1
|
Zhang W, Kong D, Zhang X, Hu L, Nian Y, Shen Z. T cell aging and exhaustion: Mechanisms and clinical implications. Clin Immunol 2025; 275:110486. [PMID: 40120658 DOI: 10.1016/j.clim.2025.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
T cell senescence and exhaustion represent critical aspects of adaptive immune system dysfunction, with profound implications for health and the development of disease prevention and therapeutic strategies. These processes, though distinct, are interconnected at the molecular level, leading to impaired effector functions and reduced proliferative capacity of T cells. Such impairments increase susceptibility to diseases and diminish the efficacy of vaccines and treatments. Importantly, T cell senescence and exhaustion can dynamically influence each other, particularly in the context of chronic diseases. A deeper understanding of the molecular mechanisms underlying T cell senescence and exhaustion, as well as their interplay, is essential for elucidating the pathogenesis of related diseases and restoring dysfunctional immune responses. This knowledge will pave the way for the development of targeted therapeutic interventions and strategies to enhance immune competence. This review aims to summarize the characteristics, mechanisms, and disease associations of T cell senescence and exhaustion, while also delineating the distinctions and intersections between these two states to enhance our comprehension.
Collapse
Affiliation(s)
- Weiqi Zhang
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Dejun Kong
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Xiaohan Zhang
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Lu Hu
- Tianjin Medical University First Central Clinical College, Tianjin, China.
| | - Yeqi Nian
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Science, Tianjin, China; Department of Kidney Transplant, Tianjin First Central Hospital, Tianjin, China.
| | - Zhongyang Shen
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Science, Tianjin, China.
| |
Collapse
|
2
|
Li M, Yu F, Zhu B, Xiao J, Yan C, Yang X, Liang X, Wang F, Zhang H, Zhang F. Interactions between human immunodeficiency virus and human endogenous retroviruses. J Virol 2025; 99:e0231924. [PMID: 39918304 PMCID: PMC11915820 DOI: 10.1128/jvi.02319-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Human immunodeficiency virus (HIV), a retrovirus of the Lentivirus genus, targets CD4+ T cells, causing immune dysfunction and AIDS. Approximately 8% of the human genome consists of human endogenous retroviruses (HERVs), ancient retroviral remnants that may interact with HIV. Despite antiretroviral therapy, challenges such as drug resistance, poor immune reconstitution (PIR), and reservoirs remain. This GEM discusses the impact of HIV on HERVs, the potential roles of HERVs in PIR and reservoirs, and provides insights into future research directions.
Collapse
Affiliation(s)
- Mengying Li
- Medical School, University of the Chinese Academy of Sciences, Beijing, China
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fengting Yu
- Medical School, University of the Chinese Academy of Sciences, Beijing, China
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiang Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Chang Yan
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xiaojie Yang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xuelei Liang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fang Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Hanxi Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- WHO Collaborating Centre for Comprehensive Management of HIV Treatment and Care, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Lopes-Araujo HF, Guedes MCS, De Alencar LCA, Carvalho-Silva WHV, Montenegro LML, Guimarães RL. The influence of extrinsic apoptosis gene expression on immunological reconstitution of male ART-treated PLHIV. BMC Infect Dis 2025; 25:377. [PMID: 40102787 PMCID: PMC11921504 DOI: 10.1186/s12879-025-10665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
The primary goal of antiretroviral therapy (ART) is to suppress viral replication to undetectable levels (< 50 copies/mL). Despite achieving complete viral suppression, 10-40% of individuals on ART do not adequately restore their CD4 + T-cell count, being defined as immunological non-responders (INR). Factors such as sex, age at treatment initiation, coinfections, and pre-ART CD4 + T-cell count may influence this insufficient recovery. This impairment can also result from poor production or exacerbated destruction of CD4 + T-cells, particularly through extrinsic pathway-mediated apoptosis involving Fas/FasL and caspase-3. Thus, this study aimed to evaluate the expression profile of extrinsic apoptosis pathway genes (CASP3, FAS, FASLG) in adult male HIV patients on ART. The patients were stratified as immunological responders (n = 25) and immunological non-responders (n = 8) based on the increase and total count of CD4 + T-cells. Significant differences for CASP3 (FC = 1.39, p = 0.047) and FASLG (FC = 1.94, p < 0.0001) gene expressions were identified between IR and INR groups, but not for FAS (FC=-1.2, p = 0.638). This study indicates increased apoptotic pathway gene expression in INR and highlights the influence of cell destruction mechanisms on immunological recovery.
Collapse
Affiliation(s)
- Henrique Fernando Lopes-Araujo
- Department of Genetics, Federal University of Pernambuco - UFPE, Recife, PE, 50670-901, Brazil
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco - UFPE, Recife, PE, 50670-901, Brazil
| | - Maria Carolina Santos Guedes
- Department of Genetics, Federal University of Pernambuco - UFPE, Recife, PE, 50670-901, Brazil
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco - UFPE, Recife, PE, 50670-901, Brazil
| | | | - Wlisses Henrique Veloso Carvalho-Silva
- Aggeu Magalhães Institute (IAM)- Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, 50740-465, Brazil
- Agreste Academic Center, Federal University of Pernambuco - UFPE, Caruaru, PE, Bazil, 55014-900, Brazil
| | | | - Rafael Lima Guimarães
- Department of Genetics, Federal University of Pernambuco - UFPE, Recife, PE, 50670-901, Brazil
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco - UFPE, Recife, PE, 50670-901, Brazil
| |
Collapse
|
4
|
Hirt N, Manchon E, Chen Q, Delaroque C, Corneau A, Hemon P, Saker-Delye S, Bataille P, Bouaziz JD, Bourrat E, Hovnanian A, Le Buanec H, Aoudjit F, El Costa H, Jabrane-Ferrat N, Al-Daccak R. Systems immunology integrates the complex endotypes of recessive dystrophic epidermolysis bullosa. Nat Commun 2025; 16:664. [PMID: 39809737 PMCID: PMC11733305 DOI: 10.1038/s41467-025-55934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Endotypes are characterized by the immunological, inflammatory, metabolic, and remodelling pathways that explain the mechanisms underlying the clinical presentation (phenotype) of a disease. Recessive dystrophic epidermolysis bullosa (RDEB) is a severe blistering disease caused by COL7A1 pathogenic variants. Although underscored by animal studies, the endotypes of human RDEB are poorly understood. To fill this gap, we apply systems immunology approaches using single-cell high-dimensional techniques to capture the signature of peripheral immune cells and the diversity of metabolic profiles in RDEB adults, sampled outside of any opportunistic infection and active cancer. Our study, demonstrates the particular inflammation and immunity characteristics of RDEB adults, with activated / effector T and dysfunctional natural killer cell signatures, concomitant with an overall pro-inflammatory lipid signature. Artificial intelligence prediction models and principal component analysis stress that RDEB is not solely confined to cutaneous issues but has complex systemic endotypes marked by immune dysregulation and hyperinflammation. By characterising the phenotype-endotype association in RDEB adults, our study lays the groundwork for translational interventions that could by lessening inflammation, alleviate the everlasting suffering of RDEB patients, while awaiting curative genetic therapies.
