1
|
Velatooru LR, Arroyave E, Rippee-Brooks MD, Burch M, Yang E, Zhu B, Walker DH, Zhang Y, Fang R. Rickettsia disrupts and reduces endothelial tight junction protein zonula occludens-1 in association with inflammasome activation. Infect Immun 2024:e0046824. [PMID: 39679710 DOI: 10.1128/iai.00468-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
Rickettsia spp. cause life-threatening diseases in humans. The fundamental pathophysiological changes in fatal rickettsial diseases are disrupted endothelial barrier and increased microvascular permeability. However, it remains largely unclear how rickettsiae induce microvascular endothelial injury. In the present study, we demonstrated that Rickettsia conorii infection disrupts the continuous immunofluorescence expression of the interendothelial tight junction protein, zonula occludens-1 (ZO-1), in infected monolayers of microvascular endothelial cells (MVECs), accompanied by significantly diminished total expression levels of ZO-1. Interestingly, R. conorii activated inflammasome in MVECs, as evidenced by cleaved caspase-1 and IL-1β in the cell lysates in association with significantly elevated expression levels of nucleotide binding and oligomerization domain, leucine-rich repeat, and pyrin containing protein 3 (NLRP3). Furthermore, selective inhibition of NLRP3 by MCC950 significantly suppressed the activation and cleavage of caspase-1 induced by R. conorii in endothelial cells, which further prevented the disruption of interendothelial junctions and reduction of ZO-1 expression. Of note, pharmaceutical inhibition of NLRP3 mitigated the disrupted endothelial integrity caused by R. conorii, measured by fluorescein isothiocyanate-dextran passage in a Transwell assay, independent of bacterial growth and cellular cytotoxicity. Taken together, our results suggest that R. conorii affected microvascular endothelial junction integrity likely via diminishing and interrupting the junctional protein ZO-1 in association with activating NLRP3 inflammasome. These data not only highlight the potential of ZO-1 as a biomarker for Rickettsia-induced microvascular injury but also provide insight into targeting NLRP3 inflammasome/ZO-1 signaling as a potentially adjunctive therapeutic approach for severe rickettsioses.
Collapse
Affiliation(s)
- Loka Reddy Velatooru
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Esteban Arroyave
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Megan Burch
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Ethan Yang
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Bing Zhu
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - David H Walker
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Rong Fang
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Sahni A, Alsing J, Narra HP, Montini M, Zafar Y, Sahni SK. Endothelial Mechanistic Target of Rapamycin Activation with Different Strains of R. rickettsii: Possible Role in Rickettsial Pathogenesis. Microorganisms 2024; 12:296. [PMID: 38399700 PMCID: PMC10892065 DOI: 10.3390/microorganisms12020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Rickettsia rickettsii is an obligate intracellular pathogen that primarily targets endothelial cells (ECs), leading to vascular inflammation and dysfunction. Mechanistic target of rapamycin (mTOR) regulates several cellular processes that directly affect host immune responses to bacterial pathogens. Here, we infected ECs with two R. rickettsii strains, avirulent (Iowa) and highly virulent Sheila Smith (SS) to identify differences in the kinetics and/or intensity of mTOR activation to establish a correlation between mTOR response and bacterial virulence. Endothelial mTOR activation with the highly virulent SS strain was significantly higher than with the avirulent Iowa strain. Similarly, there was increased LC3-II lipidation with the virulent SS strain compared with the avirulent Iowa strain of R. rickettsii. mTOR inhibitors rapamycin and Torin2 significantly increased bacterial growth and replication in the ECs, as evidenced by a more than six-fold increase in rickettsia copy numbers at 48 h post-infection. Further, the knockdown of mTOR with Raptor and Rictor siRNA resulted in a higher rickettsial copy number and the altered expression of the pro-inflammatory cytokines interleukin (IL)-1α, IL-6, and IL-8. These results are the first to reveal that endothelial mTOR activation and the early induction of autophagy might be governed by bacterial virulence and have established the mTOR pathway as an important regulator of endothelial inflammation, host immunity, and microbial replication.
