1
|
Zhang X, Liu J, Li X, Zheng G, Wang T, Sun H, Huang Z, He J, Qiu J, Zhao Z, Guo Y, He Y. Blocking the HIF-1α/glycolysis axis inhibits allergic airway inflammation by reducing ILC2 metabolism and function. Allergy 2024. [PMID: 39462230 DOI: 10.1111/all.16361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND The role of lung group 2 innate lymphoid cell (ILC2) activation in allergic asthma is increasingly established. However, the regulatory mechanisms underlying hypoxia-inducible factor-1α (HIF-1α)-mediated glycolysis in ILC2-mediated allergic airway inflammation remain unclear. OBJECTIVE To investigate the role of the HIF-1α/glycolysis axis in ILC2-mediated allergic airway inflammation. METHODS Glycolysis and HIF-1α inhibitors were used to identify their effect on the function and glucose metabolism of mouse and human ILC2s in vivo and vitro. Blocking glycolysis and HIF-1α in mice under interleukin-33 (IL-33) stimulation were performed to test ILC2 responses. Conditional HIF-1α-deficient mice were used to confirm the specific role of HIF-1α in ILC2-driven airway inflammation models. Transcriptomic, metabolic, and chromatin immunoprecipitation analyses were performed to elucidate the underlying mechanism. RESULTS HIF-1α is involved in ILC2 metabolism and is crucial in allergic airway inflammation. Single-cell sequencing data analysis and qPCR confirmation revealed a significant upregulation of glycolysis-related genes, particularly HIF-1α, in murine lung ILC2s after IL-33 intranasal administration or injection. Treatment with the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) and the HIF-1α inhibitor 2-methoxyestradiol (2-ME) abrogated inflammation by suppressing ILC2s function. Conditional HIF-1α-deficient mice showed reduced ILC2 response and airway inflammation induced upon IL-33 or house dust mite (HDM) stimulation. Transcriptome and metabolic analyses revealed significantly impaired glycolysis in lung ILC2s in conditional HIF-1α knockout mice compared to that in their littermate controls. Chromatin immunoprecipitation results confirmed the transcriptional downregulation of glycolysis-related genes in HIF-1α-knockout and 2-DG-treated mice. Furthermore, impaired HIF-1α/glycolysis axis activation is correlated with downregulated ILC2 in patients with asthma. CONCLUSION The HIF-1α/glycolysis axis is critical for controlling ILC2 responses in allergic airway inflammation and has potential immunotherapeutic value in asthma.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Jingping Liu
- Department of Clinical Laboratory, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guilang Zheng
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tianci Wang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hengbiao Sun
- Department of Clinical Laboratory, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhengcong Huang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junyu He
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhibin Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yumei He
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Clinical Laboratory, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Zhao F, Gong W, Song J, Shen Z, Cui D. The paradoxical role of MDSCs in inflammatory bowel diseases: From bench to bedside. Front Immunol 2022; 13:1021634. [PMID: 36189262 PMCID: PMC9520533 DOI: 10.3389/fimmu.2022.1021634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of bone marrow derived heterogeneous cells, which is known for their immunosuppressive functions especially in tumors. Recently, MDSCs have receiving increasing attention in pathological conditions like infection, inflammation and autoimmune diseases. Inflammatory bowel diseases (IBD) are a series of immune-dysfunctional autoimmune diseases characterized by relapsing intestinal inflammation. The role of MDSCs in IBD remains controversial. Although most studies in vitro demonstrated its anti-inflammatory effects by inhibiting the proliferation and function of T cells, it was reported that MDSCs failed to relieve inflammation but even promoted inflammatory responses in experimental IBD. Here we summarize recent insights into the role of MDSCs in the development of IBD and the potential of MDSCs-targeted therapy.
