1
|
Xu Q, Yang C, Wang L, Zhou J. Unveiling the role of RNA methylation in glioma: Mechanisms, prognostic biomarkers, and therapeutic targets. Cell Signal 2024; 124:111380. [PMID: 39236835 DOI: 10.1016/j.cellsig.2024.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Gliomas, the most prevalent malignant brain tumors in the central nervous system, are marked by rapid growth, high recurrence rates, and poor prognosis. Glioblastoma (GBM) stands out as the most aggressive subtype, characterized by significant heterogeneity. The etiology of gliomas remains elusive. RNA modifications, particularly reversible methylation, play a crucial role in regulating transcription and translation throughout the RNA lifecycle. Increasing evidence highlights the prevalence of RNA methylation in primary central nervous system malignancies, underscoring its pivotal role in glioma pathogenesis. This review focuses on recent findings regarding changes in RNA methylation expression and their effects on glioma development and progression, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G). Given the extensive roles of RNA methylation in gliomas, the potential of RNA methylation-related regulators as prognostic markers and therapeutic targets was also explored, aiming to enhance clinical management and improve patient outcomes.
Collapse
Affiliation(s)
- Qichen Xu
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Jing Zhou
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China.
| |
Collapse
|
2
|
Central Nervous System Metastasis in Neuroblastoma: From Three Decades Clinical Experience to New Considerations in the Immunotherapy Era. Cancers (Basel) 2022; 14:cancers14246249. [PMID: 36551734 PMCID: PMC9777007 DOI: 10.3390/cancers14246249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Central nervous system (CNS) metastatic spread in neuroblastoma (NB) is rare and occurs more often at relapse/progression. We report on CNS involvement in high risk (HR) NB over 25 years. For this retrospective study, we reviewed the CNS imaging of all the patients treated at Bambino Gesù Children Hospital from 1 July 1996 to 30 June 2022. A total of 128 patients with HR NB were diagnosed over 26 years. Out of 128 patients, CNS metastatic spread occurred in 6 patients: 3 patients presented a metastatic spread at diagnosis, while in 3 patients, CNS was involved at relapse. Overall, the rate of occurrence of CNS spread is 4.7% with the same distribution at diagnosis and at relapse, namely 2.3%. Interestingly, CNS spread at diagnosis was observed only before 2012, whereas CNS was observed at relapse only after 2012, in the immunotherapy era. CNS metastases presented similar imaging features at diagnosis and at relapse, with a peculiar hemorrhagic aspect and mainly hemispheric localization in patients with bone skull involvement at the time of diagnosis. The outcome is dismal, and 3 out of 6 patients died for progressive disease.
Collapse
|
3
|
Hormuth DA, Farhat M, Christenson C, Curl B, Chad Quarles C, Chung C, Yankeelov TE. Opportunities for improving brain cancer treatment outcomes through imaging-based mathematical modeling of the delivery of radiotherapy and immunotherapy. Adv Drug Deliv Rev 2022; 187:114367. [PMID: 35654212 PMCID: PMC11165420 DOI: 10.1016/j.addr.2022.114367] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/01/2022]
Abstract
Immunotherapy has become a fourth pillar in the treatment of brain tumors and, when combined with radiation therapy, may improve patient outcomes and reduce the neurotoxicity. As with other combination therapies, the identification of a treatment schedule that maximizes the synergistic effect of radiation- and immune-therapy is a fundamental challenge. Mechanism-based mathematical modeling is one promising approach to systematically investigate therapeutic combinations to maximize positive outcomes within a rigorous framework. However, successful clinical translation of model-generated combinations of treatment requires patient-specific data to allow the models to be meaningfully initialized and parameterized. Quantitative imaging techniques have emerged as a promising source of high quality, spatially and temporally resolved data for the development and validation of mathematical models. In this review, we will present approaches to personalize mechanism-based modeling frameworks with patient data, and then discuss how these techniques could be leveraged to improve brain cancer outcomes through patient-specific modeling and optimization of treatment strategies.
Collapse
Affiliation(s)
- David A Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; Departments of Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Maguy Farhat
- Departments of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Chase Christenson
- Departments of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brandon Curl
- Departments of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77230, USA
| | - C Chad Quarles
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Caroline Chung
- Departments of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Thomas E Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; Departments of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Departments of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA; Departments of Oncology, The University of Texas at Austin, Austin, TX 78712, USA; Departments of Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA; Departments of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77230, USA
| |
Collapse
|