell counts in HIV infected patients. Early ART did not normalize CD4+ T cell proliferation. However, the features of the abnormal proliferation CD4+ T cell in INRs are far from known. Method PLWH were divided into INRs (n= 16) and immunological responders (IRs, n= 53) groups. Mass cytometry was applied to peripheral blood T cells to profile the immune cells and liquid chip technique was used to measure plasma levels of cytokines and chemokines. Correlation analyses were conducted to evaluate associations between the degree of CD4+ T cell proliferation and immune function. Results The percentage of Ki67+ CD4+ T cells were significant higher in INRs, and we defined these cells with significant higher level of Ki67, as over-proliferating cells. No significant difference of markers' expression (HLA-DR, CD38, CD57, PD-1, PD-L1, CD107a, perforin) was found between INRs and IRs. Compared with naïve CD4+ T cells in INRs, Ki67+ CD4+ T cells exhibited lower levels of CD57 and CD38. Whereas Ki67+ T cells exhibited higher levels of CD38 and CD57 and activation compared with differentiated mature central memory CD4+ T cells and effector memory CD4+ T cells. Ki67+ cells did not show higher levels of senescence and activation compared to certain Ki67- CD4+ central memory T cells in IRs. Furthermore, Ki67+ CD4+ Tcm cells exhibited positive correlations with pro-inflammatory cytokines. Conclusion We proposed and validated the hypothesis of "pathological proliferation" in INRs: excessive proliferation of CD4+ T cells in INRs may be accompanied by aberrant activation, senescence and loss of immune function. Eventually, such over-proliferating but poor-quality cells in INRs result in incomplete recovery of both CD4+ T cell counts and function. An intervention that enhancing the proliferative capacity or functional ability or both of CD4+ T cell in INRs might therefore be beneficial.
Collapse
Affiliation(s)
- Yang Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Sexually Transmitted Disease Prevention and Control, Beijing, China
| | - Jiahao Ji
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Kaidi Xie
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Miaotian Cai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of HIV/AIDS Research, Beijing Youan Hospital, Beijing, China
| | - Xin Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xue Chen
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wen Wang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Sexually Transmitted Disease Prevention and Control, Beijing, China
| | - Zhen Li
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of HIV/AIDS Research, Beijing Youan Hospital, Beijing, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Sexually Transmitted Disease Prevention and Control, Beijing, China
- Beijing Key Laboratory of HIV/AIDS Research, Beijing Youan Hospital, Beijing, China
| |
Collapse
|
3
|
Li C, Sun JP, Wang N, Yan P, Wang R, Su B, Zhang T, Wu H, Chen H, Li Z, Huang XJ. Plasma Cytokine Expression and Immune Reconstitution in Early and Delayed Anti-HIV 96-Weeks Treatment: A Retrospective Study. AIDS Res Hum Retroviruses 2024; 40:101-109. [PMID: 37051683 DOI: 10.1089/aid.2022.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
HIV is an immunodeficiency disease with emergence of inadequate corresponding reconstruction therapies. Pyroptosis of CD4+T cell is mainly caused by immune activation and inflammation that cannot be reduced by successful antiretroviral therapy (ART) alone. Coinfections because of CD4+T cell reconstitution failure can occur. Anti-inflammatory treatment determines the success of immune reconstitution. In our experiment, only a few cytokines could recover to normal level following a 2-year antiretroviral treatment in early ART initiation, which is consistent with current findings about adjuvant HIV anti-inflammatory therapy. Early infection is often accompanied by a more severe inflammatory response. Innate immunity cytokines like granulocyte macrophage-colony stimulating factor, IFN-γ induced protein 10 kDa, and tumor necrosis factor-α exhibited the most elevated levels among all kinds of inflammatory cytokines. The correlation analysis showed at least eight cytokines contributing to the changes of CD4/CD8 ratio.