Collapse
Affiliation(s)
- Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; (J.A.); (H.P.N.); (M.M.); (Y.Z.)
| | | | | | | | | | - Sanjeev K. Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; (J.A.); (H.P.N.); (M.M.); (Y.Z.)
| |
Collapse
|
3
|
Dahmani M, Zhu JC, Cook JH, Riley SP. Anaphylatoxin signaling activates macrophages to control intracellular Rickettsia proliferation. Microbiol Spectr 2023; 11:e0253823. [PMID: 37855623 PMCID: PMC10714731 DOI: 10.1128/spectrum.02538-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Pathogenic Rickettsia species are extremely dangerous bacteria that grow within the cytoplasm of host mammalian cells. In most cases, these bacteria are able to overpower the host cell and grow within the protected environment of the cytoplasm. However, a dramatic conflict occurs when Rickettsia encounter innate immune cells; the bacteria can "win" by taking over the host, or the bacteria can "lose" if the host cell efficiently fights the infection. This manuscript examines how the immune complement system is able to detect the presence of Rickettsia and alert nearby cells. Byproducts of complement activation called anaphylatoxins are signals that "activate" innate immune cells to mount an aggressive defensive strategy. This study enhances our collective understanding of the innate immune reaction to intracellular bacteria and will contribute to future efforts at controlling these dangerous infections.
Collapse
Affiliation(s)
- Mustapha Dahmani
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jinyi C. Zhu
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jack H. Cook
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Sean P. Riley
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
4
|
Voss OH, Gaytan H, Ullah S, Sadik M, Moin I, Rahman MS, Azad AF. Autophagy facilitates intracellular survival of pathogenic rickettsiae in macrophages via evasion of autophagosomal maturation and reduction of microbicidal pro-inflammatory IL-1 cytokine responses. Microbiol Spectr 2023; 11:e0279123. [PMID: 37819111 PMCID: PMC10715094 DOI: 10.1128/spectrum.02791-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Rickettsia spp. are intracellular bacterial parasites of a wide range of arthropod and vertebrate hosts. Some rickettsiae are responsible for several severe human diseases globally. One interesting feature of these pathogens is their ability to exploit host cytosolic defense responses to their benefits. However, the precise mechanism by which pathogenic Rickettsia spp. elude host defense responses remains unclear. Here, we observed that pathogenic Rickettsia typhi and Rickettsia rickettsii (Sheila Smith [SS]), but not non-pathogenic Rickettsia montanensis, become ubiquitinated and induce autophagy upon entry into macrophages. Moreover, unlike R. montanensis, R. typhi and R. rickettsii (SS) colocalized with LC3B but not with Lamp2 upon host cell entry. Finally, we observed that both R. typhi and R. rickettsii (SS), but not R. montanensis, reduce pro-inflammatory interleukin-1 (IL-1) responses, likely via an autophagy-mediated mechanism. In summary, we identified a previously unappreciated pathway by which both pathogenic R. typhi and R. rickettsii (SS) become ubiquitinated, induce autophagy, avoid autolysosomal destruction, and reduce microbicidal IL-1 cytokine responses to establish an intracytosolic niche in macrophages.
Collapse
Affiliation(s)
- Oliver H. Voss
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hodalis Gaytan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Saif Ullah
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohammad Sadik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Imran Moin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - M. Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Abdu F. Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Londoño AF, Scorpio DG, Dumler JS. Innate immunity in rickettsial infections. Front Cell Infect Microbiol 2023; 13:1187267. [PMID: 37228668 PMCID: PMC10203653 DOI: 10.3389/fcimb.2023.1187267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Rickettsial agents are a diverse group of alpha-proteobacteria within the order Rickettsiales, which possesses two families with human pathogens, Rickettsiaceae and Anaplasmataceae. These obligate intracellular bacteria are most frequently transmitted by arthropod vectors, a first step in the pathogens' avoidance of host cell defenses. Considerable study of the immune responses to infection and those that result in protective immunity have been conducted. Less study has focused on the initial events and mechanism by which these bacteria avoid the innate immune responses of the hosts to survive within and propagate from host cells. By evaluating the major mechanisms of evading innate immunity, a range of similarities among these bacteria become apparent, including mechanisms to escape initial destruction in phagolysosomes of professional phagocytes, those that dampen the responses of innate immune cells or subvert signaling and recognition pathways related to apoptosis, autophagy, proinflammatory responses, and mechanisms by which these microbes attach to and enter cells or those molecules that trigger the host responses. To illustrate these principles, this review will focus on two common rickettsial agents that occur globally, Rickettsia species and Anaplasma phagocytophilum.
