1
|
Sira EMJS, Banico EC, Fajardo LE, Odchimar NMO, Dela Cruz KM, Orosco FL. In silico design of multi-epitope vaccine candidate based on structural proteins of porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2025; 280:110881. [PMID: 39847849 DOI: 10.1016/j.vetimm.2025.110881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most common respiratory disease-causing viral agents. Swine infected with PRRSV exhibit severe respiratory symptoms and reproductive failure, leading to significant economic losses. To address this issue, inactivated and live-attenuated vaccines have been developed. However, the current commercially available PRRSV vaccines do not confer sufficient protection or have safety issues. The use of epitope-based subunit vaccines reduce safety risks by including only specific immunogenic portions of the antigens. To enhance immune protection, this study targeted multiple structural proteins of PRRSV, including GP2, GP3, GP4, GP5, membrane (M), envelope (E), GP5a, and nucleocapsid (N), to enable the discovery of novel epitopes. Thus, a reverse vaccinology approach was utilized to design a multi-epitope subunit vaccine construct against PRRSV. Using different tools, seven linear B cell, seven cytotoxic T cell, and three helper T cell epitopes were predicted to be safe, antigenic, and immunogenic. These epitopes were linked together, and a protein adjuvant, heparin-binding hemagglutinin, was added to increase the vaccine's immunogenicity. The construct was then docked to Toll-like receptor 4 (TLR4) to assess its ability to initiate the innate immune response. The final vaccine construct was determined to be antigenic, stable, non-allergenic, and soluble. Furthermore, the vaccine demonstrated stable binding to TLR4 based on coarse-grained and atomistic molecular dynamics simulations. Finally, the immune simulation of the vaccine construct showed a robust immune response against PRRSV. In this study, a candidate vaccine construct was successfully designed as a potential strategy against PRRSV.
Collapse
Affiliation(s)
- Ella Mae Joy S Sira
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Bicutan, Taguig 1634, Philippines
| | - Edward C Banico
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Bicutan, Taguig 1634, Philippines
| | - Lauren Emily Fajardo
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Bicutan, Taguig 1634, Philippines
| | - Nyzar Mabeth O Odchimar
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Bicutan, Taguig 1634, Philippines
| | - Kristina Marie Dela Cruz
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines
| | - Fredmoore L Orosco
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Bicutan, Taguig 1634, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; S&T Fellows Program, Department of Science and Technology, Bicutan, Taguig 1634, Philippines.
| |
Collapse
|
2
|
Perez-Duran F, Calderon-Rico F, Franco-Correa LE, Zamora-Aviles AG, Ortega-Flores R, Durand-Herrera D, Bravo-Patiño A, Cortes-Vieyra R, Hernandez-Morales I, Nuñez-Anita RE. Synthetic Peptides Elicit Humoral Response against Porcine Reproductive and Respiratory Syndrome Virus in Swine. Vaccines (Basel) 2024; 12:652. [PMID: 38932381 PMCID: PMC11209519 DOI: 10.3390/vaccines12060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study was to analyze the immunogenic response elicited in swine by two synthetic peptides derived from GP5 to understand the role of lineal B epitopes in the humoral and B-cell-mediated response against the porcine reproductive and respiratory syndrome virus (PRRSV). For inoculation, twenty-one-day-old pigs were allocated into six groups: control, vehicle, vaccinated (Ingelvac-PRRSV, MLV®), non-vaccinated and naturally infected, GP5-B and GP5-B3. At 2 days post-immunization (dpi), the GP5-B3 peptide increased the serum concentrations of cytokines associated with activate adaptive cellular immunity, IL-1β (1.15 ± 1.15 to 10.17 ± 0.94 pg/mL) and IL-12 (323.8 ± 23.3 to 778.5 ± 58.11 pg/mL), compared to the control group. The concentration of IgGs anti-GP5-B increased in both cases at 21 and 42 dpi compared to that at 0 days (128.3 ± 8.34 ng/mL to 231.9 ± 17.82 and 331 ± 14.86 ng/mL), while IgGs anti-GP5-B3 increased at 21 dpi (105.1 ± 19.06 to 178 ± 15.09 ng/mL) and remained at the same level until 42 dpi. Also, antibody-forming/Plasma B cells (CD2+/CD21-) increased in both cases (9.85 ± 0.7% to 13.67 ± 0.44 for GP5-B and 15.72 ± 1.27% for GP5-B3). Furthermore, primed B cells (CD2-/CD21+) from immunized pigs showed an increase in both cases (9.62 ± 1.5% to 24.51 ± 1.3 for GP5-B and 34 ± 2.39% for GP5-B3) at 42 dpi. Conversely the naïve B cells from immunized pigs decreased compared with the control group (8.84 ± 0.63% to 6.25 ± 0.66 for GP5-B and 5.78 ± 0.48% for GP5-B3). Importantly, both GP5-B and GP5-B3 peptides exhibited immunoreactivity against serum antibodies from the vaccinated group, as well as the non-vaccinated and naturally infected group. In conclusion, GP5-B and GP5-B3 peptides elicited immunogenicity mediated by antigen-specific IgGs and B cell activation.