Collapse
Affiliation(s)
- Nell Hirt
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France
| | - Enzo Manchon
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France
| | - Qian Chen
- Boston Childrens Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Clara Delaroque
- INSERM U1016, The National Centre for Scientific Research (CNRS) UMR 8104, Paris Cité University, 75014, Paris, France
| | - Aurelien Corneau
- Pitié-Salpêtrière Cytometry, UMS037, Sorbonne University, 75013, Paris, France
| | - Patrice Hemon
- LBAI, INSERM UMR1227, Brest University, 29200, Brest, France
| | | | - Pauline Bataille
- Dermatology Department, AP-HP, Saint-Louis Hospital, 75010, Paris, France
| | - Jean-David Bouaziz
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France
- Dermatology Department, AP-HP, Saint-Louis Hospital, 75010, Paris, France
| | - Emmanuelle Bourrat
- Dermatology Department, AP-HP, Saint-Louis Hospital, 75010, Paris, France
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, Imagine Institute, Paris Cité University, INSERM UMR 1163, 75015, Paris, France
| | - Helene Le Buanec
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France
| | - Fawzi Aoudjit
- Division of Immune and Infectious Diseases, CHU de Quebec Research Centre, Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Hicham El Costa
- Institute for Infectious and Inflammatory Diseases, CNRS UMR5051, INSERM UMR1291, Toulouse III University, 31059, Toulouse, France
| | - Nabila Jabrane-Ferrat
- Institute for Infectious and Inflammatory Diseases, CNRS UMR5051, INSERM UMR1291, Toulouse III University, 31059, Toulouse, France
| | - Reem Al-Daccak
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France.
| |
Collapse
|
5
|
Li N, Zheng HY, Li W, He XY, Zhang M, Li X, Tian RR, Dong XQ, Shen ZQ, Zheng YT. Limited restoration of T cell subset distribution and immune function in older people living with HIV-1 receiving HAART. Immun Ageing 2025; 22:3. [PMID: 39780181 PMCID: PMC11708165 DOI: 10.1186/s12979-024-00497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Older people living with HIV-1 (PLWH) experience a dual burden from the combined effects of aging and HIV-1 infection, resulting in significant immune dysfunction. Despite receiving HAART, immune reconstitution is not fully optimized. The objective of this study was to investigate the impact of aging and HAART on T cell subsets and function in PLWH across different age groups, thereby providing novel insights into the prognosis of older PLWH. METHOD This study was conducted at Yunnan AIDS Care Center, China, to explore the immunological responses of old PLWH to HAART and compared with the middle-age and the younger. Blood samples were collected from 146 PLWH to analyze T cell subsets and their functions, with a particular emphasis on markers related to T cell differentiation, activation, exhaustion, inflammation, and cellular function, using multicolor flow cytometry analysis. RESULTS Older age may have a greater effect on long-term CD4+T cell recovery. Compared with young and middle-aged PLWH, older PLWH presented distinct alterations in their immune profile, including a decline in the Naïve CD4+T and CD8+T cell subsets, an expansion of effector memory cells, and other potential immune risk phenotypes, such as activation, exhaustion, and up-regulation of aging markers. In addition, we observed a significant association between the CD4 + EM3 subset and the CD8 + EM2 subset with HIV-1 progression, independent of age, suggesting their potential as reliable markers for assessing immune reconstitution in all PLWH. CONCLUSION Our study extends previous findings showing that older participants exhibit a wide range of late differentiation, senescence, or exhaustion phenotypes in cells, including all the CD4+T and CD8+T subsets, consistent with an immunosenescent phenotype. This may accelerate poor immune recovery in older PLWH. Identifying new strategies to improve the immune risk phenotypes of older PLWH may help improve their immune reconstitution outcomes. The CD4 + EM3 subset and the CD8 + EM2 subset should be studied as additional markers of late presentation.
