1
|
Guan J, Huang X, Zhou Z, Li S, Wang F, Han Y, Yin N. HIF-1α regulates DcR3 to promote the development of endometriosis. Eur J Obstet Gynecol Reprod Biol 2024; 296:185-193. [PMID: 38458034 DOI: 10.1016/j.ejogrb.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the expression and clinical significance of HIF-1α and DcR3 in endometriosis by analysing clinical case data. Tissue samples were collected for tissue chip analysis and staining, and human endometrial stromal cells were isolated and cultured for cell experiments. Additionally, experiments were conducted on collected peritoneal fluid to explore the association and role of HIF-1α and DcR3 in endometriosis. STUDY DESIGN Patients who visited the Department of Obstetrics and Gynaecology at Central Hospital in Fengxian District, Shanghai, from January 2018 to December 2021 were recruited for this controlled study. Clinical data and tissue chip staining results were collected for multiple regression analysis on the clinical significance of HIF-1α and DcR3. Endometrial tissue, ovarian cysts, and pelvic fluid were collected, and human endometrial stromal cells were cultured. The impact of HIF-1α on DcR3 in different oxygen environments and its role in endometriosis were investigated through PCR, Western blotting, enzyme-linked immunosorbent assay, as well as adhesion and migration assays. RESULTS In patients with endometriosis, the expression of DcR3 and HIF-1α was found to be upregulated and correlated in ectopic endometrium. The expression of DcR3 served as an indicator of the severity of endometriosis. Hypoxia induced the expression of DcR3, which was regulated by HIF-1α and promoted migration and adhesion. CONCLUSION DcR3 can be used as a clinical indicator to assess the severity of endometriosis. The hypoxic environment in endometriosis enhances disease progression by regulating DcR3 through HIF-1α.
Collapse
Affiliation(s)
- Jianhua Guan
- Department of Gynecology, Shanghai Fengxian District Central Hospital, Shanghai 201499, China
| | - Xuhong Huang
- Department of Gynecology, Shanghai Fengxian District Central Hospital, Shanghai 201499, China
| | - Ziyang Zhou
- Department of Gynecology, Shanghai Fengxian District Central Hospital, Shanghai 201499, China
| | - Shaojing Li
- Department of Gynecology, Shanghai Fengxian District Central Hospital, Shanghai 201499, China
| | - Fengmian Wang
- Department of Gynecology, Shanghai Fengxian District Central Hospital, Shanghai 201499, China
| | - Yuhong Han
- Department of Gynecology, Shanghai Fengxian District Central Hospital, Shanghai 201499, China
| | - Nuo Yin
- Department of Gynecology, Shanghai Fengxian District Central Hospital, Shanghai 201499, China.
| |
Collapse
|
2
|
Zamudio-Cuevas Y, Martínez-López V, López-Macay A, Montaño-Armendáriz N, Lozada-Pérez CA, Martínez-Flores K, Hernández-Valencia CG, Sánchez-Sánchez R, Gimeno M, Fernández-Torres J. Antiphagocytic Properties of Polygallic Acid with Implications in Gouty Inflammation. Inflammation 2023; 46:1952-1965. [PMID: 37470914 DOI: 10.1007/s10753-023-01852-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023]
Abstract
Polygallic acid (PGAL) has been used in vitro to protect synoviocytes from monosodium urate (MSU) crystals due to its anti-inflammatory properties. However, MSU crystals can also activate other cells of the synovial fluid (SF). We studied the impact of PGAL on the phagocytosis of MSU crystals, inflammation, and oxidative stress using an in vitro model with SF leukocytes and THP-1 monocyte cells. SF leukocytes were stimulated with PGAL and MSU crystals, proinflammatory cytokines and phagocytosis were assessed. In THP-1 cells, the effect of PGAL on the phagocytosis of MSU crystals and the levels of IL-1β, IL-6, TNF-α, and reactive oxygen species (ROS) was evaluated. PGAL was added to THP-1 cultures 24 h before MSU crystal addition as a pre-treatment, and IL-1β was measured. One-way ANOVA with Tukey's post hoc test was performed, and a P value < 0.05 was considered statistically significant. PGAL (100 µg/mL) decreased phagocytosis in SF leukocytes by 14% compared to cells exposed to crystals without PGAL. In THP-1 cells, 100 and 200 µg/mL PGAL reduced phagocytosis by 17% and 15%, respectively. In SF cells, there was a tendency to decrease IL-1β and IL-6. In THP-1 cells, decreases in IL-1β and TNF-α, as well as a slight decrease in ROS, were identified. PGAL pre-treatment resulted in a reduction of IL-1β. PGAL inhibits MSU phagocytosis by exerting an anti-inflammatory effect on cells exposed to crystals. The use of PGAL before an acute attack of gout suggests an important protective factor to control the inflammation.