Collapse
Affiliation(s)
- Francisco Perez-Duran
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Fernando Calderon-Rico
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Luis Enrique Franco-Correa
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Alicia Gabriela Zamora-Aviles
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Roberto Ortega-Flores
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Daniel Durand-Herrera
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Alejandro Bravo-Patiño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Ricarda Cortes-Vieyra
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Ilane Hernandez-Morales
- Laboratorio de Investigacion Interdisciplinaria, Escuela Nacional de Estudios Superiores Unidad Leon, Universidad Nacional Autonoma de Mexico, Blv. UNAM No. 2011, Leon CP 37684, Mexico;
| | - Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| |
Collapse
|
3
|
Li J, Miller LC, Sang Y. Current Status of Vaccines for Porcine Reproductive and Respiratory Syndrome: Interferon Response, Immunological Overview, and Future Prospects. Vaccines (Basel) 2024; 12:606. [PMID: 38932335 PMCID: PMC11209547 DOI: 10.3390/vaccines12060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) remains a formidable challenge for the global pig industry. Caused by PRRS virus (PRRSV), this disease primarily affects porcine reproductive and respiratory systems, undermining effective host interferon and other immune responses, resulting in vaccine ineffectiveness. In the absence of specific antiviral treatments for PRRSV, vaccines play a crucial role in managing the disease. The current market features a range of vaccine technologies, including live, inactivated, subunit, DNA, and vector vaccines, but only modified live virus (MLV) and killed virus (KV) vaccines are commercially available for PRRS control. Live vaccines are promoted for their enhanced protective effectiveness, although their ability to provide cross-protection is modest. On the other hand, inactivated vaccines are emphasized for their safety profile but are limited in their protective efficacy. This review updates the current knowledge on PRRS vaccines' interactions with the host interferon system, and other immunological aspects, to assess their current status and evaluate advents in PRRSV vaccine development. It presents the strengths and weaknesses of both live attenuated and inactivated vaccines in the prevention and management of PRRS, aiming to inspire the development of innovative strategies and technologies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Jiuyi Li
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA;
| | - Laura C. Miller
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA;
| | - Yongming Sang
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA;
| |
Collapse
|
4
|
Li W, Wang Y, Zhang M, Zhao S, Wang M, Zhao R, Chen J, Zhang Y, Xia P. Mass Spectrometry-Based Proteomic Analysis of Potential Host Proteins Interacting with GP5 in PRRSV-Infected PAMs. Int J Mol Sci 2024; 25:2778. [PMID: 38474030 DOI: 10.3390/ijms25052778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus causing a large economic impact on the swine industry. The structural protein GP5 of PRRSV plays a pivotal role in its pathogenicity and immune evasion. Virus-host interactions play a crucial part in viral replication and immune escape. Therefore, understanding the interactions between GP5 and host proteins are significant for porcine reproductive and respiratory syndrome (PRRS) control. However, the interaction network between GP5 and host proteins in primary porcine alveolar macrophages (PAMs) has not been reported. In this study, 709 GP5-interacting host proteins were identified in primary PAMs by immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Bioinformatics analysis revealed that these proteins were involved in multiple cellular processes, such as translation, protein transport, and protein stabilization. Subsequently, immunoprecipitation and immunofluorescence assay confirmed that GP5 could interact with antigen processing and presentation pathways related proteins. Finally, we found that GP5 may be a key protein that inhibits the antigen processing and presentation pathway during PRRSV infection. The novel host proteins identified in this study will be the candidates for studying the biological functions of GP5, which will provide new insights into PRRS prevention and vaccine development.