Collapse
Affiliation(s)
- Chao Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Jian-Ping Sun
- Biomedical Information Center, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Ni Wang
- Biomedical Informatics Laboratory, Capital Medical University, Beijing, China
| | - Ping Yan
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Hui Chen
- Biomedical Informatics Laboratory, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Xiao-Jie Huang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Ji SX, Zheng YF, Li X, Li BX, Zou JX, Wang YT, Xia XY, Chen X, Hu QN, Wan TJ, Wen L, Feng QS. Epidemiological investigation and proteomic profiling of typical TCM syndrome in HIV/AIDS immunological nonresponders. Anat Rec (Hoboken) 2023; 306:3106-3119. [PMID: 35775967 DOI: 10.1002/ar.25018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 11/09/2022]
Abstract
HIV/AIDS pandemic remains the world's most severe public health challenge, especially for HIV/AIDS immunological nonresponders (HIV/AIDS-INRs), who tend to have higher mortality. Due to the advantages in promoting patients' immune reconstitution, Traditional Chinese medicine (TCM) has become one of the mainstays of complementary treatments for HIV/AIDS-INRs. Given that effective TCM treatments largely depend on precise syndrome differentiation, there is an increasing interest in exploring biological evidence for the classification of TCM syndromes in HIV/AIDS-INRs. In our study, to identify the typical HIV/AIDS-INRs syndrome, an epidemiological survey was first conducted in the Liangshan prefecture (China), a high HIV/AIDS prevalence region. The key TCM syndrome, Yang deficiency of spleen and kidney (YDSK), was evaluated by using a tandem mass tag combined with liquid chromatography-tandem mass spectrometry (TMT-LC-MS/MS). A total of 62 differentially expressed proteins (DEPs) of YDSK syndrome compared with healthy people were screened out. Comparative bioinformatics analyses showed that DEPs in YDSK syndrome were mainly associated with response to wounding and acute inflammatory response in the biological process. The pathway annotation is mainly enriched in complement and coagulation cascades. Finally, the YDSK syndrome-specific DEPs such as HP and S100A9 were verified by ELISA, and confirmed as potential biomarkers for YDSK syndrome. Our study may lay the biological and scientific basis for the specificity of TCM syndromes in HIV/AIDs-INRs, and may provide more opportunities for the deep understanding of TCM syndromes and the developing more effective and stable TCM treatment for HIV/AIDS-INRs.
Collapse
Affiliation(s)
- Shao-Xiu Ji
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- Yinchuan Hospital of Traditional Chinese Medicine, Yinchuan, Ningxia, People's Republic of China
| | - Yan-Feng Zheng
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xia Li
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Bai-Xue Li
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Jia-Xi Zou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yi-Ting Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xin-Yi Xia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xin Chen
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Qian-Nan Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Ting-Jun Wan
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Li Wen
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Quan-Sheng Feng
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
5
|
Qi CC, Xu LR, Zhao CJ, Zhang HY, Li QY, Liu MJ, Zhang YX, Tang Z, Ma XX. Prevalence and risk factors of tuberculosis among people living with HIV/AIDS in China: a systematic review and meta-analysis. BMC Infect Dis 2023; 23:584. [PMID: 37674103 PMCID: PMC10481577 DOI: 10.1186/s12879-023-08575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
OBJECTIVE To estimate the prevalence and risk factors associated with tuberculosis (TB) among people living with human immunodeficiency virus (HIV) infection/acquired immunodeficiency syndrome (AIDS) in China. METHODS A systematic review and meta-analysis were conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. After the literature was screened based on the inclusion and exclusion criteria, STATA® version 17.0 software was used for the meta-analysis. The heterogeneity among study data was assessed using I2 statistics. Subgroup analysis and meta-regressions were performed to further explore the source of heterogeneity. RESULTS A total of 5241 studies were retrieved. Of these, 44 studies were found to be eligible. The pooled prevalence of HIV/TB co-infection was 6.0%. The risk factors for HIV/TB co-infection included a low CD4+ T cell count, smoking, intravenous drug use and several other sociodemographic and clinical factors. Bacillus Calmette-Guérin (BCG) vaccination history was a protective factor. CONCLUSION A high prevalence of TB was observed among people living with HIV/AIDS in China. Low CD4+ T cell count, smoking, and intravenous drug use were the primary risk factors for HIV/TB co-infection, whereas BCG vaccination history was a protective factor. Checking for TB should be prioritized in HIV screening and healthcare access. SYSTEMATIC REVIEW REGISTRATION Registered on PROSPERO, Identifier: CRD42022297754.
Collapse
Affiliation(s)
- Cong-Cong Qi
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Li-Ran Xu
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China.