Collapse
Affiliation(s)
- Na Li
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Yunnan Provincial Hospital of Infectious Disease, Kunming, 650302, China
| | - Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wei Li
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Xiao-Yan He
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Mi Zhang
- Yunnan Provincial Hospital of Infectious Disease, Kunming, 650302, China
| | - Xia Li
- Yunnan Provincial Hospital of Infectious Disease, Kunming, 650302, China
| | - Ren-Rong Tian
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Xing-Qi Dong
- Yunnan Provincial Hospital of Infectious Disease, Kunming, 650302, China
| | - Zhi-Qiang Shen
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
6
|
Yi C, Yang J, Zhang T, Xie Z, Xiong Q, Chen D, Jiang S. lncRNA signature mediates mitochondrial permeability transition-driven necrosis in regulating the tumor immune microenvironment of cervical cancer. Sci Rep 2024; 14:17406. [PMID: 39075098 PMCID: PMC11286791 DOI: 10.1038/s41598-024-65990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Mitochondrial permeability transition (MPT)-driven necrosis (MPTDN) was a regulated variant of cell death triggered by specific stimuli. It played a crucial role in the development of organisms and the pathogenesis of diseases, and may provide new strategies for treating various diseases. However, there was limited research on the mechanisms of MPTDN in cervical cancer (CESC) at present. In this study, Weighted Gene Co-expression Network Analysis (WGCNA) was performed on differentially expressed genes in CESC. The module MEyellow, which showed the highest correlation with the phenotype, was selected for in-depth analysis. It was found that the genes in the MEyellow module may be associated with the tumor immune microenvironment (TIME). Through COX univariate regression and LASSO regression analysis, 6 key genes were identified. These genes were further investigated from multiple perspectives, including their independent diagnostic value, prognostic value, specific regulatory mechanisms in the tumor immune microenvironment, drug sensitivity analysis, and somatic mutation analysis. This study provided a comprehensive exploration of the mechanisms of action of these 6 key genes in CESC patients. And qRT-PCR validation was also conducted. Through COX univariate regression and LASSO coefficient screening of the MEyellow module, 6 key genes were identified: CHRM3-AS2, AC096734.1, BISPR, LINC02446, LINC00944, and DGUOK-AS1. Evaluation of the independent diagnostic value of these 6 key genes revealed that they can serve as independent diagnostic biomarkers. Through correlation analysis among these 6 genes, a potential regulatory mechanism among them was identified. Therefore, a risk prognostic model was established based on the collective action of these 6 genes, and the model showed good performance in predicting the survival period of CESC patients. By studying the relationship between these 6 key genes and the tumor microenvironment of CESC patients from multiple angles, it was found that these 6 genes are key regulatory factors in the tumor immune microenvironment of CESC patients. Additionally, 16 drugs that are associated with these 6 key genes were identified, and 8 small molecule drugs were predicted based on the lncRNA-mRNA network. The 6 key genes can serve as independent biomarkers for diagnosis, and the Risk score of these genes when acting together can be used as an indicator for predicting the clinical survival period of CESC patients. Additionally, these 6 key genes were closely related to the tumor immune microenvironment of CESC patients and were the important regulatory factors in the tumor immune microenvironment of CESC patients.
Collapse
Affiliation(s)
- Chen Yi
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Jun Yang
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Ting Zhang
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Zilu Xie
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Qiliang Xiong
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China.
| | - Shaofeng Jiang
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China.
| |
Collapse
|
7
|
Liu J, Ding C, Shi Y, Wang Y, Zhang X, Huang L, Fang Q, Shuai C, Gao Y, Wu J. Advances in Mechanism of HIV-1 Immune Reconstitution Failure: Understanding Lymphocyte Subpopulations and Interventions for Immunological Nonresponders. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1609-1620. [PMID: 38768409 DOI: 10.4049/jimmunol.2300777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024]
Abstract
In individuals diagnosed with AIDS, the primary method of sustained suppression of HIV-1 replication is antiretroviral therapy, which systematically increases CD4+ T cell levels and restores immune function. However, there is still a subset of 10-40% of people living with HIV who not only fail to reach normal CD4+ T cell counts but also experience severe immune dysfunction. These individuals are referred to as immunological nonresponders (INRs). INRs have a higher susceptibility to opportunistic infections and non-AIDS-related illnesses, resulting in increased morbidity and mortality rates. Therefore, it is crucial to gain new insights into the primary mechanisms of immune reconstitution failure to enable early and effective treatment for individuals at risk. This review provides an overview of the dynamics of key lymphocyte subpopulations, the main molecular mechanisms of INRs, clinical diagnosis, and intervention strategies during immune reconstitution failure, primarily from a multiomics perspective.
Collapse
Affiliation(s)
- Jiamin Liu
- School of Public Health, Anhui Medical University, Hefei, China
| | - Chengchao Ding
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Shi
- School of Public Health, Anhui Medical University, Hefei, China
| | - Yiyu Wang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xiangyu Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lina Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qin Fang
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Chenxi Shuai
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianjun Wu
- School of Public Health, Anhui Medical University, Hefei, China
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| |
Collapse
|
8
|
Vos WAJW, Navas A, Meeder EMG, Blaauw MJT, Groenendijk AL, van Eekeren LE, Otten T, Vadaq N, Matzaraki V, van Cranenbroek B, Brinkman K, van Lunzen J, Joosten LAB, Netea MG, Blok WL, van der Ven AJAM, Koenen HJPM, Stalenhoef JE. HIV immunological non-responders are characterized by extensive immunosenescence and impaired lymphocyte cytokine production capacity. Front Immunol 2024; 15:1350065. [PMID: 38779686 PMCID: PMC11109418 DOI: 10.3389/fimmu.2024.1350065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Immunological non-responders (INR) are people living with HIV (PLHIV) who fail to fully restore CD4+ T-cell counts despite complete viral suppression with antiretroviral therapy (ART). INR are at higher risk for non-HIV related morbidity and mortality. Previous research suggest persistent qualitative defects. Methods The 2000HIV study (clinical trials NTC03994835) enrolled 1895 PLHIV, divided in a discovery and validation cohort. PLHIV with CD4 T-cell count <350 cells/mm3 after ≥2 years of suppressive ART were defined as INR and were compared to immunological responders (IR) with CD4 T-cell count >500 cells/mm3. Logistic and rank based regression were used to analyze clinical data, extensive innate and adaptive immunophenotyping, and ex vivo monocyte and lymphocyte cytokine production after stimulation with various stimuli. Results The discovery cohort consisted of 62 INR and 1224 IR, the validation cohort of 26 INR and 243 IR. INR were older, had more advanced HIV disease before starting ART and had more frequently a history of non-AIDS related malignancy. INR had lower absolute CD4+ T-cell numbers in all subsets. Activated (HLA-DR+, CD38+) and exhausted (PD1+) subpopulations were proportionally increased in CD4 T-cells. Monocyte and granulocyte immunophenotypes were comparable. INR lymphocytes produced less IL-22, IFN-γ, IL-10 and IL-17 to stimuli. In contrast, monocyte cytokine production did not differ. The proportions of CD4+CD38+HLA-DR+ and CD4+PD1+ subpopulations showed an inversed correlation to lymphocyte cytokine production. Conclusions INR compared to IR have hyperactivated and exhausted CD4+ T-cells in combination with lymphocyte functional impairment, while innate immune responses were comparable. Our data provide a rationale to consider the use of anti-PD1 therapy in INR.
