1
|
Yang X, Zhangyi Z, Yu A, Zhou Q, Xia A, Qiu J, Cai M, Chu X, Li L, Feng Z, Luo Z, Sun G, Zhang J, Geng M, Chen S, Xie Z. GV-971 attenuates the progression of neuromyelitis optica in murine models and reverses alterations in gut microbiota and associated peripheral abnormalities. CNS Neurosci Ther 2024; 30:e14847. [PMID: 38973196 PMCID: PMC11228355 DOI: 10.1111/cns.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
AIMS Growing evidence suggests that an imbalanced gut microbiota composition plays a crucial role in the development of neuromyelitis optica spectrum disorders (NMOSD), an inflammatory demyelinating disease primarily affecting the optic nerves and central nervous system (CNS). In light of this, we explored the potential therapeutic benefits of GV-971 in NMOSD. GV-971 is a drug used for treating mild-to-moderate Alzheimer's disease, which targets the gut-brain axis and reduces neuroinflammation. METHODS To evaluate GV-971's effects, we employed the experimental autoimmune encephalomyelitis (EAE) mouse model to establish NMOSD animal models. This was achieved by injecting NMO-IgG into aged mice (11 months old) or using NMO-IgG along with complement injection and microbubble-enhanced low-frequency ultrasound (MELFUS) techniques in young mice (7 weeks old). We assessed the impact of GV-971 on incidence rate, clinical scores, body weight, and survival, with methylprednisolone serving as a positive control. In NMOSD models of young mice, we analyzed spinal cord samples through H&E staining, immunohistochemistry, and Luxol Fast Blue staining. Fecal samples collected at different time points underwent 16S rRNA gene sequencing, while plasma samples were analyzed using cytokine array and untargeted metabolomics analysis. RESULTS Our findings indicated that GV-971 significantly reduced the incidence of NMOSD, alleviated symptoms, and prolonged survival in NMOSD mouse models. The NMOSD model exhibited substantial neuroinflammation and injury, accompanied by imbalances in gut microbiota, peripheral inflammation, and metabolic disorders, suggesting a potentially vicious cycle that accelerates disease pathogenesis. Notably, GV-971 effectively reduces neuroinflammation and injury, and restores gut microbiota composition, as well as ameliorates peripheral inflammation and metabolic disorders. CONCLUSIONS GV-971 attenuates the progression of NMOSD in murine models and reduces neuroinflammation and injury, likely through its effects on remodeling gut microbiota and peripheral inflammation and metabolic disorders.
Collapse
Affiliation(s)
- Xinying Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Zhongheng Zhangyi
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aisong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aihua Xia
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Ji Qiu
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Meixiang Cai
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Xingkun Chu
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Liang Li
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Zhengnan Feng
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Zhiyu Luo
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Guangqiang Sun
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Jing Zhang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Miao Y, Shi Z, Zhang W, Zhu L, Tang S, Chen H, Wang X, Du Q, Li S, Zhang Y, Luo W, Jin X, Fang M, Zhou H. Immune Repertoire Profiling Reveals Its Clinical Application Potential and Triggers for Neuromyelitis Optica Spectrum Disorders. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200134. [PMID: 37414573 DOI: 10.1212/nxi.0000000000200134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/27/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Neuromyelitis optica spectrum disorders (NMOSD) is widely recognized as a CNS demyelinating disease associated with AQP4-IgG (T cell-dependent antibody), and its trigger is still unclear. In addition, although the treatment of NMOSD currently can rely on traditional immunosuppressive and modulating agents, effective methods to predict the efficacy of these therapeutics are lacking. METHODS In this study, high-throughput T-cell receptor (TCR) sequencing was performed on peripheral blood from 151 pretreatment patients with AQP4-IgG+ NMOSD and 151 healthy individuals. We compared the TCR repertoire of those with NMOSD with that of healthy individuals and identified TCR clones that were significantly enriched in NMOSD. In addition, we treated 28 patients with AQP4-IgG+ NMOSD with immunosuppressants and followed up for 6 months to compare changes in NMOSD-specific TCRs (NMOSD-TCRs) before and after treatment. Moreover, we analyzed transcriptome and single-cell B-cell receptor (BCR) data from public databases and performed T-cell activation experiments using antigenic epitopes of cytomegalovirus (CMV) to further explore the triggers of AQP4-IgG+ NMOSD. RESULTS Compared with healthy controls, patients with AQP4-IgG+ NMOSD had significantly reduced diversity and shorter CDR3 length of TCRβ repertoire. Furthermore, we identified 597 NMOSD-TCRs with a high sequence similarity that have the potential to be used in the diagnosis and prognosis of NMOSD. The characterization of NMOSD-TCRs and pathology-associated clonotype annotation indicated that the occurrence of AQP4-IgG+ NMOSD may be associated with CMV infection, which was further corroborated by transcriptome and single-cell BCR analysis results from public databases and T-cell activation experiments. DISCUSSION Our findings suggest that the occurrence of AQP4-IgG+ NMOSD may be associated with CMV infection. In conclusion, our study provides new clues to uncover the causative factors of AQP4-IgG+ NMOSD and provides a theoretical foundation for treating and monitoring the disease.