- Key Laboratory in Chinese Medicine for the Prevention and Treatment of Viral Diseases in Henan Province, Zhengzhou, Henan Province, China.
- The First Affiliated Hospital of Henan University of Chinese Medicine, Renmin Road 19, Jinshui District, Zhengzhou City, Henan Province, 450000, China.
| | - Chang-Jia Zhao
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Hai-Yan Zhang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Qing-Ya Li
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Mei-Jun Liu
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Ye-Xuan Zhang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Zhou Tang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Xiu-Xia Ma
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| |
Collapse
|
6
|
Ding Y, Pu C, Zhang X, Tang G, Zhang F, Yu G. Identification of Potential Diagnostic Genes of HIV-Infected Immunological Non-Responders on Bioinformatics Analysis. J Inflamm Res 2023; 16:1555-1570. [PMID: 37082297 PMCID: PMC10112482 DOI: 10.2147/jir.s396055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
Purpose HIV-infected immunological non-responders (INRs) failed to achieve the normalization of CD4+ T cell counts despite their undetectable viral load. INRs have an increased risk of clinical progressions of Acquired Immunodeficiency Syndrome (AIDS) and non-AIDS events, accompanied by higher mortality rates than immunological responders (IRs). This study aimed to discover the genes, which help to distinguish INRs from IRs and explore the possible mechanism of INRs. Methods Screening DEGs between INRs and IRs using GEO microarray dataset GSE143742. DEG biological functions were investigated using GO and KEGG analysis. DEGs and WGCNA linked modules were intersected to find common genes. Key genes were identified using SVM-RFE and LASSO regression models. ROC analysis was done to evaluate key gene diagnostic effectiveness using GEO database dataset GSE106792. Cytoscape created a miRNA-mRNA-TF network for diagnostic genes. CIBERSORT and flow cytometry examined the INRs and IRs immune microenvironments. In 10 INR and 10 IR clinical samples, diagnostic gene expression was verified by RT-qPCR and Western blot. Results We obtained 190 DEGs between the INR group and IR group. Functional enrichment analysis found a significant enrichment in mitochondria and apoptosis-related pathways. CD69 and ZNF207 were identified as potential diagnostic genes. CD69 and ZNF207 shared a transcription factor, NCOR1, in the miRNA-mRNA-TF network. Immune microenvironment analysis by CIBERSORT showed that IRs had a higher level of resting memory CD4+ T cells, lower level of activated memory CD4+ T cells and resting dendritic cells than INRs, as confirmed by flow cytometry analysis. In addition, CD69 and ZNF207 were correlated with immune cells. Experiments confirmed the expression of the diagnostic genes in INRs and IRs. Conclusion CD69 and ZNF207 were identified as potential diagnostic genes to discriminate INRs from IRs. Our findings offered new clues to diagnostic and therapeutic targets for INRs.
Collapse
Affiliation(s)
- Yanhong Ding
- Department of Medical Oncology, the First Affiliated Hospital of Weifang Medical University, Weifang, 261032, People’s Republic of China
| | - Cheng Pu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, 611130, People’s Republic of China
| | - Xiao Zhang
- Department of Microbiology, Weifang Center for Disease Control and Prevention, Weifang, 261061, People’s Republic of China
| | - Gaoyan Tang
- Department of Medical Oncology, the First Affiliated Hospital of Weifang Medical University, Weifang, 261032, People’s Republic of China
| | - Fengjuan Zhang
- Department of Microbiology, Weifang Center for Disease Control and Prevention, Weifang, 261061, People’s Republic of China
| | - Guohua Yu
- Department of Medical Oncology, the First Affiliated Hospital of Weifang Medical University, Weifang, 261032, People’s Republic of China
- Correspondence: Guohua Yu, Email
| |
Collapse
|
7
|
Evaluation of Clinical Biomarkers Related to CD4 Recovery in HIV-Infected Patients—5-Year Observation. Viruses 2022; 14:v14102287. [PMID: 36298842 PMCID: PMC9607521 DOI: 10.3390/v14102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 12/01/2022] Open
Abstract
Human Immunodeficiency Virus infection leads to the impairment of immune system function. Even long-term antiretroviral therapy uncommonly leads to the normalization of CD4 count and CD4:CD8 ratio. The aim of this study was to evaluate possible clinical biomarkers which may be related to CD4 and CD4:CD8 ratio recovery among HIV-infected patients with long-term antiretroviral therapy. The study included 68 HIV-infected patients undergoing sustained antiretroviral treatment for a minimum of 5 years. Clinical biomarkers such as age, gender, advancement of HIV infection, coinfections, comorbidities and applied ART regimens were analyzed in relation to the rates of CD4 and CD4:CD8 increase and normalization rates. The results showed that higher rates of CD4 normalization are associated with younger age (p = 0.034), higher CD4 count (p = 0.034) and starting the therapy during acute HIV infection (p = 0.012). Higher rates of CD4:CD8 ratio normalization are correlated with higher CD4 cell count (p = 0.022), high HIV viral load (p = 0.006) and acute HIV infection (p = 0.013). We did not observe statistically significant differences in CD4 recovery depending on gender, HCV/HBV coinfections, comorbidities and opportunistic infections. The obtained results advocate for current recommendations of introducing antiretroviral therapy as soon as possible, preferably during acute HIV infection, since it increases the chances of sufficient immune reconstruction.