Collapse
Affiliation(s)
- Wilhelm A. J. W. Vos
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Adriana Navas
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elise M. G. Meeder
- Department of Psychiatry, Radboudumc, Radboud University, Nijmegen, Netherlands
- Cognition and Behavior, Donders Institute for Brain, Radboud University, Nijmegen, Netherlands
| | - Marc J. T. Blaauw
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine and Infectious Diseases, Elizabeth-Tweesteden Ziekenhuis, Tilburg, Netherlands
| | - Albert L. Groenendijk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, ErasmusMC, Erasmus University, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious diseases, ErasmusMC, Erasmus University, Rotterdam, Netherlands
| | - Louise E. van Eekeren
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Twan Otten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine and Infectious Diseases, Elizabeth-Tweesteden Ziekenhuis, Tilburg, Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bram van Cranenbroek
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kees Brinkman
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Jan van Lunzen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Willem L. Blok
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | | | - Hans J. P. M. Koenen
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Janneke E. Stalenhoef
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| |
Collapse
|
9
|
Mullan KA, de Vrij N, Valkiers S, Meysman P. Current annotation strategies for T cell phenotyping of single-cell RNA-seq data. Front Immunol 2023; 14:1306169. [PMID: 38187377 PMCID: PMC10768068 DOI: 10.3389/fimmu.2023.1306169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has become a popular technique for interrogating the diversity and dynamic nature of cellular gene expression and has numerous advantages in immunology. For example, scRNA-seq, in contrast to bulk RNA sequencing, can discern cellular subtypes within a population, which is important for heterogenous populations such as T cells. Moreover, recent advancements in the technology allow the parallel capturing of the highly diverse T-cell receptor (TCR) sequence with the gene expression. However, the field of single-cell RNA sequencing data analysis is still hampered by a lack of gold-standard cell phenotype annotation. This problem is particularly evident in the case of T cells due to the heterogeneity in both their gene expression and their TCR. While current cell phenotype annotation tools can differentiate major cell populations from each other, labelling T-cell subtypes remains problematic. In this review, we identify the common automated strategy for annotating T cells and their subpopulations, and also describe what crucial information is still missing from these tools.
Collapse
Affiliation(s)
- Kerry A. Mullan
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS) Consortium, University of Antwerp, Antwerp, Belgium
| | - Nicky de Vrij
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS) Consortium, University of Antwerp, Antwerp, Belgium
- Clinical Immunology Unit, Department of Clinical Sciences, Institute for Tropical Medicine, Antwerp, Belgium
| | - Sebastiaan Valkiers
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS) Consortium, University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS) Consortium, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Wan LY, Huang HH, Zhen C, Chen SY, Song B, Cao WJ, Shen LL, Zhou MJ, Zhang XC, Xu R, Fan X, Zhang JY, Shi M, Zhang C, Jiao YM, Song JW, Wang FS. Distinct inflammation-related proteins associated with T cell immune recovery during chronic HIV-1 infection. Emerg Microbes Infect 2023; 12:2150566. [PMID: 36408648 PMCID: PMC9769146 DOI: 10.1080/22221751.2022.2150566] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic inflammation and T cell dysregulation persist in individuals infected with human immunodeficiency virus type 1 (HIV-1), even after successful antiretroviral treatment. The mechanism involved is not fully understood. Here, we used Olink proteomics to comprehensively analyze the aberrant inflammation-related proteins (IRPs) in chronic HIV-1-infected individuals, including in 24 treatment-naïve individuals, 33 immunological responders, and 38 immunological non-responders. T cell dysfunction was evaluated as T cell exhaustion, activation, and differentiation using flow cytometry. We identified a cluster of IRPs (cluster 7), including CXCL11, CXCL9, TNF, CXCL10, and IL18, which was closely associated with T cell dysregulation during chronic HIV-1 infection. Interestingly, IRPs in cluster 5, including ST1A1, CASP8, SIRT2, AXIN1, STAMBP, CD40, and IL7, were negatively correlated with the HIV-1 reservoir size. We also identified a combination of CDCP1, CXCL11, CST5, SLAMF1, TRANCE, and CD5, which may be useful for distinguishing immunological responders and immunological non-responders. In conclusion, the distinct inflammatory milieu is closely associated with immune restoration of T cells, and our results provide insight into immune dysregulation during chronic HIV-1 infection.
Collapse
Affiliation(s)
- Lin-Yu Wan
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Cheng Zhen
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Si-Yuan Chen
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Bing Song
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Wen-Jing Cao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Li-Li Shen
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Ming-Ju Zhou
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | | | - Ruonan Xu
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China,Jin-Wen Song
| | - Fu-Sheng Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China, Fu-Sheng Wang
| |
Collapse
|
11
|
Sponaugle A, Weideman AMK, Ranek J, Atassi G, Kuruc J, Adimora AA, Archin NM, Gay C, Kuritzkes DR, Margolis DM, Vincent BG, Stanley N, Hudgens MG, Eron JJ, Goonetilleke N. Dominant CD4 + T cell receptors remain stable throughout antiretroviral therapy-mediated immune restoration in people with HIV. Cell Rep Med 2023; 4:101268. [PMID: 37949070 PMCID: PMC10694675 DOI: 10.1016/j.xcrm.2023.101268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/05/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
In people with HIV (PWH), the post-antiretroviral therapy (ART) window is critical for immune restoration and HIV reservoir stabilization. We employ deep immune profiling and T cell receptor (TCR) sequencing and examine proliferation to assess how ART impacts T cell homeostasis. In PWH on long-term ART, lymphocyte frequencies and phenotypes are mostly stable. By contrast, broad phenotypic changes in natural killer (NK) cells, γδ T cells, B cells, and CD4+ and CD8+ T cells are observed in the post-ART window. Whereas CD8+ T cells mostly restore, memory CD4+ T subsets and cytolytic NK cells show incomplete restoration 1.4 years post ART. Surprisingly, the hierarchies and frequencies of dominant CD4 TCR clonotypes (0.1%-11% of all CD4+ T cells) remain stable post ART, suggesting that clonal homeostasis can be independent of homeostatic processes regulating CD4+ T cell absolute number, phenotypes, and function. The slow restoration of host immunity post ART also has implications for the design of ART interruption studies.