Collapse
Affiliation(s)
- Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Yueshuai Wang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Mengting Zhang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Mengxiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Ruijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| |
Collapse
|
5
|
Ruan S, Ren W, Yu B, Yu X, Wu H, Li W, Jiang Y, He Q. Development and Implementation of a Quadruple RT-qPCR Method for the Identification of Porcine Reproductive and Respiratory Syndrome Virus Strains. Viruses 2023; 15:1946. [PMID: 37766352 PMCID: PMC10536281 DOI: 10.3390/v15091946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome (PRRS), leading to abortion in sows and respiratory distress in breeding pigs. In China, PRRSV1 and PRRSV2 are the two circulating genotypes in swine herds, with distinct virulence. PRRSV2 further consists of classical (C-PRRSV2), highly pathogenic (HP-PRRSV2), and NADC30-Like (N-PRRSV2) subtypes. The diversity of PRRSV poses challenges for control and eradication, necessitating reliable detection assays for differentiating PRRSV genotypes. METHODS A new TaqMan-based RT-qPCR assay with four sets of primers and probes targeting conserved regions of the ORF7 and NSP2 genes of PRRSV was developed, optimized, and evaluated by us. Reaction conditions such as annealing temperature, primer concentration, and probe concentration were optimized for the assay. Specificity, sensitivity, repeatability, stability, limit of detection (LOD), concordance with the reference method were evaluated for the assay. RESULTS The assay could detect and type PRRSV1, C-PRRSV2, HP-PRRSV2, and N-PRRSV2 simultaneously with 97.33% specificity, 96.00% sensitivity, 12 copies/μL LOD, 97.00% concordance with reference assays. We applied the assay to 321 clinical samples from swine farms in China. The assay successfully detected and typed 230 PRRSV-positive samples, with 24.78% (57/230) of them further confirmed by ORF5 gene sequencing. The prevalence of PRRSV subtypes among the positive samples was as follows: C-PRRSV2 (15.22%), HP-PRRSV2 (23.48%), and N-PRRSV2 (61.30%). Two samples showed coinfection with different PRRSV subtypes. CONCLUSION The quadruple RT-qPCR assay is a powerful tool for detecting and typing the currently circulating PRRSV strains in Chinese swine populations. It can assist in the surveillance of PRRSV prevalence and the implementation of prevention and control strategies.
