1
|
Bar O, Porgador A, Cooks T. Exploring the potential of the convergence between extracellular vesicles and CAR technology as a novel immunotherapy approach. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70011. [PMID: 39328262 PMCID: PMC11424882 DOI: 10.1002/jex2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Cancer therapy is a dynamically evolving field, witnessing the emergence of innovative approaches that offer a promising outlook for patients grappling with persistent disease. Within the realm of therapeutic exploration, chimeric antigen receptor (CAR) T cells as well as CAR NK cells, have surfaced as novel approaches, each possessing unique attributes and transformative potential. Immune cells engineered to express CARs recognizing tumour-specific antigens, have shown remarkable promise in treating terminal cancers by combining the precision of antibody specificity with the potent cytotoxic function of T cells. However, their application in solid tumours is still in its nascent stages, presenting unique major challenges. On the same note, CAR NK cells offer a distinct immunotherapeutic approach, utilizing CARs on NK cells, providing advantages in safety, manufacturing simplicity, and a broader scope for cancer treatment. Extracellular vesicles (EVs) have emerged as promising therapeutic agents due to their ability to carry crucial biomarkers and biologically active molecules, serving as vital messengers in the intercellular communication network. In the context of cancer, the therapeutic potential of EVs lies in delivering tumour-suppressing proteins, nucleic acid components, or targeting drugs with precision, thereby redefining the paradigm of precision medicine. The fusion of CAR technology with the capabilities of EVs has given rise to a new therapeutic frontier. CAR T EVs and CAR NK EVs, leveraging the power of EVs, have the potential to alleviate challenges associated with live-cell therapies. EVs are suggested to reduce the side effects linked to CAR T cell therapy and hold the potential to revolutionize the penetrance in solid tumours. EVs act as carriers of pro-apoptotic molecules and RNA components, enhancing immune responses and thereby expanding their therapeutic potential. In this review article, we navigate dynamic landscapes, with our objective being to evaluate comparative efficacy, safety profiles, manufacturing complexities, and clinical applicability.
Collapse
Affiliation(s)
- Ofir Bar
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University Beer-Sheva Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University Beer-Sheva Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University Beer-Sheva Israel
| |
Collapse
|
2
|
Sokolov D, Gorshkova A, Tyshchuk E, Grebenkina P, Zementova M, Kogan I, Totolian A. Large Extracellular Vesicles Derived from Natural Killer Cells Affect the Functions of Monocytes. Int J Mol Sci 2024; 25:9478. [PMID: 39273424 PMCID: PMC11395174 DOI: 10.3390/ijms25179478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Communication between natural killer cells (NK cells) and monocytes/macrophages may play an important role in immunomodulation and regulation of inflammatory processes. The aim of this research was to investigate the impact of NK cell-derived large extracellular vesicles on monocyte function because this field is understudied. We studied how NK-cell derived large extracellular vesicles impact on THP-1 cells characteristics after coculturing: phenotype, functions were observed with flow cytometry. In this study, we demonstrated the ability of large extracellular vesicles produced by NK cells to integrate into the membranes of THP-1 cells and influence the viability, phenotype, and functional characteristics of the cells. The results obtained demonstrate the ability of large extracellular vesicles to act as an additional component in the immunomodulatory activity of NK cells in relation to monocytes.
Collapse
Affiliation(s)
- Dmitry Sokolov
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Alina Gorshkova
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
| | - Elizaveta Tyshchuk
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Polina Grebenkina
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Maria Zementova
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Igor Kogan
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
| | - Areg Totolian
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| |
Collapse
|
3
|
Gambardella AR, Antonucci C, Zanetti C, Noto F, Andreone S, Vacca D, Pellerito V, Sicignano C, Parrottino G, Tirelli V, Tinari A, Falchi M, De Ninno A, Businaro L, Loffredo S, Varricchi G, Tripodo C, Afferni C, Parolini I, Mattei F, Schiavoni G. IL-33 stimulates the anticancer activities of eosinophils through extracellular vesicle-driven reprogramming of tumor cells. J Exp Clin Cancer Res 2024; 43:209. [PMID: 39061080 PMCID: PMC11282757 DOI: 10.1186/s13046-024-03129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Immune cell-derived extracellular vesicles (EV) affect tumor progression and hold promise for therapeutic applications. Eosinophils are major effectors in Th2-related pathologies recently implied in cancer. Here, we evaluated the anti-tumor activities of eosinophil-derived EV following activation with the alarmin IL-33. We demonstrate that IL-33-activated mouse and human eosinophils produce higher quantities of EV with respect to eosinophils stimulated with IL-5. Following incorporation of EV from IL-33-activated eosinophils (Eo33-EV), but not EV from IL-5-treated eosinophils (Eo5-EV), mouse and human tumor cells increased the expression of cyclin-dependent kinase inhibitor (CDKI)-related genes resulting in cell cycle arrest in G0/G1, reduced proliferation and inhibited tumor spheroid formation. Moreover, tumor cells incorporating Eo33-EV acquired an epithelial-like phenotype characterized by E-Cadherin up-regulation, N-Cadherin downregulation, reduced cell elongation and migratory extent in vitro, and impaired capacity to metastasize to lungs when injected in syngeneic mice. RNA sequencing revealed distinct mRNA signatures in Eo33-EV and Eo5-EV with increased presence of tumor suppressor genes and enrichment in pathways related to epithelial phenotypes and negative regulation of cellular processes in Eo33-EV compared to Eo5-EV. Our studies underscore novel IL-33-stimulated anticancer activities of eosinophils through EV-mediated reprogramming of tumor cells opening perspectives on the use of eosinophil-derived EV in cancer therapy.