Collapse
Affiliation(s)
- Yu Miao
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Ziyan Shi
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Wei Zhang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Lin Zhu
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Shanshan Tang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Hongxi Chen
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Xiaofei Wang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Qin Du
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| | - Shuaicheng Li
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| | - Ying Zhang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Wenqin Luo
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Xin Jin
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| | - Mingyan Fang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| | - Hongyu Zhou
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| |
Collapse
|
3
|
Liu T, Li L, Guo X, Li Q, Jia D, Ma L. Clinical analysis of neuromyelitis optica spectrum disease with area postrema syndrome as the initial symptom. Eur J Med Res 2022; 27:315. [PMID: 36582004 PMCID: PMC9798654 DOI: 10.1186/s40001-022-00949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The objective of this study was to report and discuss clinical analysis, including the diagnosis and treatment of 4 cases of neuromyelitis optica spectrum disease (NMOSD) with area postrema syndrome (APS) as the first symptom. METHODS Four patients with intractable nausea, vomiting, and confirmed NMOSD were included in the final analysis. All of these patients were initially misdiagnosed and mismanaged. RESULTS Among the 4 patients, 3 were admitted to the department of gastroenterology at the onset of the disease, and 2 were not correctly diagnosed and treated promptly due to misdiagnosis. Therefore, their symptoms worsened, and they were transferred to Intensive Care Unit (ICU) for life support. No obvious early medulla lesions were found in one patient. One patient was treated with intravenous immunoglobulin, methylprednisolone, and plasma exchange, but there was no significant clinical improvement, after which the disease relapsed during the treatment with low-dose rituximab. CONCLUSION The clinical manifestations of NMOSD are complex and diverse, and the initial symptoms, onset age of the patient, and magnetic resonance imaging (MRI) findings can influence the final diagnosis. Early identification of the APS and timely therapy can prevent visual and physical disabilities, even respiratory failure, coma, and cardiac arrest. Therefore, it is necessary to identify specific and sensitive serum and imaging markers for predicting the prognosis and recurrence of the disease.
Collapse
Affiliation(s)
- Ting Liu
- grid.443397.e0000 0004 0368 7493Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan China
| | - Lijuan Li
- grid.443397.e0000 0004 0368 7493Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan China
| | - Xiaopeng Guo
- grid.443397.e0000 0004 0368 7493Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan China
| | - Qifu Li
- grid.443397.e0000 0004 0368 7493Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan China
| | - Dandan Jia
- grid.443397.e0000 0004 0368 7493Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan China
| | - Lin Ma
- grid.443397.e0000 0004 0368 7493Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan China
| |
Collapse
|
4
|
Cai L, Shi Z, Chen H, Du Q, Zhang Y, Zhao Z, Wang J, Lang Y, Kong L, Zhou H. Relationship between the Clinical Characteristics in Patients with Neuromyelitis Optica Spectrum Disorders and Clinical Immune Indicators: A Retrospective Study. Brain Sci 2022; 12:brainsci12030372. [PMID: 35326328 PMCID: PMC8946705 DOI: 10.3390/brainsci12030372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Objective: T lymphocytes, complement, and immunoglobulin play an important role in neuromyelitis optica spectrum disorders (NMOSD). As common clinical examination indicators, they have been used as routine indicators in many hospitals, which is convenient for being carried out in clinical work, but there are few articles of guiding significance for clinical practice. The purpose of this study was to study the relationship between commonly used immune indicators and clinical characteristics in patients with NMOSD. Methods: We compared clinical characteristics and clinical immune indicators in 258 patients with NMOSD and 200 healthy controls (HCs). We used multiple linear regression to study the relationship between immunotherapy, disease phase, sex, age, AQP4-IgG, and immune indicators. In addition, lymphocyte subsets were compared before and after immunotherapy in 24 of the 258 patients. We explored the influencing factors and predictors of severe motor disability. Results: The percentages of CD3 ratio (71.4% vs. 73.8%, p = 0.013), CD4 ratio (38.8% vs. 42.2%, p < 0.001), and CD4/CD8 ratio (1.43 vs. 1.66, p < 0.001) in NMOSD patients were significantly lower than those in the HC group. In addition, complement C4 (0.177 g/L vs. 0.221 g/L, p < 0.001) and peripheral blood IgG (10.95 g/L vs. 11.80 g/L, p = 0.026) in NMOSD patients were significantly lower than those in the HC group. CD3 percentage was correlated with blood collection age and disease stage; CD8 percentage was correlated with blood collection age, disease stage, and treatment; CD4/CD8 percentage was correlated with blood collection age and treatment; complement C4 was correlated with blood collection age and sex; and IgG was correlated with disease stage and treatment. Twenty-four patients before and after treatment showed that the percentages of CD3 ratio (74.8% vs. 66.7%, p = 0.001) and CD8 ratio (32.4% vs. 26.2%, p < 0.001) after treatment in NMOSD patients were significantly increased, and the percentage of CD3 before treatment was moderately negatively correlated with ARR (r = −0.507, p = 0.011). Binary logistic regression analysis showed that peripheral blood complement C3 is a serious influencing factor for severe motor disability (EDSS score ≥ 6 points). Peripheral blood complement C3 and C4 are predictors of severe motor disability (p < 0.05). Conclusion: Our results suggest that peripheral blood T lymphocytes, C3, C4 and immunoglobulin are convenient and routine clinical indicators that are convenient for implementation in clinical work. They have certain reference values for disease staging, recurrence, drug efficacy, and motor disability. They have improved our understanding of clinical immune indicators for NMOSD patients, but whether they can be used as biomarkers for clinical prognosis remains to be further studied.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hongyu Zhou
- Correspondence: ; Tel./Fax: +86-28-8542-2892
| |
Collapse
|