Collapse
Affiliation(s)
- Shengnan Ruan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhui Ren
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuexiang Yu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunbo Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Osemeke OH, Cezar GA, Paiva RC, Moraes DCA, Machado IF, Magalhaes ES, Poeta Silva APS, Mil-Homens M, Peng L, Jayaraman S, Trevisan G, Silva GS, Gauger PC, Linhares DCL. A cross-sectional assessment of PRRSV nucleic acid detection by RT-qPCR in serum, ear-vein blood swabs, nasal swabs, and oral swabs from weaning-age pigs under field conditions. Front Vet Sci 2023; 10:1200376. [PMID: 37635762 PMCID: PMC10449646 DOI: 10.3389/fvets.2023.1200376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The porcine reproductive and respiratory syndrome virus (PRRSV) continues to challenge swine production in the US and most parts of the world. Effective PRRSV surveillance in swine herds can be challenging, especially because the virus can persist and sustain a very low prevalence. Although weaning-age pigs are a strategic subpopulation in the surveillance of PRRSV in breeding herds, very few sample types have been validated and characterized for surveillance of this subpopulation. The objectives of this study, therefore, were to compare PRRSV RNA detection rates in serum, oral swabs (OS), nasal swabs (NS), ear-vein blood swabs (ES), and family oral fluids (FOF) obtained from weaning-age pigs and to assess the effect of litter-level pooling on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of PRRSV RNA. Methods Three eligible PRRSV-positive herds in the Midwestern USA were selected for this study. 666 pigs across 55 litters were sampled for serum, NS, ES, OS, and FOF. RT-qPCR tests were done on these samples individually and on the litter-level pools of the swabs. Litter-level pools of each swab sample type were made by combining equal volumes of each swab taken from the pigs within a litter. Results Ninety-six piglets distributed across 22 litters were positive by PRRSV RT-qPCR on serum, 80 piglets distributed across 15 litters were positive on ES, 80 piglets distributed across 17 litters were positive on OS, and 72 piglets distributed across 14 litters were positive on NS. Cohen's kappa analyses showed near-perfect agreement between all paired ES, OS, NS, and serum comparisons (). The serum RT-qPCR cycle threshold values (Ct) strongly predicted PRRSV detection in swab samples. There was a ≥ 95% probability of PRRSV detection in ES-, OS-, and NS pools when the proportion of positive swab samples was ≥ 23%, ≥ 27%, and ≥ 26%, respectively. Discussion ES, NS, and OS can be used as surveillance samples for detecting PRRSV RNA by RT-qPCR in weaning-age pigs. The minimum number of piglets to be sampled by serum, ES, OS, and NS to be 95% confident of detecting ≥ 1 infected piglet when PRRSV prevalence is ≥ 10% is 30, 36, 36, and 40, respectively.
Collapse
Affiliation(s)
| | - Guilherme A. Cezar
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Rodrigo C. Paiva
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Daniel C. A. Moraes
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Isadora F. Machado
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Edison S. Magalhaes
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | | | - Mafalda Mil-Homens
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Li Peng
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Swaminathan Jayaraman
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Giovani Trevisan
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Gustavo S. Silva
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Phillip C. Gauger
- Veterinary Diagnostic and Production Animal Medicine Department of the College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Daniel C. L. Linhares
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| |
Collapse
|
7
|
Kick AR, Grete AF, Crisci E, Almond GW, Käser T. Testable Candidate Immune Correlates of Protection for Porcine Reproductive and Respiratory Syndrome Virus Vaccination. Vaccines (Basel) 2023; 11:vaccines11030594. [PMID: 36992179 DOI: 10.3390/vaccines11030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an on-going problem for the worldwide pig industry. Commercial and experimental vaccinations often demonstrate reduced pathology and improved growth performance; however, specific immune correlates of protection (CoP) for PRRSV vaccination have not been quantified or even definitively postulated: proposing CoP for evaluation during vaccination and challenge studies will benefit our collective efforts towards achieving protective immunity. Applying the breadth of work on human diseases and CoP to PRRSV research, we advocate four hypotheses for peer review and evaluation as appropriate testable CoP: (i) effective class-switching to systemic IgG and mucosal IgA neutralizing antibodies is required for protective immunity; (ii) vaccination should induce virus-specific peripheral blood CD4+ T-cell proliferation and IFN-γ production with central memory and effector memory phenotypes; cytotoxic T-lymphocytes (CTL) proliferation and IFN-γ production with a CCR7- phenotype that should migrate to the lung; (iii) nursery, finishing, and adult pigs will have different CoP; (iv) neutralizing antibodies provide protection and are rather strain specific; T cells confer disease prevention/reduction and possess greater heterologous recognition. We believe proposing these four CoP for PRRSV can direct future vaccine design and improve vaccine candidate evaluation.