Collapse
Affiliation(s)
| | - Caterina Antonucci
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Cristiana Zanetti
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Francesco Noto
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Davide Vacca
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Valentina Pellerito
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Chiara Sicignano
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Giuseppe Parrottino
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | | | - Antonella Tinari
- National Center for Gender Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore Di Sanità, Rome, Italy
| | - Adele De Ninno
- CNR-IFN Institute for Photonics and Nanotechnologies, Rome, Italy
| | - Luca Businaro
- CNR-IFN Institute for Photonics and Nanotechnologies, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, 80131, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, 80131, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, 80131, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, 80131, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore Di Sanità, Rome, Italy
| | - Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
- Laboratory of Molecular Medicine and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy.
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy.
| |
Collapse
|
4
|
Chen Y, Tang S, Cai F, Wan Y. Strategies for Small Extracellular Vesicle-Based Cancer Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0421. [PMID: 39040921 PMCID: PMC11260559 DOI: 10.34133/research.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed vesicles released by cells. EVs encapsulate proteins and nucleic acids of their parental cell and efficiently deliver the cargo to recipient cells. These vesicles act as mediators of intercellular communication and thus play a crucial role in various physiological and pathological processes. Moreover, EVs hold promise for clinical use. They have been explored as drug delivery vehicles, therapeutic agents, and targets for disease diagnosis. In the landscape of cancer research, while strides have been made in EV-focused cancer physiopathology, liquid biopsy, and drug delivery, the exploration of EVs as immunotherapeutic agents may not have seen substantial progress to date. Despite promising findings reported in cell and animal studies, the clinical translation of EV-based cancer immunotherapeutics encounters challenges. Here, we review the existing strategies used in EV-based cancer immunotherapy, aiming to propel the development of this emerging yet crucial field.
Collapse
Affiliation(s)
- Yundi Chen
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering,
Binghamton University, Binghamton, NY, USA
| | - Shasha Tang
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
| | - Fengfeng Cai
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering,
Binghamton University, Binghamton, NY, USA
| |
Collapse
|
5
|
Tayanloo-Beik A, Eslami A, Sarvari M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezaei-Tavirani M, Mafi AR, Larijani B, Arjmand B. Extracellular vesicles and cancer stem cells: a deadly duo in tumor progression. Oncol Rev 2024; 18:1411736. [PMID: 39091989 PMCID: PMC11291337 DOI: 10.3389/or.2024.1411736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
The global incidence of cancer is increasing, with estimates suggesting that there will be 26 million new cases and 17 million deaths per year by 2030. Cancer stem cells (CSCs) and extracellular vesicles (EVs) are key to the resistance and advancement of cancer. They play a crucial role in tumor dynamics and resistance to therapy. CSCs, initially discovered in acute myeloid leukemia, are well-known for their involvement in tumor initiation, progression, and relapse, mostly because of their distinct characteristics, such as resistance to drugs and the ability to self-renew. EVs, which include exosomes, microvesicles, and apoptotic bodies, play a vital role in facilitating communication between cells within the tumor microenvironment (TME). They have a significant impact on cellular behaviors and contribute to genetic and epigenetic changes. This paper analyzes the mutually beneficial association between CSCs and EVs, emphasizing their role in promoting tumor spread and developing resistance mechanisms. This review aims to investigate the interaction between these entities in order to discover new approaches for attacking the complex machinery of cancer cells. It highlights the significance of CSCs and EVs as crucial targets in the advancement of novel cancer treatments, which helps stimulate additional research, promote progress in ideas for cancer treatment, and provide renewed optimism in the effort to reduce the burden of cancer.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Eslami
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, Aja University of medical sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Biondi A, Vacante M, Catania R, Sangiorgio G. Extracellular Vesicles and Immune System Function: Exploring Novel Approaches to Colorectal Cancer Immunotherapy. Biomedicines 2024; 12:1473. [PMID: 39062046 PMCID: PMC11275211 DOI: 10.3390/biomedicines12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the emerging role of extracellular vesicles (EVs) in modulating immune system function and their application in novel cancer immunotherapy strategies, with a focus on colorectal cancer (CRC). EVs, as carriers of bioactive molecules, have shown potential in enhancing immune responses and overcoming the limitations of traditional therapies. We discuss the biogenesis, types, and functional roles of immune cell-derived EVs, their interactions with cancer cells, and their implications in antitumor immunity. Challenges such as tumor heterogeneity and immune evasion are addressed, alongside the promising therapeutic prospects of EV-based strategies. This comprehensive analysis underscores the transformative potential of EVs in cancer treatment paradigms.
Collapse
Affiliation(s)
- Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
| | - Marco Vacante
- Unit of Internal Medicine Critical Area—ARNAS Garibaldi, Piazza Santa Maria di Gesù, 5, 95124 Catania, Italy;
| | - Roberta Catania
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
| | - Giuseppe Sangiorgio
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
7
|
Pérez M, Buey B, Corral P, Giraldos D, Latorre E. Microbiota-Derived Short-Chain Fatty Acids Boost Antitumoral Natural Killer Cell Activity. J Clin Med 2024; 13:3885. [PMID: 38999461 PMCID: PMC11242436 DOI: 10.3390/jcm13133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Background: The intestinal microbiota can regulate numerous host functions, including the immune response. Through fermentation, the microbiota produces and releases microbial metabolites such as short-chain fatty acids (SCFAs), which can affect host homeostasis. There is growing evidence that the gut microbiome can have a major impact on cancer. Specific gut microbial composition and metabolites are associated with tumor status in the host. However, their effects on the antitumor response have scarcely been investigated. Natural killer (NK) cells play an important role in antitumor immunity due to their ability to directly identify and eliminate tumor cells. Methods: The aim of this study was to investigate the effects of SCFAs on antitumoral NK cell activity, using NK-92 cell line. Results: Here, we describe how SCFAs can boost antitumoral NK cell activity. The SCFAs induced the release of NK extracellular vesicles and reduced the secretion of the anti-inflammatory cytokine IL-10. The SCFAs also increased the cytotoxicity of the NK cells against multiple myeloma cells. Conclusions: Our results indicate, for the first time, the enormous potential of SCFAs in regulating antitumoral NK cell defense, where modulation of the SCFAs' production could play a fundamental role in cancer immunotherapy.