Collapse
Affiliation(s)
- Alexis Sponaugle
- Department of Microbiology & Immunology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Ann Marie K Weideman
- Department of Biostatistics, UNC Chapel Hill, Chapel Hill, NC, USA; Center for AIDS Research, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jolene Ranek
- Computational Medicine Program, UNC Chapel Hill, Chapel Hill, NC, USA; Curriculum in Bioinformatics and Computational Biology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Gatphan Atassi
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - JoAnn Kuruc
- Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Adaora A Adimora
- Center for AIDS Research, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Nancie M Archin
- Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia Gay
- Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David M Margolis
- Department of Microbiology & Immunology, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Microbiology & Immunology, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA; Curriculum in Bioinformatics and Computational Biology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Natalie Stanley
- Computational Medicine Program, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Michael G Hudgens
- Department of Biostatistics, UNC Chapel Hill, Chapel Hill, NC, USA; Center for AIDS Research, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Joseph J Eron
- Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Nilu Goonetilleke
- Department of Microbiology & Immunology, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Shive CL, Kowal CM, Desotelle AF, Nguyen Y, Carbone S, Kostadinova L, Davitkov P, O’Mara M, Reihs A, Siddiqui H, Wilson BM, Anthony DD. Endotoxemia Associated with Liver Disease Correlates with Systemic Inflammation and T Cell Exhaustion in Hepatitis C Virus Infection. Cells 2023; 12:2034. [PMID: 37626844 PMCID: PMC10453378 DOI: 10.3390/cells12162034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Both acute and chronic hepatitis C virus (HCV) infections are characterized by inflammation. HCV and reduced liver blood filtration contribute to inflammation; however, the mechanisms of systemic immune activation and dysfunction as a result of HCV infection are not clear. We measured circulating inflammatory mediators (IL-6, IP10, sCD163, sCD14), indices of endotoxemia (EndoCab, LBP, FABP), and T cell markers of exhaustion and senescence (PD-1, TIGIT, CD57, KLRG-1) in HCV-infected participants, and followed a small cohort after direct-acting anti-viral therapy. IL-6, IP10, Endocab, LBP, and FABP were elevated in HCV participants, as were T cell co-expression of exhaustion and senescence markers. We found positive associations between IL-6, IP10, EndoCab, LBP, and co-expression of T cell markers of exhaustion and senescence. We also found numerous associations between reduced liver function, as measured by plasma albumin levels, and T cell exhaustion/senescence, inflammation, and endotoxemia. We found positive associations between liver stiffness (TE score) and plasma levels of IL-6, IP10, and LBP. Lastly, plasma IP10 and the proportion of CD8 T cells co-expressing PD-1 and CD57 decreased after initiation of direct-acting anti-viral therapy. Although associations do not prove causality, our results support the model that translocation of microbial products, resulting from decreased liver blood filtration, during HCV infection drives chronic inflammation that results in T cell exhaustion/senescence and contributes to systemic immune dysfunction.
Collapse
Affiliation(s)
- Carey L. Shive
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
- Pathology Department, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Corinne M. Kowal
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Alexandra F. Desotelle
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Ynez Nguyen
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Sarah Carbone
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Lenche Kostadinova
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Perica Davitkov
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Megan O’Mara
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Alexandra Reihs
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Hinnah Siddiqui
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Brigid M. Wilson
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Donald D. Anthony
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Zhang W, Ruan L. Recent advances in poor HIV immune reconstitution: what will the future look like? Front Microbiol 2023; 14:1236460. [PMID: 37608956 PMCID: PMC10440441 DOI: 10.3389/fmicb.2023.1236460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Combination antiretroviral therapy has demonstrated proved effectiveness in suppressing viral replication and significantly recovering CD4+ T cell count in HIV type-1 (HIV-1)-infected patients, contributing to a dramatic reduction in AIDS morbidity and mortality. However, the factors affecting immune reconstitution are extremely complex. Demographic factors, co-infection, baseline CD4 cell level, abnormal immune activation, and cytokine dysregulation may all affect immune reconstitution. According to report, 10-40% of HIV-1-infected patients fail to restore the normalization of CD4+ T cell count and function. They are referred to as immunological non-responders (INRs) who fail to achieve complete immune reconstitution and have a higher mortality rate and higher risk of developing other non-AIDS diseases compared with those who achieve complete immune reconstitution. Heretofore, the mechanisms underlying incomplete immune reconstitution in HIV remain elusive, and INRs are not effectively treated or mitigated. This review discusses the recent progress of mechanisms and factors responsible for incomplete immune reconstitution in AIDS and summarizes the corresponding therapeutic strategies according to different mechanisms to improve the individual therapy.