Collapse
Affiliation(s)
- Andrés F. Londoño
- The Henry M. Jackson Foundation for Advancement in Military Medicine, Bethesda, MD, United States
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Diana G. Scorpio
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - J. Stephen Dumler
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
6
|
Gillespie JJ, Salje J. Orientia and Rickettsia: different flowers from the same garden. Curr Opin Microbiol 2023; 74:102318. [PMID: 37080115 DOI: 10.1016/j.mib.2023.102318] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Recent discoveries of basal extracellular Rickettsiales have illuminated divergent evolutionary paths to host dependency in later-evolving lineages. Family Rickettsiaceae, primarily comprised of numerous protist- and invertebrate-associated species, also includes human pathogens from two genera, Orientia and Rickettsia. Once considered sister taxa, these bacteria form distinct lineages with newly appreciated lifestyles and morphological traits. Contrasting other rickettsial human pathogens in Family Anaplasmataceae, Orientia and Rickettsia species do not reside in host-derived vacuoles and lack glycolytic potential. With only a few described mechanisms, strategies for commandeering host glycolysis to support cytosolic growth remain to be discovered. While regulatory systems for this unique mode of intracellular parasitism are unclear, conjugative transposons unique to Orientia and Rickettsia species provide insights that are critical for determining how these obligate intracellular pathogens overtake eukaryotic cytosol.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, USA.
| | - Jeanne Salje
- Department of Biochemistry, Department of Pathology, and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Zhou F, Yang L, Yang L, Wang X, Guo N, Sun W, Ma H. Trpc5-regulated AMPKα/mTOR autophagy pathway is associated with glucose metabolism disorders in low birth weight mice under overnutrition. Biochem Biophys Res Commun 2022; 630:1-7. [PMID: 36122525 DOI: 10.1016/j.bbrc.2022.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that low birth weight (LBW) individuals are at higher risk of glucose metabolism disorders compared with normal birth weight (NBW) individuals under overnutrition conditions, but the mechanism remains unclear. To explore the underlying mechanism of glucose metabolism disorders induced by LBW under overnutrition in adulthood, the prenatal malnutrition method was applied to ICR mice to establish the LBW mice model and high-fat diets were used to mimic overnutrition conditions. Then the mechanism was further explored on Hepg2 cells treated with nutritional deprivation plus palmitic acid. The results showed that LBW plus high-fat interventions will cause glucose metabolism disorders and inhibit autophagy flux in adulthood. Moreover, the expression of TRPC5-regulated AMPK/mTOR autophagy pathway was downregulated by LBW with high-fat interventions. Collectively, LBW plus high-fat intervention increased the risk of glucose metabolism disorders, which may be related to the alteration of TRPC5 expression level and its regulation of the AMPKα/mTOR autophagy pathway. This study may provide a fundamental basis for the molecular mechanism of glucose metabolism disorders induced by LBW with high-fat diets in adulthood and a new target for the treatment of metabolic diseases in LBW individuals.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Linlin Yang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Linquan Yang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xing Wang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Na Guo
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wenwen Sun
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
8
|
Wang XR, Cull B. Apoptosis and Autophagy: Current Understanding in Tick–Pathogen Interactions. Front Cell Infect Microbiol 2022; 12:784430. [PMID: 35155277 PMCID: PMC8829008 DOI: 10.3389/fcimb.2022.784430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tick-borne diseases are a significant threat to human and animal health throughout the world. How tick-borne pathogens successfully infect and disseminate in both their vertebrate and invertebrate hosts is only partially understood. Pathogens have evolved several mechanisms to combat host defense systems, and to avoid and modulate host immunity during infection, therefore benefitting their survival and replication. In the host, pathogens trigger responses from innate and adaptive immune systems that recognize and eliminate invaders. Two important innate defenses against pathogens are the programmed cell death pathways of apoptosis and autophagy. This Mini Review surveys the current knowledge of apoptosis and autophagy pathways in tick-pathogen interactions, as well as the strategies evolved by pathogens for their benefit. We then assess the limitations to studying both pathways and discuss their participation in the network of the tick immune system, before highlighting future perspectives in this field. The knowledge gained would significantly enhance our understanding of the defense responses in vector ticks that regulate pathogen infection and burden, and form the foundation for future research to identify novel approaches to the control of tick-borne diseases.