Collapse
Affiliation(s)
- Andrew R Kick
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Alicyn F Grete
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Glen W Almond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
8
|
Proctor J, Wolf I, Brodsky D, Cortes LM, Frias-De-Diego A, Almond GW, Crisci E, Negrão Watanabe TT, Hammer JM, Käser T. Heterologous vaccine immunogenicity, efficacy, and immune correlates of protection of a modified-live virus porcine reproductive and respiratory syndrome virus vaccine. Front Microbiol 2022; 13:977796. [PMID: 36212883 PMCID: PMC9537733 DOI: 10.3389/fmicb.2022.977796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Although porcine reproductive and respiratory syndrome virus (PRRSV) vaccines have been available in North America for almost 30 years, many vaccines face a significant hurdle: they must provide cross-protection against the highly diverse PRRSV strains. This cross-protection, or heterologous vaccine efficacy, relies greatly on the vaccine’s ability to induce a strong immune response against various strains—heterologous immunogenicity. Thus, this study investigated vaccine efficacy and immunogenicity of a modified live virus (MLV) against four heterologous type 2 PRRSV (PRRSV-2) strains. In this study, 60 pigs were divided into 10 groups. Half were MOCK-vaccinated, and the other half vaccinated with the Prevacent® PRRS MLV vaccine. Four weeks after vaccination, groups were challenged with either MOCK, or four PRRSV-2 strains from three different lineages—NC174 or NADC30 (both lineage 1), VR2332 (lineage 5), or NADC20 (lineage 8). Pre-and post-challenge, lung pathology, viral loads in both nasal swabs and sera, anti-PRRSV IgA/G, neutralizing antibodies, and the PRRSV-2 strain-specific T-cell response were evaluated. At necropsy, the lung samples were collected to assess viral loads, macroscopical and histopathological findings, and IgA levels in bronchoalveolar lavage. Lung lesions were only induced by NC174, NADC20, and NADC30; within these, vaccination resulted in lower gross and microscopic lung lesion scores of the NADC20 and NADC30 strains. All pigs became viremic and vaccinated pigs had decreased viremia upon challenge with NADC20, NADC30, and VR2332. Regarding vaccine immunogenicity, vaccination induced a strong systemic IgG response and boosted the post-challenge serum IgG levels for all strains. Furthermore, vaccination increased the number of animals with neutralizing antibodies against three of the four challenge strains—NADC20, NADC30, and VR2332. The heterologous T-cell response was also improved by vaccination: Not only did vaccination increase the induction of heterologous effector/memory CD4 T cells, but it also improved the heterologous CD4 and CD8 proliferative and/or IFN-γ response against all strains. Importantly, correlation analyses revealed that the (non-PRRSV strain-specific) serum IgG levels and the PRRSV strain-specific CD4 T-cell response were the best immune correlates of protection. Overall, the Prevacent elicited various degrees of efficacy and immunogenicity against four heterologous and phylogenetically distant strains of PRRSV-2.
Collapse
Affiliation(s)
- Jessica Proctor
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Iman Wolf
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - David Brodsky
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Lizette M. Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Alba Frias-De-Diego
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Glen W. Almond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Tatiane Terumi Negrão Watanabe
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | | | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Tobias Käser,
| |
Collapse
|
9
|
Li W, Sun Y, Zhao S, Cui Z, Chen Y, Xu P, Chen J, Zhang Y, Xia P. Differences in Humoral Immune Response against the Type 2 Porcine Reproductive and Respiratory Syndrome Virus via Different Immune Pathways. Viruses 2022; 14:v14071435. [PMID: 35891415 PMCID: PMC9316826 DOI: 10.3390/v14071435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The intramuscular vaccine is the principal strategy to protect pigs from porcine reproductive and respiratory syndrome virus (PRRSV), However, it is still difficult to control PRRSV effectively. This study infected piglets with PRRSV through intramuscular and intranasal inoculation. Subsequently, viral loads, anti-PRRSV antibody levels, and neutralizing antibodies (NAs) titers in both serum and saliva were monitored for 43 days. Meanwhile, tissues were obtained through necropsy at 43 days post-inoculation (dpi) to detect viral loads. The results indicated that viremia lasted from 3 to 31 dpi in both the inoculation groups, but the viruses survived in the lungs and lymph nodes after viremia clearance. The antibody response was detected from 11 dpi, but the response of NAs was delayed until 3–4 weeks. Furthermore, intranasal inoculation induced lower viral load levels than injection inoculation. In addition, positive SIgA and NAs levels were produced early, with higher levels through intranasal inoculation. Therefore, our data indicated that a more robust antibody response and lower virus loads could be induced by intranasal inoculation, and mucosal inoculation could be a suitable pathway for PRRSV vaccines.