Collapse
Affiliation(s)
- Yessica Zamudio-Cuevas
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Valentín Martínez-López
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Ambar López-Macay
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Nathalie Montaño-Armendáriz
- División de Reconstrucción Articular de Cadera y Rodilla, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Carlos Alberto Lozada-Pérez
- División de Reumatología, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Karina Martínez-Flores
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Carmen G Hernández-Valencia
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
- Departamento de Alimentos y Biotecnología, Facultad de Química, UNAM, Mexico City, Mexico
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Instituto Tecnólogico de Monterrey, C. Puente No 222, Colonia Arboledas Sur, 14380, Tlalpan, Mexico City, Mexico
| | - Miquel Gimeno
- Departamento de Alimentos y Biotecnología, Facultad de Química, UNAM, Mexico City, Mexico
| | - Javier Fernández-Torres
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico.
| |
Collapse
|
3
|
Dang K, Zhang N, Gao H, Wang G, Liang H, Xue M. Influence of intestinal microecology in the development of gout or hyperuricemia and the potential therapeutic targets. Int J Rheum Dis 2023; 26:1911-1922. [PMID: 37606177 DOI: 10.1111/1756-185x.14888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Gout and hyperuricemia are common metabolic diseases. Patients with purine metabolism disorder and/or decreased uric acid excretion showed increased uric acid levels in the blood. The increase of uric acid in the blood leads to the deposition of urate crystals in tissues, joints, and kidneys, and causes gout. Recent studies have revealed that imbalance of the intestinal microecology is closely related to the occurrence and development of hyperuricemia and gout. Disorder of the intestinal flora often occurs in patients with gout, and high purine and high fructose may induce the disorder of intestinal flora. Short-chain fatty acids and endotoxins produced by intestinal bacteria are closely related to the inflammatory response of gout. This article summarizes the characteristics of intestinal microecology in patients or animal models with hyperuricemia or gout, and explores the relationship between intestinal microecology and gout or hyperuricemia from the aspect of the intestinal barrier, intestinal microorganisms, intestinal metabolites, and intestinal immune system. We also review the current status of hyperuricemia treatment by targeting intestinal microecology.
Collapse
Affiliation(s)
- Kai Dang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haiqi Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guifa Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao, China
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Su J, Tong Z, Wu S, Zhou F, Chen Q. Research Progress of DcR3 in the Diagnosis and Treatment of Sepsis. Int J Mol Sci 2023; 24:12916. [PMID: 37629097 PMCID: PMC10454171 DOI: 10.3390/ijms241612916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Decoy receptor 3 (DcR3), a soluble glycosylated protein in the tumor necrosis factor receptor superfamily, plays a role in tumor and inflammatory diseases. Sepsis is a life-threatening organ dysfunction caused by the dysregulation of the response to infection. Currently, no specific drug that can alleviate or even cure sepsis in a comprehensive and multi-level manner has been found. DcR3 is closely related to sepsis and considerably upregulated in the serum of those patients, and its upregulation is positively correlated with the severity of sepsis and can be a potential biomarker for diagnosis. DcR3 alone or in combination with other markers has shown promising results in the early diagnosis of sepsis. Furthermore, DcR3 is a multipotent immunomodulator that can bind FasL, LIGHT, and TL1A through decoy action, and block downstream apoptosis and inflammatory signaling. It also regulates T-cell and macrophage differentiation and modulates immune status through non-decoy action; therefore, DcR3 could be a potential drug for the treatment of sepsis. The application of DcR3 in the treatment of a mouse model of sepsis also achieved good efficacy. Here, we introduce and discuss the progress in, and suggest novel ideas for, research regarding DcR3 in the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Z.T.); (S.W.); (F.Z.)
| |
Collapse
|
5
|
Zhang WJ, Li KY, Lan Y, Zeng HY, Chen SQ, Wang H. NLRP3 Inflammasome: A key contributor to the inflammation formation. Food Chem Toxicol 2023; 174:113683. [PMID: 36809826 DOI: 10.1016/j.fct.2023.113683] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/04/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Inflammation is an important part of the development of various organ diseases. The inflammasome, as an innate immune receptor, plays an important role in the formation of inflammation. Among various inflammasomes, the NLRP3 inflammasome is the most well studied. The NLRP3 inflammasome is composed of skeletal protein NLRP3, apoptosis-associated speck-like protein (ASC) and pro-caspase-1. There are three types of activation pathways: (1) "classical" activation pathway; (2) "non-canonical" activation pathway; (3) "alternative" activation pathway. The activation of NLRP3 inflammasome is involved in many inflammatory diseases. A variety of factors (such as genetic factors, environmental factors, chemical factors, viral infection, etc.) have been proved to activate NLRP3 inflammasome and promote the inflammatory response of the lung, heart, liver, kidney and other organs in the body. Especially, the mechanism of NLRP3 inflammation and its related molecules in its associated diseases remains not to be summarized, namely they may promote or delay inflammatory diseases in different cells and tissues. This article reviews the structure and function of the NLRP3 inflammasome and its role in various inflammations, including inflammations caused by chemically toxic substances.