Collapse
Affiliation(s)
- Xin-Ru Wang
- *Correspondence: Xin-Ru Wang, ; Benjamin Cull,
| | | |
Collapse
|
9
|
Ismail N, Sharma A, Soong L, Walker DH. Review: Protective Immunity and Immunopathology of Ehrlichiosis. ZOONOSES (BURLINGTON, MASS.) 2022; 2:10.15212/zoonoses-2022-0009. [PMID: 35876763 PMCID: PMC9300479 DOI: 10.15212/zoonoses-2022-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human monocytic ehrlichiosis, a tick transmitted infection, ranges in severity from apparently subclinical to a fatal toxic shock-like fatal disease. Models in immunocompetent mice range from an abortive infection to uniformly lethal depending on the infecting Ehrlichia species, dose of inoculum, and route of inoculation. Effective immunity is mediated by CD4+ T lymphocytes and gamma interferon. Lethal infection occurs with early overproduction of proinflammatory cytokines and overproduction of TNF alpha and IL-10 by CD8+ T lymphocytes. Furthermore, fatal ehrlichiosis is associated with signaling via TLR 9/MyD88 with upregulation of several inflammasome complexes and secretion of IL-1 beta, IL-1 alpha, and IL-18 by hepatic mononuclear cells, suggesting activation of canonical and noncanonical inflammasome pathways, a deleterious role for IL-18, and the protective role for caspase 1. Autophagy promotes ehrlichial infection, and MyD88 signaling hinders ehrlichial infection by inhibiting autophagy induction and flux. Activation of caspase 11 during infection of hepatocytes by the lethal ehrlichial species after interferon alpha receptor signaling results in the production of inflammasome-dependent IL-1 beta, extracellular secretion of HMGB1, and pyroptosis. The high level of HMGB1 in lethal ehrlichiosis suggests a role in toxic shock. Studies of primary bone marrow-derived macrophages infected by highly avirulent or mildly avirulent ehrlichiae reveal divergent M1 and M2 macrophage polarization that links with generation of pathogenic CD8 T cells, neutrophils, and excessive inflammation or with strong expansion of protective Th1 and NKT cells, resolution of inflammation and clearance of infection, respectively.
Collapse
Affiliation(s)
- Nahed Ismail
- Clinical Microbiology, Laboratory Medicine, University of Illinois at Chicago-College of Medicine, University of Illinois Hospitals & Health Science System, Chicago, IL
| | - Aditya Sharma
- Clinical Microbiology, Laboratory Medicine, University of Illinois at Chicago-College of Medicine, University of Illinois Hospitals & Health Science System, Chicago, IL
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| | - David H. Walker
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
10
|
Spotted Fever Group Rickettsia Trigger Species-Specific Alterations in Macrophage Proteome Signatures with Different Impacts in Host Innate Inflammatory Responses. Microbiol Spectr 2021; 9:e0081421. [PMID: 34935429 PMCID: PMC8693926 DOI: 10.1128/spectrum.00814-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular details underlying differences in pathogenicity between Rickettsia species remain to be fully understood. Evidence points to macrophage permissiveness as a key mechanism in rickettsial virulence. Different studies have shown that several rickettsial species responsible for mild forms of rickettsioses can also escape macrophage-mediated killing mechanisms and establish a replicative niche within these cells. However, their manipulative capacity with respect to host cellular processes is far from being understood. A deeper understanding of the interplay between mildly pathogenic rickettsiae and macrophages and the commonalities and specificities of host responses to infection would illuminate differences in immune evasion mechanisms and pathogenicity. We used quantitative proteomics by sequential windowed data independent acquisition of the total high-resolution mass spectra with tandem mass spectrometry (SWATH-MS/MS) to profile alterations resulting from infection of THP-1 macrophages with three mildly pathogenic rickettsiae: Rickettsia parkeri, Rickettsia africae, and Rickettsia massiliae, all successfully proliferating in these cells. We show that all three species trigger different proteome signatures. Our results