Collapse
Affiliation(s)
- Marina Pérez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Pilar Corral
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - David Giraldos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Eva Latorre
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
| |
Collapse
|
8
|
St‐Denis‐Bissonnette F, Qiu S, Cummings SE, Kirkby M, Haile Y, Wassmer S, Muradia G, Mehic J, Stalker A, Shrestha A, Ardolino M, Lee S, Burger D, Wang L, Lavoie JR. Evaluation of resazurin phenoxazine dye as a highly sensitive cell viability potency assay for natural killer cell-derived extracellular vesicle-based cancer biotherapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e166. [PMID: 39022723 PMCID: PMC11253028 DOI: 10.1002/jex2.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
Natural killer cell-derived extracellular vesicles (NK-EVs) are candidate biotherapeutics against various cancers. However, standardised potency assays are necessary for a reliable assessment of NK-EVs' cytotoxicity. This study aims to thoroughly evaluate a highly sensitive resazurin phenoxazine-based cell viability potency assay (measurement of the cellular redox metabolism) for quantifying the cytotoxicity of NK-EVs against leukaemia K562 cells (suspension model) and breast cancer MDA-MB-231 cells (adherent model) in vitro. The assay was evaluated based on common analytical parameters setforth by regulatory guidelines, including specificity, selectivity,accuracy, precision, linearity, range and stability. Our results revealed that this resazurin-based cell viability potency assay reliably and reproducibly measured a dose-response of NK-EVs' cytotoxic activity against both cancer models. The assay showed precision with 5% and 20% variation for intra-run and inter-run variability. The assay signal showed specificity and selectivity of NK-EVs against cancer target cells, as evidenced by the diminished viability of cancer cells following a 5-hour treatment with NK-EVs, without any detectable interference or background. The linearity analysis of target cancer cells revealed strong linearity for densities of 5000 K562 and 1000 MDA-MB-231 cells per test with a consistent range. Importantly, NK-EVs' dose-response for cytotoxicity showed a strong correlation (|ρ| ∼ 0.8) with the levels of known cytotoxic factors associated with the NK-EVs' corona (FasL, GNLY, GzmB, PFN and IFN-γ), thereby validating the accuracy of the assay. The assay also distinguished cytotoxicity changes in degraded NK-EVs, indicating the ability of the assay to detect the potential loss of sample integrity. Compared to other commonly reported bioassays (i.e., flow cytometry, cell counting, lactate dehydrogenase release assay, DNA-binding reporter assay and confluence assay), our results support this highly sensitive resazurin-based viability potency assay as a high-throughput and quantitative method for assessing NK-EVs' cytotoxicity against both suspension and adherent cancer models for evaluating NK-EVs' biotherapeutics.
Collapse
Affiliation(s)
- Frederic St‐Denis‐Bissonnette
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
| | - Shirley Qiu
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
| | - Sarah E. Cummings
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
| | - Melanie Kirkby
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
| | - Yohannes Haile
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
- Department of NeuroscienceCarleton UniversityOttawaCanada
| | - Sarah Wassmer
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
| | - Gauri Muradia
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
| | - Jelica Mehic
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
| | - Andrew Stalker
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
| | - Amit Shrestha
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
| | - Michele Ardolino
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
- Centre for Infection, Immunity and InflammationUniversity of OttawaOttawaCanada
- Cancer Therapeutics ProgramOttawa Hospital Research InstituteOttawaCanada
| | - Seung‐Hwan Lee
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
- Centre for Infection, Immunity and InflammationUniversity of OttawaOttawaCanada
| | - Dylan Burger
- Kidney Research CentreOttawa Hospital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
- Centre for Infection, Immunity and InflammationUniversity of OttawaOttawaCanada
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaCanada
| | - Jessie R. Lavoie
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
| |
Collapse
|
9
|
Lin H, Zhou J, Ding T, Zhu Y, Wang L, Zhong T, Wang X. Therapeutic potential of extracellular vesicles from diverse sources in cancer treatment. Eur J Med Res 2024; 29:350. [PMID: 38943222 PMCID: PMC11212438 DOI: 10.1186/s40001-024-01937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Cancer, a prevalent and complex disease, presents a significant challenge to the medical community. It is characterized by irregular cell differentiation, excessive proliferation, uncontrolled growth, invasion of nearby tissues, and spread to distant organs. Its progression involves a complex interplay of several elements and processes. Extracellular vesicles (EVs) serve as critical intermediaries in intercellular communication, transporting critical molecules such as lipids, RNA, membrane, and cytoplasmic proteins between cells. They significantly contribute to the progression, development, and dissemination of primary tumors by facilitating the exchange of information and transmitting signals that regulate tumor growth and metastasis. However, EVs do not have a singular impact on cancer; instead, they play a multifaceted dual role. Under specific circumstances, they can impede tumor growth and influence cancer by delivering oncogenic factors or triggering an immune response. Furthermore, EVs from different sources demonstrate distinct advantages in inhibiting cancer. This research examines the biological characteristics of EVs and their involvement in cancer development to establish a theoretical foundation for better understanding the connection between EVs and cancer. Here, we discuss the potential of EVs from various sources in cancer therapy, as well as the current status and future prospects of engineered EVs in developing more effective cancer treatments.