Collapse
Affiliation(s)
- Fan Zhao
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbin Gong
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaojiao Song
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhe Shen, ; Dawei Cui,
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhe Shen, ; Dawei Cui,
| |
Collapse
|
3
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
4
|
Sehgal A, Behl T, Singh S, Sharma N, Albratty M, Alhazmi HA, Meraya AM, Aleya L, Sharma A, Bungau S. Exploring the pivotal role of endothelin in rheumatoid arthritis. Inflammopharmacology 2022; 30:1555-1567. [PMID: 36029362 DOI: 10.1007/s10787-022-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022]
Abstract
A chronic inflammatory disorder, rheumatoid arthritis (RA) is an autoimmune and systemic disease characterized by progressive and prolonged destruction of joints. This results in increased mortality, physical disability and destruction. Cardiovascular disorders are one of the primary causes of mortality in patients with RA. It is multifactorial in nature and includes genetic, environmental and demographic factors which contribute to the severity of disease. Endothelin-1 (ET-1) is a peptide which acts as a potent vasoconstrictor and is generated through vascular smooth muscle and endothelial cells. Endothelins may be responsible for RA, as under certain circumstances they produce reactive oxygen species which further promote the production of pro-inflammatory cytokines. This enhances the production of superoxide anion, which activates pro-inflammatory cytokines, resulting in RA. The aim of this review is to elucidate the role of endothelin in the progression of RA. This review also summarizes the natural and synthetic anti-inflammatory drugs which have provided remarkable insights in targeting endothelin.
Collapse
Affiliation(s)
- Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.,Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.,Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
5
|
Chen Z, Zhang X, Xing Z, Lv S, Huang L, Liu J, Ye S, Li X, Chen M, Zuo S, Tao Y, He Y. OLFM4 deficiency delays the progression of colitis to colorectal cancer by abrogating PMN-MDSCs recruitment. Oncogene 2022; 41:3131-3150. [PMID: 35487976 DOI: 10.1038/s41388-022-02324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/09/2022]
Abstract
Chronic inflammatory bowel disease (IBD) is strongly associated with the development of colitis-associated tumorigenesis (CAT). Despite recent advances in the understanding of polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) responses in cancer, the mechanisms of these cells during this process remain largely uncharacterized. Here, we discovered a glycoprotein, olfactomedin-4 (OLFM4), was highly expressed in PMN-MDSCs from colitis to colorectal cancer (CRC), and its expression level and PMN-MDSC population positively correlated with the progression of IBD to CRC. Moreover, mice lacking OLFM4 in myeloid cells showed poor recruitment of PMN-MDSCs, impaired intestinal homeostasis, and delayed development from IBD to CRC, and increased response to anti-PD1 therapy. The main mechanism of OLFM4-mediated PMN-MDSC activity involved the NF-κB/PTGS2 pathway, through the binding of LGALS3, a galactoside-binding protein expressed on PMN-MDSCs. Our results showed that the OLFM4/NF-κB/PTGS2 pathway promoted PMN-MDSC recruitment, which played an essential role in the maintenance of intestinal homeostasis, but showed resistance to anti-PD1 therapy in CRC.