Collapse
Affiliation(s)
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
14
|
Martin DE, Cadar AN, Panier H, Torrance BL, Kuchel GA, Bartley JM. The effect of metformin on influenza vaccine responses in nondiabetic older adults: a pilot trial. Immun Ageing 2023; 20:18. [PMID: 37131271 PMCID: PMC10152024 DOI: 10.1186/s12979-023-00343-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Aging is associated with progressive declines in immune responses leading to increased risk of severe infection and diminished vaccination responses. Influenza (flu) is a leading killer of older adults despite availability of seasonal vaccines. Geroscience-guided interventions targeting biological aging could offer transformational approaches to reverse broad declines in immune responses with aging. Here, we evaluated effects of metformin, an FDA approved diabetes drug and candidate anti-aging drug, on flu vaccination responses and markers of immunological resilience in a pilot and feasibility double-blinded placebo-controlled study. RESULTS Healthy older adults (non-diabetic/non-prediabetic, age: 74.4 ± 1.7 years) were randomized to metformin (n = 8, 1500 mg extended release/daily) or placebo (n = 7) treatment for 20 weeks and were vaccinated with high-dose flu vaccine after 10 weeks of treatment. Peripheral blood mononuclear cells (PBMCs), serum, and plasma were collected prior to treatment, immediately prior to vaccination, and 1, 5, and 10 weeks post vaccination. Increased serum antibody titers were observed post vaccination with no significant differences between groups. Metformin treatment led to trending increases in circulating T follicular helper cells post-vaccination. Furthermore, 20 weeks of metformin treatment reduced expression of exhaustion marker CD57 in circulating CD4 T cells. CONCLUSIONS Pre-vaccination metformin treatment improved some components of flu vaccine responses and reduced some markers of T cell exhaustion without serious adverse events in nondiabetic older adults. Thus, our findings highlight the potential utility of metformin to improve flu vaccine responses and reduce age-related immune exhaustion in older adults, providing improved immunological resilience in nondiabetic older adults.
Collapse
Affiliation(s)
- Dominique E Martin
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - Andreia N Cadar
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - Hunter Panier
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Medicine, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, 06030, USA
| | - Blake L Torrance
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - George A Kuchel
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - Jenna M Bartley
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA.
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA.
| |
Collapse
|
15
|
Pereira-Manfro WF, da Silva GP, Costa PR, Costa DA, Ferreira BDS, Barreto DM, Frota ACC, Hofer CB, Kallas EG, Milagres LG. Expression of TIGIT, PD-1 and HLA-DR/CD38 markers on CD8-T cells of children and adolescents infected with HIV and uninfected controls. Rev Inst Med Trop Sao Paulo 2023; 65:e14. [PMID: 36753067 PMCID: PMC9901578 DOI: 10.1590/s1678-9946202365014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/02/2023] [Indexed: 02/09/2023] Open
Abstract
Immune exhaustion and senescence are scarcely studied in HIV-pediatric patients. We studied the circulatory CD8 T cells activation/exhaustion and senescent phenotype of children and adolescents vertically infected with HIV or uninfected controls based on the expression of human leukocyte antigen (HLA-DR), CD38, T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), programmed death 1 (PD-1) and CD57 by flow cytometry, during approximately one year. Eleven HIV-infected (HI) and nine HIV-uninfected (HU) children/adolescents who received two doses or one dose of meningococcal C conjugate vaccine (MenC), respectively, were involved in this study. Blood samples were collected before the immunization (T0), 1-2 months after the first dose (T1), and 1-2 months after the second dose (T2), which was administered approximately one year after the first one. HI patients not receiving combined antiretroviral therapy (cART) showed a higher frequency of CD8 T cells TIGIT+, PD-1+ or CD57+, as well as a higher frequency of CD8 T cells co-expressing CD38/HLA-DR/TIGIT or CD38/HLA-DR/PD-1 when compared to HI treated or HU individuals, at all times that they were assessed. CD8 T cells co-expressing CD38/DR/TIGIT were inversely correlated with the CD4/CD8 ratio but positively associated with viral load. The co-expression of CD38/DR/TIGIT or CD38/DR/PD-1 on CD8 T cells was also inversely associated with the CD4 T cells expressing co-stimulatory molecules CD127/CD28. The results showed a higher expression of exhaustion/senescence markers on CD8 T cells of untreated HI children/adolescents and its correlations with viral load.
Collapse
Affiliation(s)
- Wânia Ferraz Pereira-Manfro
- Universidade do Estado do Rio de Janeiro, Departamento de
Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, Rio de Janeiro,
Brazil
| | - Giselle Pereira da Silva
- Universidade do Estado do Rio de Janeiro, Departamento de
Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, Rio de Janeiro,
Brazil
| | - Priscilla Ramos Costa
- Universidade de São Paulo, Faculdade de Medicina, Divisão de
Imunologia Clínica e Alergia, São Paulo, São Paulo, Brazil
| | - Dayane Alves Costa
- Universidade de São Paulo, Faculdade de Medicina, Divisão de
Imunologia Clínica e Alergia, São Paulo, São Paulo, Brazil
| | | | - Daniela Mena Barreto
- Instituto de Puericultura e Pediatria Martagão Gesteira, Rio de
Janeiro, Rio de Janeiro, Brazil
| | | | - Cristina Barroso Hofer
- Instituto de Puericultura e Pediatria Martagão Gesteira, Rio de
Janeiro, Rio de Janeiro, Brazil,Universidade Federal do Rio de Janeiro, Faculdade de Medicina,
Departamento de Medicina Preventiva Rio de Janeiro, Rio de Janeiro, Brazil
| | - Esper Georges Kallas
- Universidade de São Paulo, Faculdade de Medicina, Divisão de
Imunologia Clínica e Alergia, São Paulo, São Paulo, Brazil
| | - Lucimar Gonçalves Milagres
- Universidade do Estado do Rio de Janeiro, Departamento de
Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, Rio de Janeiro,
Brazil
| |
Collapse
|
16
|
Thymic Exhaustion and Increased Immune Activation Are the Main Mechanisms Involved in Impaired Immunological Recovery of HIV-Positive Patients under ART. Viruses 2023; 15:v15020440. [PMID: 36851655 PMCID: PMC9961132 DOI: 10.3390/v15020440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Decades of studies in antiretroviral therapy (ART) have passed, and the mechanisms that determine impaired immunological recovery in HIV-positive patients receiving ART have not been completely elucidated yet. Thus, T-lymphocytes immunophenotyping and cytokines levels were analyzed in 44 ART-treated HIV-positive patients who had a prolonged undetectable plasma viral load. The patients were classified as immunological non-responders (INR = 13) and immunological responders (IR = 31), according to their CD4+ T cell levels. Evaluating pre-CD4+ levels, we observed a statistically significant trend between lower CD4+ T cell levels and INR status (Z = 3.486, p < 0.001), and during 18 months of ART, the CD4+ T cell levels maintained statistical differences between the INR and IR groups (WTS = 37.252, p < 0.001). Furthermore, the INRs were associated with an elevated age at ART start; a lower pre-treatment CD4+ T cell count and a percentage that remained low even after 18 months of ART; lower levels of recent thymic emigrant (RTE) CD4+ T cell (CD45RA + CD31+) and a naïve CD4+ T cell (CD45RA + CD62L+); higher levels of central memory CD4+ T cells (CD45RA-CD62L+); and higher immune activation by CD4+ expressing HLA-DR+ or both (HLA-DR+ and CD38+) when compared with IRs. Our study demonstrates that thymic exhaustion and increased immune activation are two mechanisms substantially implicated in the impaired immune recovery of ART-treated HIV patients.