Collapse
Affiliation(s)
- Wen-Juan Zhang
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Ke-Yun Li
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Yi Lan
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Han-Yi Zeng
- Department of Genetics, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Shui-Qin Chen
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, PR China.
| |
Collapse
|
6
|
Liu YR, Wang JQ, Li J. Role of NLRP3 in the pathogenesis and treatment of gout arthritis. Front Immunol 2023; 14:1137822. [PMID: 37051231 PMCID: PMC10083392 DOI: 10.3389/fimmu.2023.1137822] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Gout arthritis (GA) is a common and curable type of inflammatory arthritis that has been attributed to a combination of genetic, environmental and metabolic factors. Chronic deposition of monosodium urate (MSU) crystals in articular and periarticular spaces as well as subsequent activation of innate immune system in the condition of persistent hyperuricemia are the core mechanisms of GA. As is well known, drugs for GA therapy primarily consists of rapidly acting anti-inflammatory agents and life-long uric acid lowering agents, and their therapeutic outcomes are far from satisfactory. Although MSU crystals in articular cartilage detected by arthrosonography or in synovial fluid found by polarization microscopy are conclusive proofs for GA, the exact molecular mechanism of NLRP3 inflammasome activation in the course of GA still remains mysterious, severely restricting the early diagnosis and therapy of GA. On the one hand, the activation of Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome requires nuclear factor kappa B (NF-κB)-dependent transcriptional enhancement of NLRP3, precursor (pro)-caspase-1 and pro-IL-1β, as well as the assembly of NLRP3 inflammasome complex and sustained release of inflammatory mediators and cytokines such as IL-1β, IL-18 and caspase-1. On the other hand, NLRP3 inflammasome activated by MSU crystals is particularly relevant to the initiation and progression of GA, and thus may represent a prospective diagnostic biomarker and therapeutic target. As a result, pharmacological inhibition of the assembly and activation of NLRP3 inflammasome may also be a promising avenue for GA therapy. Herein, we first introduced the functional role of NLRP3 inflammasome activation and relevant biological mechanisms in GA based on currently available evidence. Then, we systematically reviewed therapeutic strategies for targeting NLRP3 by potentially effective agents such as natural products, novel compounds and noncoding RNAs (ncRNAs) in the treatment of MSU-induced GA mouse models. In conclusion, our present review may have significant implications for the pathogenesis, diagnosis and therapy of GA.
Collapse
Affiliation(s)
- Ya-ru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Grade 3 Pharmaceutical Chemistry Laboratory, State Administration of Traditional Chinese Medicine, Hefei, China
- *Correspondence: Ya-ru Liu, ; Jun Li,
| | - Jie-quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Ya-ru Liu, ; Jun Li,
| |
Collapse
|
7
|
Xu W, Li F, Zhang X, Wu C, Wang Y, Yao Y, Xia D. The Protective Effects of Neoastilbin on Monosodium Urate Stimulated THP-1-Derived Macrophages and Gouty Arthritis in Mice through NF-κB and NLRP3 Inflammasome Pathways. Molecules 2022; 27:molecules27113477. [PMID: 35684415 PMCID: PMC9181946 DOI: 10.3390/molecules27113477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Gouty arthritis (GA) is a frequent inflammatory disease characterized by pain, swelling, and stiffness of joints. Neoastilbin is a flavonoid isolated from the rhizome of Smilax glabra, which possesses various anti-inflammatory effects. However, the mechanism of neoastilbin in treating GA has not yet been clarified. Thus, this study was to investigate the protective effects of neoastilbin in both monosodium urate (MSU) stimulated THP-1-derived macrophages and the animal model of GA by injecting MSU into the ankle joints of mice. The levels of key inflammatory cytokines in MSU stimulated THP-1-derived macrophages were detected by enzyme-linked immunosorbent assay (ELISA) kits. Protein expressions of nuclear factor kappa B (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome pathways were further detected by Western blotting. In addition, swelling degree of ankle joints, the levels of inflammatory factors, infiltration of inflammatory cells and the expressions of related proteins were determined. Swelling degree and histopathological injury in ankle joints of MSU-injected mice were significantly decreased after being treated with neoastilbin. Moreover, neoastilbin significantly diminished the secretion of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), suppressing the activation of NF-κB and NLRP3 inflammasome pathways in both MSU stimulated THP-1-derived macrophages and the mouse model of GA. In summary, neoastilbin could alleviate GA by inhibiting the NF-κB and NLRP3 inflammasome pathways, which provided some evidence for neoastilbin as a promising therapeutic agent for GA treatment.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.X.); (F.L.); (C.W.); (Y.W.); (Y.Y.)