Collapse
Affiliation(s)
- Haihong Lin
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Jun Zhou
- Department of Laboratory Medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550000, China
| | - Tao Ding
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Yifan Zhu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
10
|
Huang M, Liu Y, Yan Q, Peng M, Ge J, Mo Y, Wang Y, Wang F, Zeng Z, Li Y, Fan C, Xiong W. NK cells as powerful therapeutic tool in cancer immunotherapy. Cell Oncol (Dordr) 2024; 47:733-757. [PMID: 38170381 DOI: 10.1007/s13402-023-00909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results. CONCLUSION This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.
Collapse
Affiliation(s)
- Mao Huang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yixuan Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Miao Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Comprehensive Cancer Center, Baylor College of Medicine, Alkek Building, RM N720, Houston, TX, USA
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, 410013, Changsha, Hunan Province, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Muttiah B, Ng SL, Lokanathan Y, Ng MH, Law JX. Extracellular Vesicles in Breast Cancer: From Intercellular Communication to Therapeutic Opportunities. Pharmaceutics 2024; 16:654. [PMID: 38794316 PMCID: PMC11125876 DOI: 10.3390/pharmaceutics16050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer, a multifaceted and heterogeneous disease, poses significant challenges in terms of understanding its intricate resistance mechanisms and devising effective therapeutic strategies. This review provides a comprehensive overview of the intricate landscape of extracellular vesicles (EVs) in the context of breast cancer, highlighting their diverse subtypes, biogenesis, and roles in intercellular communication within the tumour microenvironment (TME). The discussion spans various aspects, from EVs and stromal cells in breast cancer to their influence on angiogenesis, immune response, and chemoresistance. The impact of EV production in different culture systems, including two dimensional (2D), three dimensional (3D), and organoid models, is explored. Furthermore, this review delves into the therapeutic potential of EVs in breast cancer, presenting emerging strategies such as engineered EVs for gene delivery, nanoplatforms for targeted chemotherapy, and disrupting tumour derived EVs as a treatment approach. Understanding these complex interactions of EV within the breast cancer milieu is crucial for identifying resistance mechanisms and developing new therapeutic targets.
Collapse
Affiliation(s)
- Barathan Muttiah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
12
|
Yao C, Zhang H, Wang C. Recent advances in therapeutic engineered extracellular vesicles. NANOSCALE 2024; 16:7825-7840. [PMID: 38533676 DOI: 10.1039/d3nr05470e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Extracellular vesicles (EVs) are natural particles secreted by living cells, which hold significant potential for various therapeutic applications. Native EVs have specific components and structures, allowing them to cross biological barriers, and circulate in vivo for a long time. Native EVs have also been bioengineered to enhance their therapeutic efficacy and targeting affinity. Recently, the therapeutic potential of surface-engineered EVs has been explored in the treatment of tumors, autoimmune diseases, infections and other diseases by ongoing research and clinical trials. In this review, we will introduce the modified methods of engineered EVs, summarize the application of engineered EVs in preclinical and clinical trials, and discuss the opportunities and challenges for the clinical translation of surface-engineered EVs.
Collapse
Affiliation(s)
- Chenlu Yao
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Chao Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
13
|
Nagai H, Karube R. Late-Stage Ovarian Cancer With Systemic Multiple Metastases Shows Marked Shrinkage Using a Combination of Wilms' Tumor Antigen 1 (WT1) Dendritic Cell Vaccine, Natural Killer (NK) Cell Therapy, and Nivolumab. Cureus 2024; 16:e56685. [PMID: 38523872 PMCID: PMC10960621 DOI: 10.7759/cureus.56685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 03/26/2024] Open
Abstract
A patient with bilateral ovarian cancer, peritoneal dissemination, and multiple liver and lung metastases was found with a sudden accumulation of ascites six months after delivery. Chemotherapy was started, but the prognosis was judged to be poor, so immuno-cell therapy was combined with chemotherapy. After multiple cycles of Wilms' tumor antigen 1 (WT1) dendritic cell vaccine therapy and highly activated natural killer (NK) cell therapy, the patient showed a disappearance of ascites and a remarkable reduction of multiple cancers in the whole body. Furthermore, there were no side effects other than reactive fever caused by the administration of immune cells, and no damage to the patient's body was observed. This case suggests that not only the combined effects of chemotherapy and immunotherapy but also the combined use of various types of immuno-cell therapy may provide beneficial clinical effects in patients with extremely poor prognoses and few options for standard treatment.
Collapse
Affiliation(s)
- Hisashi Nagai
- Human and Environmental Studies, Tokai University, Hiratsuka, JPN
- Oncology, Ginza Phoenix Clinic, Tokyo, JPN
| | | |
Collapse
|
14
|
He S, Su L, Hu H, Liu H, Xiong J, Gong X, Chi H, Wu Q, Yang G. Immunoregulatory functions and therapeutic potential of natural killer cell-derived extracellular vesicles in chronic diseases. Front Immunol 2024; 14:1328094. [PMID: 38239346 PMCID: PMC10795180 DOI: 10.3389/fimmu.2023.1328094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Extracellular vesicles (EVs) have been proven to play a significant immunoregulatory role in many chronic diseases, such as cancer and immune disorders. Among them, EVs derived from NK cells are an essential component of the immune cell functions. These EVs have been demonstrated to carry a variety of toxic proteins and nucleic acids derived from NK cells and play a therapeutic role in diseases like malignancies, liver fibrosis, and lung injury. However, natural NK-derived EVs (NKEVs) have certain limitations in disease treatment, such as low yield and poor targeting. Concurrently, NK cells exhibit characteristics of memory-like NK cells, which have stronger proliferative capacity, increased IFN-γ production, and enhanced cytotoxicity, making them more advantageous for disease treatment. Recent research has shifted its focus towards engineered extracellular vesicles and their potential to improve the efficiency, specificity, and safety of disease treatments. In this review, we will discuss the characteristics of NK-derived EVs and the latest advancements in disease therapy. Specifically, we will compare different cellular sources of NKEVs and explore the current status and prospects of memory-like NK cell-derived EVs and engineered NKEVs.