Collapse
Affiliation(s)
- Ziyang Chen
- Department of Neurosurgery, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaogang Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhe Xing
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuaijun Lv
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Linxuan Huang
- Dongguan Institute of Clinical Cancer Research, Department of Medical Oncology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Jingping Liu
- Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Shubiao Ye
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiqi Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaowen Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yingxu Tao
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yumei He
- Department of Neurosurgery, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China. .,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Zhang X, Chen Z, Zuo S, Sun H, Li X, Lu X, Xing Z, Chen M, Liu J, Xiao G, He Y. Endothelin-A Receptor Antagonist Alleviates Allergic Airway Inflammation via the Inhibition of ILC2 Function. Front Immunol 2022; 13:835953. [PMID: 35222426 PMCID: PMC8873101 DOI: 10.3389/fimmu.2022.835953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Allergic airway inflammation is a universal airway disease that is driven by hyperresponsiveness to inhaled allergens. Group 2 innate lymphoid cells (ILC2s) produce copious amounts of type 2 cytokines, which lead to allergic airway inflammation. Here, we discovered that both peripheral blood of human and mouse lung ILC2s express the endothelin-A receptor (ETAR), and the expression level of ETAR was dramatically induced upon interleukin-33 (IL-33) treatment. Subsequently, both preventive and therapeutic effects of BQ123, an ETAR antagonist, on allergic airway inflammation were observed, which were associated with decreased proliferation and type 2 cytokine productions by ILC2s. Furthermore, ILC2s from BQ123 treatment were found to be functionally impaired in response to an interleukin IL-33 challenged. And BQ123 treatment also affected the phosphorylation level of the extracellular signal-regulated kinase (ERK), as well as the level of GATA binding protein 3 (GATA3) in activated ILC2s. Interestingly, after BQ123 treatment, both mouse and human ILC2s in vitro exhibited decreased function and downregulation of ERK signaling and GATA3 stability. These observations imply that ETAR is an important regulator of ILC2 function and may be involved in ILC2-driven pulmonary inflammation. Therefore, blocking ETAR may be a promising therapeutic strategy for allergic airway inflammation.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ziyang Chen
- Department of Neurosurgery Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shaowen Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hengbiao Sun
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhe Xing
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiqi Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingping Liu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Gang Xiao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Yumei He
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Li X, Liu J, Xing Z, Tang J, Sun H, Zhang X, Lv S, Chen Z, Shi M, Chen M, Zuo S, Lyu X, He Y. Polymorphonuclear myeloid-derived suppressor cells link inflammation and damage response after trauma. J Leukoc Biol 2021; 110:1143-1161. [PMID: 34636072 DOI: 10.1002/jlb.3ma0821-029r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Elimination of the posttraumatic inflammatory response and recovery of homeostasis are crucial for the positive prognosis of trauma patients. Myeloid-derived suppressor cells (MDSCs) are known to play a regulatory role in the posttraumatic immune response in mice, but their induction source and involved potential mechanism are poorly understood. Here, we report that polymorphonuclear MDSCs (PMN-MDSCs) are activated after trauma and are closely associated with the progression of the posttraumatic inflammatory response. In humans, lectin-type oxidized LDL receptor 1 (LOX1) was used to specifically characterize LOX1+ PMN-MDSCs. Trauma patients showed high intracellular reactive oxygen species (ROS) production, as well as activation of LOX1+ PMN-MDSCs. These MDSCs contribute to the anti-inflammatory immune response by regulating the Treg/Th17 and Th2/Th1 balances after trauma, increasing the levels of anti-inflammatory factors, and decreasing the levels of proinflammatory factors. The number of LOX1+ PMN-MDSCs was positively correlated with the positive clinical prognosis of trauma patients with infection. Activation of LOX1+ PMN-MDSCs is mediated by NF-κB signal, and TGF-β1 may be as an important inducer for LOX1+ PMN-MDSCs in the posttraumatic cytokine environment. In a pseudofracture trauma mouse model, we also observed the activation of PMN-MDSCs, accompanying high levels of intracellular ROS production, NF-κB phosphorylation, and changes in the inflammatory environment, in particularly by regulating the Treg/Th17 and Th2/Th1 balance. And more significantly, posttraumatic inflammation was alleviated in mice after transferring trauma-derived PMN-MDSCs, but aggravated after injecting with Gr1 agonistic antibody. These findings provide evidence for the specific role of PMN-MDSCs in the regulation of posttraumatic inflammation.
Collapse
Affiliation(s)
- Xinyao Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingping Liu
- Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Zhe Xing
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Tang
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hengbiao Sun
- Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xiaogang Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuaijun Lv
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ziyang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mengyu Shi
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiqi Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaowen Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Yumei He
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| |
Collapse
|