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.X.); (F.L.); (C.W.); (Y.W.); (Y.Y.)
| | - Xiaoxi Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.X.); (F.L.); (C.W.); (Y.W.); (Y.Y.)
| | - Yan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.X.); (F.L.); (C.W.); (Y.W.); (Y.Y.)
| | - Yanjing Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.X.); (F.L.); (C.W.); (Y.W.); (Y.Y.)
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.X.); (F.L.); (C.W.); (Y.W.); (Y.Y.)
- Correspondence: ; Tel./Fax: +86-571-86633361
| |
Collapse
|
8
|
Zhao J, Wei K, Jiang P, Chang C, Xu L, Xu L, Shi Y, Guo S, Xue Y, He D. Inflammatory Response to Regulated Cell Death in Gout and Its Functional Implications. Front Immunol 2022; 13:888306. [PMID: 35464445 PMCID: PMC9020265 DOI: 10.3389/fimmu.2022.888306] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 02/03/2023] Open
Abstract
Gout, a chronic inflammatory arthritis disease, is characterized by hyperuricemia and caused by interactions between genetic, epigenetic, and metabolic factors. Acute gout symptoms are triggered by the inflammatory response to monosodium urate crystals, which is mediated by the innate immune system and immune cells (e.g., macrophages and neutrophils), the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation, and pro-inflammatory cytokine (e.g., IL-1β) release. Recent studies have indicated that the multiple programmed cell death pathways involved in the inflammatory response include pyroptosis, NETosis, necroptosis, and apoptosis, which initiate inflammatory reactions. In this review, we explore the correlation and interactions among these factors and their roles in the pathogenesis of gout to provide future research directions and possibilities for identifying potential novel therapeutic targets and enhancing our understanding of gout pathogenesis.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
9
|
Wang Y, Ma G, Wang XF, Na L, Guo X, Zhang J, Liu C, Du C, Qi T, Lin Y, Wang X. Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense. PLoS Pathog 2022; 18:e1009986. [PMID: 35139135 PMCID: PMC8863222 DOI: 10.1371/journal.ppat.1009986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/22/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing strategies for combating EIAV infection.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guanqin Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xing Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiaqi Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Qi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuezhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
10
|
Chiu LY, Huang DY, Lin WW. PARP-1 regulates inflammasome activity by poly-ADP-ribosylation of NLRP3 and interaction with TXNIP in primary macrophages. Cell Mol Life Sci 2022; 79:108. [PMID: 35098371 PMCID: PMC8801414 DOI: 10.1007/s00018-022-04138-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) plays an essential role in DNA repair by catalyzing the polymerization of ADP-ribose unit to target proteins. Several studies have shown that PARP-1 can regulate inflammatory responses in various disease models. The intracellular Nod-like receptor NLRP3 has emerged as the most crucial innate immune receptor because of its broad specificity in mediating immune response to pathogen invasion and danger signals associated with cellular damage. In our study, we found NLRP3 stimuli-induced caspase-1 maturation and IL-1β production were impaired by PARP-1 knockout or PARP-1 inhibition in bone marrow-derived macrophages (BMDM). The step 1 signal of NLRP3 inflammasome activation was not affected by PARP-1 deficiency. Moreover, ATP-induced cytosolic ROS production was lower in Parp-1-/- BMDM, resulting in the decreased inflammasome complex assembly. PARP-1 can translocate to cytosol upon ATP stimulation and trigger the PARylation modification on NLRP3, leading to NLRP3 inflammasome assembly. PARP-1 was also a bridge between NLRP3 and thioredoxin-interacting protein (TXNIP) and participated in NLRP3/TXNIP complex formation for inflammasome activation. Overall, PARP-1 positively regulates NLRP3 inflammasome activation via increasing ROS production and interaction with TXNIP and NLRP3, leading to PARylation of NLRP3. Our data demonstrate a novel regulatory mechanism for NLRP3 inflammasome activation by PARP-1. Therefore, PARP-1 can serve as a potential target in the treatment of IL-1β associated inflammatory diseases.
Collapse
Affiliation(s)
- Ling-Ya Chiu
- Department of Pharmacology, College of Medicine, National Taiwan University, Rm. 1119, 11F., No. 1, Sec. 1, Ren Ai Rd., Zhongzheng Dist., Taipei, 100, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Rm. 1119, 11F., No. 1, Sec. 1, Ren Ai Rd., Zhongzheng Dist., Taipei, 100, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Rm. 1119, 11F., No. 1, Sec. 1, Ren Ai Rd., Zhongzheng Dist., Taipei, 100, Taiwan.
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|