Collapse
Affiliation(s)
- Shuang He
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Haiyang Hu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Haiqi Liu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jingwen Xiong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Xiangjin Gong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Qibiao Wu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
15
|
Prokopeva AE, Emene CC, Gomzikova MO. Antitumor Immunity: Role of NK Cells and Extracellular Vesicles in Cancer Immunotherapy. Curr Issues Mol Biol 2023; 46:140-152. [PMID: 38248313 PMCID: PMC10814167 DOI: 10.3390/cimb46010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 01/23/2024] Open
Abstract
The immune system plays a crucial role in recognizing and eliminating altered tumor cells. However, tumors develop mechanisms to evade the body's natural immune defenses. Therefore, methods for specifically recognizing/targeting tumor cells, for instance, through the activation, directed polarization, and training of immune cells, have been developed based on the body's immune cells. This strategy has been termed cellular immunotherapy. One promising strategy for treating tumor diseases is NK cell-based immunotherapy. NK cells have the ability to recognize and destroy transformed cells without prior activation as well as tumor cells with reduced MHC-I expression. A novel approach in immunotherapy is the use of extracellular vesicles (EVs) derived from NK cells. The main advantages of NK cell-derived EVs are their small size and better tissue penetration into a tumor. The aim of this review is to systematically present existing information on the mechanisms of antitumor immunity and the role of NK cells and extracellular vesicles in cancer immunotherapy. Clinical and preclinical studies utilizing NK cells and extracellular vesicles for anticancer therapy currently underway will provide valuable insights for researchers in the field of cancer.
Collapse
Affiliation(s)
- Angelina E. Prokopeva
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420111, Russia;
| | - Charles C. Emene
- Laboratory of Intercellular Communication, Kazan Federal University, Kazan 420111, Russia;
| | - Marina O. Gomzikova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420111, Russia;
- Laboratory of Intercellular Communication, Kazan Federal University, Kazan 420111, Russia;
| |
Collapse
|
16
|
McCune A, Kornbluth J. NK3.3-Derived Extracellular Vesicles Penetrate and Selectively Kill Treatment-Resistant Tumor Cells. Cancers (Basel) 2023; 16:90. [PMID: 38201518 PMCID: PMC10778188 DOI: 10.3390/cancers16010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Cancer treatments often become ineffective due to the development of tumor resistance, leading to metastasis and relapse. Treatments may also fail because of their inability to access cells deep within the tumor tissue. When this occurs, new therapeutic agents are needed. We previously reported that NK3.3EVs, extracellular vesicles (EVs) derived from the normal human natural killer (NK) cell line, NK3.3, have strong cytotoxic activity against leukemia and breast cancer cell lines, without harming normal cells. Here, we used a three-dimensional (3D) MCF7 breast cancer mammosphere model to reproduce a more physiological environment that NK3.3EVs would encounter in vivo. NK3.3EVs penetrated MCF7 mammospheres, inducing death by apoptosis. We generated an imatinib-resistant K562 chronic myeloid leukemia (CML) cell line to investigate whether NK3.3EVs were able to kill tumor cells resistant to front-line chemotherapy. NK3.3EVs were even more cytotoxic to imatinib-resistant cells than parental cells, inducing apoptosis via caspase-3/-7 activation. The small population of cancer stem cells (CSCs) within tumors also contributes to therapeutic resistance. NK3.3EVs reduced the CSC-like CD34+/CD38- subpopulation in imatinib-resistant and parental K562 cultures and decreased CSC-associated expression of tumor-promoting genes. Our results provide strong evidence that NK3.3EVs may be a potential new immunotherapeutic agent for difficult-to-treat cancers.
Collapse
Affiliation(s)
- Allyson McCune
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA;
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA;
- St. Louis VA Medical Center, St. Louis, MO 63106, USA
| |
Collapse
|
17
|
St‐Denis‐Bissonnette F, Cummings SE, Qiu S, Stalker A, Muradia G, Mehic J, Mediratta K, Kaczmarek S, Burger D, Lee S, Wang L, Lavoie JR. A clinically relevant large-scale biomanufacturing workflow to produce natural killer cells and natural killer cell-derived extracellular vesicles for cancer immunotherapy. J Extracell Vesicles 2023; 12:e12387. [PMID: 38054534 PMCID: PMC10698709 DOI: 10.1002/jev2.12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023] Open
Abstract
Natural killer cell-derived extracellular vesicles (NK-EVs) have shown promising potential as biotherapeutics for cancer due to their unique attributes as cytotoxic nanovesicles against cancer cells and immune-modulatory activity towards immune cells. However, a biomanufacturing workflow is needed to produce clinical-grade NK-EVs for pre-clinical and clinical applications. This study established a novel biomanufacturing workflow using a closed-loop hollow-fibre bioreactor to continuously produce NK-EVs from the clinically relevant NK92-MI cell line under serum-free, Xeno-free and feeder-free conditions following GMP-compliant conditions. The NK92 cells grown in the bioreactor for three continuous production lots resulted in large quantities of both NK cell and NK-EV biotherapeutics at the end of each production lot (over 109 viable cells and 1013 EVs), while retaining their cytotoxic payload (granzyme B and perforin), pro-inflammatory cytokine (interferon-gamma) content and cytotoxicity against the human leukemic cell line K562 with limited off-target toxicity against healthy human fibroblast cells. This scalable biomanufacturing workflow has the potential to facilitate the clinical translation of adoptive NK cell-based and NK-EV-based immunotherapies for cancer with GMP considerations.