Collapse
|
8
|
Zhang L, Wei Y, Wang D, Du J, Wang X, Li B, Jiang M, Zhang M, Chen N, Deng M, Song C, Chen D, Wu L, Xiao J, Liang H, Zhao H, Kong Y. Elevated Foxp3+ double-negative T cells are associated with disease progression during HIV infection. Front Immunol 2022; 13:947647. [PMID: 35967422 PMCID: PMC9365964 DOI: 10.3389/fimmu.2022.947647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
Persistent immune activation, which occurs during the whole course of HIV infection, plays a pivotal role in CD4+ T cells depletion and AIDS progression. Furthermore, immune activation is a key factor that leads to impaired immune reconstitution after long-term effective antiretroviral therapy (ART), and is even responsible for the increased risk of developing non-AIDS co-morbidities. Therefore, it’s imperative to identify an effective intervention targeting HIV-associated immune activation to improve disease management. Double negative T cells (DNT) were reported to provide immunosuppression during HIV infection, but the related mechanisms remained puzzled. Foxp3 endows Tregs with potent suppressive function to maintain immune homeostasis. However, whether DNT cells expressed Foxp3 and the accurate function of these cells urgently needed to be investigated. Here, we found that Foxp3+ DNT cells accumulated in untreated people living with HIV (PLWH) with CD4+ T cell count less than 200 cells/µl. Moreover, the frequency of Foxp3+ DNT cells was negatively correlated with CD4+ T cell count and CD4/CD8 ratio, and positively correlated with immune activation and systemic inflammation in PLWH. Of note, Foxp3+ DNT cells might exert suppressive regulation by increased expression of CD39, CD25, or vigorous proliferation (high levels of GITR and ki67) in ART-naive PLWH. Our study underlined the importance of Foxp3+ DNT cells in the HIV disease progression, and suggest that Foxp3+ DNT may be a potential target for clinical intervention for the control of immune activation during HIV infection.