Collapse
Affiliation(s)
- Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Yangyang Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Zhiying Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Yu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Pengli Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Jinshui District, Zhengzhou 450002, China
- Correspondence: (J.C.); (Y.Z.)
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
- Correspondence: (J.C.); (Y.Z.)
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| |
Collapse
|
10
|
Bocard LV, Kick AR, Hug C, Lischer HEL, Käser T, Summerfield A. Systems Immunology Analyses Following Porcine Respiratory and Reproductive Syndrome Virus Infection and Vaccination. Front Immunol 2022; 12:779747. [PMID: 34975868 PMCID: PMC8716554 DOI: 10.3389/fimmu.2021.779747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
This study was initiated to better understand the nature of innate immune responses and the relatively weak and delayed immune response against porcine reproductive and respiratory syndrome virus (PRRSV). Following modified live virus (MLV) vaccination or infection with two PRRSV-2 strains, we analyzed the transcriptome of peripheral blood mononuclear cells collected before and at three and seven days after vaccination or infection. We used blood transcriptional modules (BTMs)-based gene set enrichment analyses. BTMs related to innate immune processes were upregulated by PRRSV-2 strains but downregulated by MLV. In contrast, BTMs related to adaptive immune responses, in particular T cells and cell cycle, were downregulated by PRRSV-2 but upregulated by MLV. In addition, we found differences between the PRRSV strains. Only the more virulent strain induced a strong platelet activation, dendritic cell activation, interferon type I and plasma cell responses. We also calculated the correlations of BTM with the neutralizing antibody and the T-cell responses. Early downregulation (day 0-3) of dendritic cell and B-cell BTM correlated to both CD4 and CD8 T-cell responses. Furthermore, a late (day 3-7) upregulation of interferon type I modules strongly correlated to helper and regulatory T-cell responses, while inflammatory BTM upregulation correlated more to CD8 T-cell responses. BTM related to T cells had positive correlations at three days but negative associations at seven days post-infection. Taken together, this work contributes to resolve the complexity of the innate and adaptive immune responses against PRRSV and indicates a fundamentally different immune response to the less immunogenic MLV compared to field strains which induced robust adaptive immune responses. The identified correlates of T-cell responses will facilitate a rational approach to improve the immunogenicity of MLV.