Collapse
Affiliation(s)
- Frederic St‐Denis‐Bissonnette
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food Branch, Health CanadaOttawaONCanada
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaONCanada
| | - Sarah E. Cummings
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food Branch, Health CanadaOttawaONCanada
| | - Shirley Qiu
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food Branch, Health CanadaOttawaONCanada
| | - Andrew Stalker
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food Branch, Health CanadaOttawaONCanada
| | - Gauri Muradia
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food Branch, Health CanadaOttawaONCanada
| | - Jelica Mehic
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food Branch, Health CanadaOttawaONCanada
| | - Karan Mediratta
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for Infection, Immunity and InflammationUniversity of OttawaOttawaONCanada
- Ottawa Institute of Systems BiologyUniversity of OttawaOttawaONCanada
| | - Shelby Kaczmarek
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for Infection, Immunity and InflammationUniversity of OttawaOttawaONCanada
| | - Dylan Burger
- Kidney Research CentreOttawa Hospital Research InstituteOttawaONCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONCanada
| | - Seung‐Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for Infection, Immunity and InflammationUniversity of OttawaOttawaONCanada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for Infection, Immunity and InflammationUniversity of OttawaOttawaONCanada
- Ottawa Institute of Systems BiologyUniversity of OttawaOttawaONCanada
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaONCanada
| | - Jessie R. Lavoie
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food Branch, Health CanadaOttawaONCanada
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaONCanada
| |
Collapse
|
18
|
Hu J, Zhu J, Chai J, Zhao Y, Luan J, Wang Y. Application of exosomes as nanocarriers in cancer therapy. J Mater Chem B 2023; 11:10595-10612. [PMID: 37927220 DOI: 10.1039/d3tb01991h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Cancer remains the most common lethal disease in the world. Although the treatment choices for cancer are still limited, significant progress has been made over the past few years. By improving targeted drug therapy, drug delivery systems promoted the therapeutic effects of anti-cancer medications. Exosome is a kind of natural nanoscale delivery system with natural substance transport properties, good biocompatibility, and high tumor targeting, which shows great potential in drug carriers, thereby providing novel strategies for cancer therapy. In this review, we present the formation, distribution, and characteristics of exosomes. Besides, extraction and isolation techniques are discussed. We focus on the recent progress and application of exosomes in cancer therapy in four aspects: exosome-mediated gene therapy, chemotherapy, photothermal therapy, and combination therapy. The current challenges and future developments of exosome-mediated cancer therapy are also discussed. Finally, the latest advances in the application of exosomes as drug delivery carriers in cancer therapy are summarized, which provide practical value and guidance for the development of cancer therapy.
Collapse
Affiliation(s)
- Jiawei Hu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yudie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
19
|
Razizadeh MH, Zafarani A, Taghavi-Farahabadi M, Khorramdelazad H, Minaeian S, Mahmoudi M. Natural killer cells and their exosomes in viral infections and related therapeutic approaches: where are we? Cell Commun Signal 2023; 21:261. [PMID: 37749597 PMCID: PMC10519079 DOI: 10.1186/s12964-023-01266-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Innate immunity is the first line of the host immune system to fight against infections. Natural killer cells are the innate immunity lymphocytes responsible for fighting against virus-infected and cancerous cells. They have various mechanisms to suppress viral infections. On the other hand, viruses have evolved to utilize different ways to evade NK cell-mediated responses. Viruses can balance the response by regulating the cytokine release pattern and changing the proportion of activating and inhibitory receptors on the surface of NK cells. Exosomes are a subtype of extracellular vesicles that are involved in intercellular communication. Most cell populations can release these nano-sized vesicles, and it was shown that these vesicles produce identical outcomes to the originating cell from which they are released. In recent years, the role of NK cell-derived exosomes in various diseases including viral infections has been highlighted, drawing attention to utilizing the therapeutic potential of these nanoparticles. In this article, the role of NK cells in various viral infections and the mechanisms used by viruses to evade these important immune system cells are initially examined. Subsequently, the role of NK cell exosomes in controlling various viral infections is discussed. Finally, the current position of these cells in the treatment of viral infections and the therapeutic potential of their exosomes are reviewed. Video Abstract.
Collapse
Affiliation(s)
- Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Ghaffari K, Moradi-Hasanabad A, Sobhani-Nasab A, Javaheri J, Ghasemi A. Application of cell-derived exosomes in the hematological malignancies therapy. Front Pharmacol 2023; 14:1263834. [PMID: 37745073 PMCID: PMC10515215 DOI: 10.3389/fphar.2023.1263834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023] Open
Abstract
Exosomes are small membrane vesicles of endocytic origin that are produced by both tumor and normal cells and can be found in physiological fluids like plasma and cell culture supernatants. They include cytokines, growth factors, proteins, lipids, RNAs, and metabolites and are important intercellular communication controllers in several disorders. According to a vast amount of research, exosomes could support or inhibit tumor start and diffusion in a variety of solid and hematological malignancies by paracrine signaling. Exosomes are crucial therapeutic agents for a variety of illnesses, such as cancer and autoimmune diseases. This review discusses the most current and encouraging findings from in vitro and experimental in vivo research, as well as the scant number of ongoing clinical trials, with a focus on the impact of exosomes in the treatment of malignancies. Exosomes have great promise as carriers of medications, antagonists, genes, and other therapeutic materials that can be incorporated into their core in a variety of ways. Exosomes can also alter the metabolism of cancer cells, alter the activity of immunologic effectors, and alter non-coding RNAs, all of which can alter the tumor microenvironment and turn it from a pro-tumor to an anti-tumor milieu. This subject is covered in the current review, which also looks at how exosomes contribute to the onset and progression of hematological malignancies, as well as their importance in diagnosing and treating these conditions.