Collapse
Affiliation(s)
- Leidan Zhang
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Wei
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinyue Wang
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bei Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meiqing Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Na Chen
- Peking University Ditan Teaching Hospital, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meiju Deng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liang Wu
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jiang Xiao
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongyuan Liang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Zhao
- Peking University Ditan Teaching Hospital, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| | - Yaxian Kong
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| |
Collapse
|
9
|
Wang X, Zhang L, Du J, Wei Y, Wang D, Song C, Chen D, Li B, Jiang M, Zhang M, Zhao H, Kong Y. Decreased CD73+ Double-Negative T Cells and Elevated Level of Soluble CD73 Correlated With and Predicted Poor Immune Reconstitution in HIV-Infected Patients After Antiretroviral Therapy. Front Immunol 2022; 13:869286. [PMID: 35444646 PMCID: PMC9013806 DOI: 10.3389/fimmu.2022.869286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Although extensive use of antiretroviral therapy (ART) has made great progress in controlling HIV replication and improving CD4+ T cell recovery, the immune reconstitution remained insufficient in some patients, who were defined as poor immunological responders (PIRs). These PIRs were at a high risk of AIDS-related and non-AIDS complications, resulting in higher morbidity and mortality rate. Thus, it is a major challenge and urgently needed to distinguish PIRs early and improve their immune function in time. Immune activation is a key factor that leads to impaired immune reconstitution in people living with HIV (PLWH) who are receiving effective ART. Double negative T cells (DNT) were reported to associate with the control of immune activation during HIV infection. However, the precise mechanisms by which DNT cells exerted their suppressive capacity during HIV infection remained puzzled. CD73, both a soluble and a membrane-bound form, display immunosuppressive effects through producing adenosine (ADO). Thus, whether DNT cells expressed CD73 and mediated immune suppression through CD73-ADO pathway needs to be investigated. Here, we found a significant downregulation of CD73 expression on DNT cells in treatment-naïve PLWH (TNs) compared to healthy controls, accompanied with increased concentration of sCD73 in plasma. Both the frequency of CD73+ DNT cells and the level of plasma sCD73 recovered after ART treatment. However, PIRs showed decreased percentage of CD73+ DNT cells compared to immunological responders (IRs). The frequency of CD73+ DNT cells was positively correlated with CD4+ T cell count and CD4/CD8 ratio, and negatively correlated with immune activation in PLWH. The level of sCD73 also showed a negative correlation to CD4+ T cell count and CD4/CD8 ratio. More importantly, in the present cohort, a higher level of sCD73 at the time of initiating ART could predict poor immune reconstitution in PLWH after long-term ART. Our findings highlighted the importance of CD73+ DNT cells and sCD73 in the disease progression and immune reconstitution of PLWH, and provided evidences for sCD73 as a potential biomarker of predicting immune recovery.
Collapse
Affiliation(s)
- Xinyue Wang
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leidan Zhang
- Peking University Ditan Teaching Hospital, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Wei
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bei Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meiqing Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Zhao
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| | - Yaxian Kong
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| |
Collapse
|
10
|
Lv JN, Li JQ, Cui YB, Ren YY, Fu YJ, Jiang YJ, Shang H, Zhang ZN. Plasma MicroRNA Signature Panel Predicts the Immune Response After Antiretroviral Therapy in HIV-Infected Patients. Front Immunol 2021; 12:753044. [PMID: 34887859 PMCID: PMC8650117 DOI: 10.3389/fimmu.2021.753044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background Approximately 10–40% of people with human immunodeficiency virus (HIV) infection are unable to obtain successful improvements in immune function after antiretroviral therapy (ART). These patients are at greater risk of developing non-acquired immunodeficiency syndrome (AIDS)-related conditions, with the accompanying increased morbidity and mortality. Discovering predictive biomarkers can help to identify patients with a poor immune response earlier and provide new insights into the mechanisms of this condition. Methods A total of 307 people with HIV were enrolled, including 110 immune non-responders (INRs) and 197 immune responders (IRs). Plasma samples were taken before ART, and quantities of plasma microRNAs (miRNAs) were determined using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Candidate biomarkers were established through four phases: discovery, training, validation, and blinded test. Binary logistic regression was used to analyze the combined predictive capacity of the identified miRNAs. The effect of one miRNA, miR-16-5p, on T cell function was assessed in vitro. Results Expression of five miRNAs (miR-580, miR-627, miR-138-5p, miR-16-5p, and miR-323-3p) was upregulated in the plasma of INRs compared with that in IRs. Expression of these miRNAs was negatively correlated with both CD4+ T cell counts and the increase in the proportion of CD4+ T cells after one year of ART. These five miRNAs were combined in a predictive model, which could effectively identify INRs or IRs. Furthermore, we found that miR-16-5p inhibits CD4+ T cell proliferation by regulating calcium flux. Conclusion We established a five-miRNA panel in plasma that accurately predicts poor immune response after ART, which could inform strategies to reduce the incidence of this phenomenon and improve the clinical management of these patients.
Collapse
Affiliation(s)
- Jun-Nan Lv
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Jia-Qi Li
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying-Bin Cui
- R&D Department, Beijing Quantobio Star Biotechnology Co., Ltd., Beijing, China
| | - Yuan-Yuan Ren
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Jing Fu
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yong-Jun Jiang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Shang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Zi-Ning Zhang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|