Collapse
|
17
|
Yan L, Xu K, Xiao Q, Tuo L, Luo T, Wang S, Yang R, Zhang F, Yang X. Cellular and molecular insights into incomplete immune recovery in HIV/AIDS patients. Front Immunol 2023; 14:1152951. [PMID: 37205108 PMCID: PMC10185893 DOI: 10.3389/fimmu.2023.1152951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Highly active antiretroviral therapy (ART) can effectively inhibit virus replication and restore immune function in most people living with human immunodeficiency virus (HIV). However, an important proportion of patients fail to achieve a satisfactory increase in CD4+ T cell counts. This state is called incomplete immune reconstitution or immunological nonresponse (INR). Patients with INR have an increased risk of clinical progression and higher rates of mortality. Despite widespread attention to INR, the precise mechanisms remain unclear. In this review, we will discuss the alterations in the quantity and quality of CD4+ T as well as multiple immunocytes, changes in soluble molecules and cytokines, and their relationship with INR, aimed to provide cellular and molecular insights into incomplete immune reconstitution.
Collapse
Affiliation(s)
- Liting Yan
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Kaiju Xu
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Xiao
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
| | - Lin Tuo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Tingting Luo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shuqiang Wang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Renguo Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Fujie Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Xingxiang Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| |
Collapse
|
18
|
Xiao Q, Yu F, Yan L, Zhao H, Zhang F. Alterations in circulating markers in HIV/AIDS patients with poor immune reconstitution: Novel insights from microbial translocation and innate immunity. Front Immunol 2022; 13:1026070. [PMID: 36325329 PMCID: PMC9618587 DOI: 10.3389/fimmu.2022.1026070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
After long-term anti-retroviral therapy (ART) treatment, most human immunodeficiency virus (HIV)/Acquired Immure Deficiency Syndrome (AIDS) patients can achieve virological suppression and gradual recovery of CD4+ T-lymphocyte (CD4+ T cell) counts. However, some patients still fail to attain normal CD4+ T cell counts; this group of patients are called immune non-responders (INRs), and these patients show severe immune dysfunction. The potential mechanism of poor immune reconstitution (PIR) remains unclear and the identification of uniform biomarkers to predict the occurrence of PIR is particularly vital. But limited information is available on the relationship between circulating markers of INRs and immune recovery. Hence, this review summarises alterations in the intestine microbiota and associated markers in the setting of PIR to better understand host-microbiota-metabolite interactions in HIV immune reconstitution and to identify biomarkers that can predict recovery of CD4+ T cell counts in INRs.
Collapse
Affiliation(s)
- Qing Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fengting Yu
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Liting Yan
- Infectious Disease Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongxin Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Shive C, Pandiyan P. Inflammation, Immune Senescence, and Dysregulated Immune Regulation in the Elderly. FRONTIERS IN AGING 2022; 3:840827. [PMID: 35821823 PMCID: PMC9261323 DOI: 10.3389/fragi.2022.840827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
Abstract
An optimal immune response requires the appropriate interaction between the innate and the adaptive arms of the immune system as well as a proper balance of activation and regulation. After decades of life, the aging immune system is continuously exposed to immune stressors and inflammatory assaults that lead to immune senescence. In this review, we will discuss inflammaging in the elderly, specifically concentrating on IL-6 and IL-1b in the context of T lymphocytes, and how inflammation is related to mortality and morbidities, specifically cardiovascular disease and cancer. Although a number of studies suggests that the anti-inflammatory cytokine TGF-b is elevated in the elderly, heightened inflammation persists. Thus, the regulation of the immune response and the ability to return the immune system to homeostasis is also important. Therefore, we will discuss cellular alterations in aging, concentrating on senescent T cells and CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) in aging
Collapse
Affiliation(s)
- Carey Shive
- Louis Stokes Cleveland VA Medical Center, United States Department of Veterans Affairs, Cleveland, OH, United States.,Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
20
|
Pereira LMS, França EDS, Costa IB, Jorge EVO, Mattos PJDSM, Freire ABC, Ramos FLDP, Monteiro TAF, Macedo O, Sousa RCM, Dos Santos EJM, Freitas FB, Costa IB, Vallinoto ACR. HLA-B*13, B*35 and B*39 Alleles Are Closely Associated With the Lack of Response to ART in HIV Infection: A Cohort Study in a Population of Northern Brazil. Front Immunol 2022; 13:829126. [PMID: 35371095 PMCID: PMC8966405 DOI: 10.3389/fimmu.2022.829126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Immune reconstitution failure after HIV treatment is a multifactorial phenomenon that may also be associated with a single polymorphism of human leukocyte antigen (HLA); however, few reports include patients from the Brazilian Amazon. Our objective was to evaluate the association of the immunogenic profile of the “classical” HLA-I and HLA-II loci with treatment nonresponse in a regional cohort monitored over 24 months since HIV diagnosis. Materials and Methods Treatment-free participants from reference centers in the state of Pará, Brazil, were enrolled. Infection screening was performed using enzyme immunoassays (Murex AG/AB Combination DiaSorin, UK) and confirmed by immunoblots (Bio-Manguinhos, FIOCRUZ). Plasma viral load was quantified by real-time PCR (ABBOTT, Chicago, Illinois, USA). CD4+/CD8+ T lymphocyte quantification was performed by immunophenotyping and flow cytometry (BD Biosciences, San Jose, CA, USA). Infection was monitored via test and logistics platforms (SISCEL and SICLOM). Therapeutic response failure was inferred based on CD4+ T lymphocyte quantification after 1 year of therapy. Loci A, B and DRB1 were genotyped using PCR-SSO (One Lambda Inc., Canoga Park, CA, USA). Statistical tests were applied using GENEPOP, GraphPad Prism 8.4.3 and BioEstat 5.3. Results Of the 270 patients monitored, 134 responded to treatment (CD4+ ≥ 500 cells/µL), and 136 did not respond to treatment (CD4+ < 500 cells/µL). The allele frequencies of the loci were similar to heterogeneous populations. The allelic profile of locus B was statistically associated with treatment nonresponse, and the B*13, B*35 and B*39 alleles had the greatest probabilistic influence. The B*13 allele had the highest risk of treatment nonresponse, and carriers of the allele had a detectable viral load and a CD4+ T lymphocyte count less than 400 cells/µL with up to 2 years of therapy. The B*13 allele was associated with a switch in treatment regimens, preferably to efavirenz (EFZ)-based regimens, and among those who switched regimens, half had a history of coinfection with tuberculosis. Conclusions The allelic variants of the B locus are more associated with non-response to therapy in people living with HIV (PLHIV) from a heterogeneous population in the Brazilian Amazon.