Collapse
Affiliation(s)
- Kazem Ghaffari
- Department of Basic and Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Amin Moradi-Hasanabad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Sobhani-Nasab
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Javaheri
- Department of Health and Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ghasemi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
21
|
Moya-Guzmán MJ, de Solminihac J, Padilla C, Rojas C, Pinto C, Himmel T, Pino-Lagos K. Extracellular Vesicles from Immune Cells: A Biomedical Perspective. Int J Mol Sci 2023; 24:13775. [PMID: 37762077 PMCID: PMC10531060 DOI: 10.3390/ijms241813775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Research on the role of extracellular vesicles (sEV) in physiology has demonstrated their undoubted importance in processes such as the transportation of molecules with significance for cell metabolism, cell communication, and the regulation of mechanisms such as cell differentiation, inflammation, and immunity. Although the role of EVs in the immune response is actively investigated, there is little literature revising, in a comprehensive manner, the role of small EVs produced by immune cells. Here, we present a review of studies reporting the release of sEV by different types of leukocytes and the implications of such observations on cellular homeostasis. We also discuss the function of immune cell-derived sEV and their relationship with pathological states, highlighting their potential application in the biomedical field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karina Pino-Lagos
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 755000, Chile
| |
Collapse
|
22
|
Samara A, Anbar M, Shapira S, Zemlyansky A, Zozovsky A, Raanani P, Granot G, Rozovski U. Using natural killer cell-derived exosomes as a cell-free therapy for leukemia. Hematol Oncol 2023; 41:487-498. [PMID: 36451254 DOI: 10.1002/hon.3111] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 08/11/2023]
Abstract
Natural killer (NK) cells are components of the innate immune system which play a pivotal role in cancer cell surveillance. Despite promising results in clinical trials, the use of NK-based therapies is limited due to unsatisfactory efficiencies and safety issues. In recent years, exosomes have emerged as a powerful, natural therapeutic tool. Since exosomes are known to carry cargos that reflect the cellular makeup of their cell of origin, we were prompted to test whether NK-derived exosomes (NKexo) maintain the anti-leukemia capacity of NK-cells. We found NK92MI-cells to secrete large amounts of 100-200 nm cap-shaped particles expressing exosomal and NK biomarkers (CD63, CD81, CD56). We demonstrated that NKexo exert a potent, selective, anti-leukemia effect on all leukemia cell-lines tested. Furthermore, NKexo eliminated leukemia cells isolated from patients with acute and chronic leukemia and inhibited hematopoietic colony growth. While leukemia cells were targeted and severely affected by NKexo, healthy B-cells remained unaffected, indicating a selective effect. This selectivity was further confirmed by demonstrating that NKexo were specifically taken up by leukemic cells but not by healthy B-cells. Our in vivo data support our in vitro and ex vivo findings and demonstrate improved human-CD45+ leukemia blast counts and overall survival in NKexo treated humanized acute myeloid leukemia (HL-60) xenograft mice thus supporting the assumption that NKexo possess an anti-leukemia effect. Pending further analyses, our findings provide the pre-clinical evidence needed to test the NKexo approach in future pre-clinical and clinical studies to ultimately develop an acellular "off-the-shelf" product to treat leukemia.
Collapse
Affiliation(s)
- Aladin Samara
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Michael Anbar
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Saar Shapira
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Anna Zemlyansky
- The Rina Zaizov Pediatric Hematology and Oncology Division, Schneider Children's Medical Center, Rabin Medical Center, Petah Tikva, Israel
| | - Alla Zozovsky
- The Rina Zaizov Pediatric Hematology and Oncology Division, Schneider Children's Medical Center, Rabin Medical Center, Petah Tikva, Israel
| | - Pia Raanani
- Hematology Division, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galit Granot
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Uri Rozovski
- Hematology Division, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Tang Y, Qian C. Research progress in leveraging biomaterials for enhancing NK cell immunotherapy. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:267-278. [PMID: 37476938 PMCID: PMC10409897 DOI: 10.3724/zdxbyxb-2022-0728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 07/22/2023]
Abstract
NK cell immunotherapy is a promising antitumor therapeutic modality after the development of T cell immunotherapy. Structural modification of NK cells with biomaterials may provide a precise, efficient, and low-cost strategy to enhance NK cell immunotherapy. The biomaterial modification of NK cells can be divided into two strategies: surface engineering with biomaterials and intracellular modification. The surface engineering strategies include hydrophobic interaction of lipids, receptor-ligand interaction between membrane proteins, covalent binding to amino acid residues, click reaction and electrostatic interaction. The intracellular modification strategies are based on manipulation by nanotechnology using membranous materials from various sources of NK cells (such as exosome, vesicle and cytomembranes). Finally, the biomaterials-based strategies regulate the recruitment, recognition and cytotoxicity of NK cells in the solid tumor site in situ to boost the activity of NK cells in the tumor. This article reviews the recent research progress in enhancing NK cell therapy based on biomaterial modification, to provide a reference for further researches on engineering NK cell therapy with biomaterials.