Collapse
Affiliation(s)
| | - Andrew Robert Kick
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Department of Chemistry & Life Science, United States Military Academy, West Point, NY, United States
| | - Corinne Hug
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Heidi Erika Lisa Lischer
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Chrun T, Maze EA, Vatzia E, Martini V, Paudyal B, Edmans MD, McNee A, Manjegowda T, Salguero FJ, Wanasen N, Koonpaew S, Graham SP, Tchilian E. Simultaneous Infection With Porcine Reproductive and Respiratory Syndrome and Influenza Viruses Abrogates Clinical Protection Induced by Live Attenuated Porcine Reproductive and Respiratory Syndrome Vaccination. Front Immunol 2021; 12:758368. [PMID: 34858411 PMCID: PMC8632230 DOI: 10.3389/fimmu.2021.758368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
The porcine respiratory disease complex (PRDC) is responsible for significant economic losses in the pig industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus are major viral contributors to PRDC. Vaccines are cost-effective measures for controlling PRRS, however, their efficacy in the context of co-infections has been poorly investigated. In this study, we aimed to determine the effect of PRRSV-2 and swine influenza H3N2 virus co-infection on the efficacy of PRRSV modified live virus (MLV) vaccination, which is widely used in the field. Following simultaneous challenge with contemporary PRRSV-2 and H3N2 field isolates, we found that the protective effect of PRRS MLV vaccination on clinical disease and pathology was abrogated, although viral load was unaffected and antibody responses were enhanced. In contrast, co-infection in non-immunized animals reduced PRRSV-2 viremia and H3N2 virus load in the upper respiratory tract and potentiated T cell responses against both PRRSV-2 and H3N2 in the lung. Further analysis suggested that an upregulation of inhibitory cytokines gene expression in the lungs of vaccinated pigs may have influenced responses to H3N2 and PRRSV-2. These findings provide important insights into the effect of viral co-infections on PRRS vaccine efficacy that may help identify more effective vaccination strategies against PRDC in the field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adam McNee
- The Pirbright Institute, Woking, United Kingdom
| | | | | | - Nanchaya Wanasen
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | | | | |
Collapse
|
12
|
Martínez-Lobo FJ, Díez-Fuertes F, Simarro I, Castro JM, Prieto C. The Ability of Porcine Reproductive and Respiratory Syndrome Virus Isolates to Induce Broadly Reactive Neutralizing Antibodies Correlates With In Vivo Protection. Front Immunol 2021; 12:691145. [PMID: 34381448 PMCID: PMC8350477 DOI: 10.3389/fimmu.2021.691145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/30/2021] [Indexed: 12/02/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is considered one of the most relevant diseases of swine. The condition is caused by PRRS virus (PRRSV), an extremely variable virus of the Arteriviridae family. Its heterogeneity can be responsible, at least partially, of the poor cross-protection observed between PRRSV isolates. Neutralizing antibodies (NAs), known to play a role in protection, usually poorly recognize heterologous PRRSV isolates, indicating that most NAs are strain-specific. However, some pigs develop broadly reactive NAs able to recognize a wide range of heterologous isolates. The aim of this study was to determine whether PRRSV isolates that induce broadly reactive NAs as determined in vitro are able to confer a better protection in vivo. For this purpose two in vivo experiments were performed. Initially, 40 pigs were immunized with a PRRSV-1 isolate known to induce broadly reactive NAs and 24 additional pigs were used as controls. On day 70 after immunization, the pigs were divided into eight groups composed by five immunized and three control pigs and exposed to one of the eight different heterologous PRRSV isolates used for the challenge. In the second experiment, the same experimental design was followed but the pigs were immunized with a PRRSV-1 isolate, which is known to generate mostly strain-specific NAs. Virological parameters, specifically viremia and the presence of challenge virus in tonsils, were used to determine protection. In the first experiment, sterilizing immunity was obtained in three groups, prevention of viremia was observed in two additional groups, although the challenge virus was detected occasionally in the tonsils of immunized pigs, and partial protection, understood as a reduction in the frequency of viremia compared with controls, was recorded in the remaining three groups. On the contrary, only partial protection was observed in all groups in the second experiment. The results obtained in this study confirm that PRRSV-1 isolates differ in their ability to induce cross-reactive NAs and, although other components of the immune response might have contributed to protection, pigs with cross-reactive NAs at the time of challenge exhibited better protection, indicating that broadly reactive NAs might play a role in protection against heterologous reinfections.
Collapse
Affiliation(s)
- Francisco Javier Martínez-Lobo
- Animal Science Department, School of Agrifood and Forestry Science and Engineering, University of Lleida, Lleida, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Díez-Fuertes
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain.,AIDS Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Isabel Simarro
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - José M Castro
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Cinta Prieto
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|