Collapse
Affiliation(s)
| | | | - Iran Barros Costa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil
| | | | | | | | | | | | - Olinda Macedo
- Retrovirus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil
| | - Rita Catarina Medeiros Sousa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil.,School of Medicine, Federal University of Pará, Belém, Brazil
| | - Eduardo José Melo Dos Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Igor Brasil Costa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
21
|
Younes SA. Mitochondrial Exhaustion of Memory CD4 T-Cells in Treated HIV-1 Infection. IMMUNOMETABOLISM 2022; 4:e220013. [PMID: 35633761 PMCID: PMC9140223 DOI: 10.20900/immunometab20220013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
People living with HIV (PLWH) who are immune non-responders (INR) to therapy are unable to restore their CD4 T-cell count and remain at great risk of morbidity and mortality. Here the mitochondrial defects that characterize memory CD4 T-cells in INR and causes of this mitochondrial exhaustion are reviewed. This review also describes the various reagents used to induce the expression of the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), the master regulator of mitochondrial biogenesis, which can restore mitochondria fitness and CD4 T-cell proliferation in INR. Due to sustained heightened inflammation in INR, the mitochondrial network is unable to be rejuvenated and requires attenuation of mediators of inflammation to rescue mitochondria and CD4 T-cell counts in INR.
Collapse
Affiliation(s)
- Souheil-Antoine Younes
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine, Emory University, Atlanta 30322, USA
| |
Collapse
|
22
|
Pino M, Pereira Ribeiro S, Pagliuzza A, Ghneim K, Khan A, Ryan E, Harper JL, King CT, Welbourn S, Micci L, Aldrete S, Delman KA, Stuart T, Lowe M, Brenchley JM, Derdeyn CA, Easley K, Sekaly RP, Chomont N, Paiardini M, Marconi VC. Increased homeostatic cytokines and stability of HIV-infected memory CD4 T-cells identify individuals with suboptimal CD4 T-cell recovery on-ART. PLoS Pathog 2021; 17:e1009825. [PMID: 34449812 PMCID: PMC8397407 DOI: 10.1371/journal.ppat.1009825] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 01/12/2023] Open
Abstract
Clinical outcomes are inferior for individuals with HIV having suboptimal CD4 T-cell recovery during antiretroviral therapy (ART). We investigated if the levels of infection and the response to homeostatic cytokines of CD4 T-cell subsets contributed to divergent CD4 T-cell recovery and HIV reservoir during ART by studying virologically-suppressed immunologic responders (IR, achieving a CD4 cell count >500 cells/μL on or before two years after ART initiation), and virologically-suppressed suboptimal responders (ISR, did not achieve a CD4 cell count >500 cells/μL in the first two years after ART initiation). Compared to IR, ISR demonstrated higher levels of HIV-DNA in naïve, central (CM), transitional (TM), and effector (EM) memory CD4 T-cells in blood, both pre- and on-ART, and specifically in CM CD4 T-cells in LN on-ART. Furthermore, ISR had higher pre-ART plasma levels of IL-7 and IL-15, cytokines regulating T-cell homeostasis. Notably, pre-ART PD-1 and TIGIT expression levels were higher in blood CM and TM CD4 T-cells for ISR; this was associated with a significantly lower fold-changes in HIV-DNA levels between pre- and on-ART time points exclusively on CM and TM T-cell subsets, but not naïve or EM T-cells. Finally, the frequency of CM CD4 T-cells expressing PD-1 or TIGIT pre-ART as well as plasma levels of IL-7 and IL-15 predicted HIV-DNA content on-ART. Our results establish the association between infection, T-cell homeostasis, and expression of PD-1 and TIGIT in long-lived CD4 T-cell subsets prior to ART with CD4 T-cell recovery and HIV persistence on-ART.
Collapse
Affiliation(s)
- Maria Pino
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Susan Pereira Ribeiro
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Amélie Pagliuzza
- Centre de Recherche du CHUM and Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, QC, Canada
| | - Khader Ghneim
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Anum Khan
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Emily Ryan
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Justin L. Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Colin T. King
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Sarah Welbourn
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Sol Aldrete
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Keith A. Delman
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Theron Stuart
- Emory Vaccine Center, Emory University, Hope Clinic, Decatur, Georgia, United States of America
| | - Michael Lowe
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Cynthia A. Derdeyn
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kirk Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Rafick P. Sekaly
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, QC, Canada
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Vincent C. Marconi
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
| |
Collapse
|