reveal a significant impact of infection on proteins categorized as type I interferon responses, which here included several components of the retinoic acid-inducible gene I (RIG-1)-like signaling pathway, mRNA splicing, and protein translation. Moreover, significant differences in protein content between infection conditions provide evidence for species-specific induced alterations. Indeed, we confirm distinct impacts on host inflammatory responses between species during infection, demonstrating that these species trigger different levels of beta interferon (IFN-β), differences in the bioavailability of the proinflammatory cytokine interleukin 1β (IL-1β), and differences in triggering of pyroptotic events. This work reveals novel aspects and exciting nuances of macrophage-Rickettsia interactions, adding additional layers of complexity between Rickettsia and host cells' constant arms race for survival. IMPORTANCE The incidence of diseases caused by Rickettsia has been increasing over the years. It has long been known that rickettsioses comprise diseases with a continuous spectrum of severity. There are highly pathogenic species causing diseases that are life threatening if untreated, others causing mild forms of the disease, and a third group for which no pathogenicity to humans has been described. These marked differences likely reflect distinct capacities for manipulation of host cell processes, with macrophage permissiveness emerging as a key virulence trait. However, what defines pathogenicity attributes among rickettsial species is far from being resolved. We demonstrate that the mildly pathogenic Rickettsia parkeri, Rickettsia africae, and Rickettsia massiliae, all successfully proliferating in macrophages, trigger different proteome signatures in these cells and differentially impact critical components of innate immune responses by inducing different levels of beta interferon (IFN-β) and interleukin 1β (IL-1β) and different timing of pyroptotic events during infection. Our work reveals novel nuances in rickettsia-macrophage interactions, offering new clues to understand Rickettsia pathogenicity.
Collapse
|
11
|
The Retropepsin-Type Protease APRc as a Novel Ig-Binding Protein and Moonlighting Immune Evasion Factor of Rickettsia. mBio 2021; 12:e0305921. [PMID: 34872352 PMCID: PMC8649778 DOI: 10.1128/mbio.03059-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Rickettsiae are obligate intracellular Gram-negative bacteria transmitted by arthropod vectors. Despite their reduced genomes, the function(s) of the majority of rickettsial proteins remains to be uncovered. APRc is a highly conserved retropepsin-type protease, suggested to act as a modulator of other rickettsial surface proteins with a role in adhesion/invasion. However, APRc’s function(s) in bacterial pathogenesis and virulence remains unknown. This study demonstrates that APRc targets host serum components, combining nonimmune immunoglobulin (Ig)-binding activity with resistance to complement-mediated killing. We confirmed nonimmune human IgG binding in extracts of different rickettsial species and intact bacteria. Our results revealed that the soluble domain of APRc is capable of binding to human (h), mouse, and rabbit IgG and different classes of human Ig (IgG, IgM, and IgA) in a concentration-dependent manner. APRc-hIgG interaction was confirmed with total hIgG and normal human serum. APRc-hIgG displayed a binding affinity in the micromolar range. We provided evidence of interaction preferentially through the Fab region and confirmed that binding is independent of catalytic activity. Mapping the APRc region responsible for binding revealed the segment between amino acids 157 and 166 as one of the interacting regions. Furthermore, we demonstrated that expression of the full-length protease in Escherichia coli is sufficient to promote resistance to complement-mediated killing and that interaction with IgG contributes to serum resistance. Our findings position APRc as a novel Ig-binding protein and a novel moonlighting immune evasion factor of Rickettsia, contributing to the arsenal of virulence factors utilized by these intracellular pathogens to aid in host colonization.
Collapse
|