Collapse
Affiliation(s)
- Yingqi Tang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China.
| | - Chenggen Qian
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China.
| |
Collapse
|
24
|
Chan AML, Cheah JM, Lokanathan Y, Ng MH, Law JX. Natural Killer Cell-Derived Extracellular Vesicles as a Promising Immunotherapeutic Strategy for Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24044026. [PMID: 36835438 PMCID: PMC9964266 DOI: 10.3390/ijms24044026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Cancer is the second leading contributor to global deaths caused by non-communicable diseases. The cancer cells are known to interact with the surrounding non-cancerous cells, including the immune cells and stromal cells, within the tumor microenvironment (TME) to modulate the tumor progression, metastasis and resistance. Currently, chemotherapy and radiotherapy are the standard treatments for cancers. However, these treatments cause a significant number of side effects, as they damage both the cancer cells and the actively dividing normal cells indiscriminately. Hence, a new generation of immunotherapy using natural killer (NK) cells, cytotoxic CD8+ T-lymphocytes or macrophages was developed to achieve tumor-specific targeting and circumvent the adverse effects. However, the progression of cell-based immunotherapy is hindered by the combined action of TME and TD-EVs, which render the cancer cells less immunogenic. Recently, there has been an increase in interest in using immune cell derivatives to treat cancers. One of the highly potential immune cell derivatives is the NK cell-derived EVs (NK-EVs). As an acellular product, NK-EVs are resistant to the influence of TME and TD-EVs, and can be designed for "off-the-shelf" use. In this systematic review, we examine the safety and efficacy of NK-EVs to treat various cancers in vitro and in vivo.
Collapse
Affiliation(s)
- Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/22, Petaling Jaya 47101, Malaysia
| | - Jin Min Cheah
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/22, Petaling Jaya 47101, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-391-457677
| |
Collapse
|
25
|
CAR-T-Derived Extracellular Vesicles: A Promising Development of CAR-T Anti-Tumor Therapy. Cancers (Basel) 2023; 15:cancers15041052. [PMID: 36831396 PMCID: PMC9954490 DOI: 10.3390/cancers15041052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous population of plasma membrane-surrounded particles that are released in the extracellular milieu by almost all types of living cells. EVs are key players in intercellular crosstalk, both locally and systemically, given that they deliver their cargoes (consisting of proteins, lipids, mRNAs, miRNAs, and DNA fragments) to target cells, crossing biological barriers. Those mechanisms further trigger a wide range of biological responses. Interestingly, EV phenotypes and cargoes and, therefore, their functions, stem from their specific parental cells. For these reasons, EVs have been proposed as promising candidates for EV-based, cell-free therapies. One of the new frontiers of cell-based immunotherapy for the fight against refractory neoplastic diseases is represented by genetically engineered chimeric antigen receptor T (CAR-T) lymphocytes, which in recent years have demonstrated their effectiveness by reaching commercialization and clinical application for some neoplastic diseases. CAR-T-derived EVs represent a recent promising development of CAR-T immunotherapy approaches. This crosscutting innovative strategy is designed to exploit the advantages of genetically engineered cell-based immunotherapy together with those of cell-free EVs, which in principle might be safer and more efficient in crossing biological and tumor-associated barriers. In this review, we underlined the potential of CAR-T-derived EVs as therapeutic agents in tumors.
Collapse
|
26
|
Jiang J, Huang Y, Zeng Z, Zhao C. Harnessing Engineered Immune Cells and Bacteria as Drug Carriers for Cancer Immunotherapy. ACS NANO 2023; 17:843-884. [PMID: 36598956 DOI: 10.1021/acsnano.2c07607] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunotherapy continues to be in the spotlight of oncology therapy research in the past few years and has been proven to be a promising option to modulate one's innate and adaptive immune systems for cancer treatment. However, the poor delivery efficiency of immune agents, potential off-target toxicity, and nonimmunogenic tumors significantly limit its effectiveness and extensive application. Recently, emerging biomaterial-based drug carriers, including but not limited to immune cells and bacteria, are expected to be potential candidates to break the dilemma of immunotherapy, with their excellent natures of intrinsic tumor tropism and immunomodulatory activity. More than that, the tiny vesicles and physiological components derived from them have similar functions with their source cells due to the inheritance of various surface signal molecules and proteins. Herein, we presented representative examples about the latest advances of biomaterial-based delivery systems employed in cancer immunotherapy, including immune cells, bacteria, and their derivatives. Simultaneously, opportunities and challenges of immune cells and bacteria-based carriers are discussed to provide reference for their future application in cancer immunotherapy.
Collapse
Affiliation(s)
- Jingwen Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
27
|
Nonaka T. Application of engineered extracellular vesicles to overcome drug resistance in cancer. Front Oncol 2022; 12:1070479. [PMID: 36591444 PMCID: PMC9797956 DOI: 10.3389/fonc.2022.1070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted therapies have significantly improved survival rates and quality of life for many cancer patients. However, on- and off-target side toxicities in normal tissues, and precocious activation of the immune response remain significant issues that limit the efficacy of molecular targeted agents. Extracellular vesicles (EVs) hold great promise as the mediators of next-generation therapeutic payloads. Derived from cellular membranes, EVs can be engineered to carry specific therapeutic agents in a targeted manner to tumor cells. This review highlights the progress in our understanding of basic EV biology, and discusses how EVs are being chemically and genetically modified for use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States,Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States,*Correspondence: Taichiro Nonaka,
| |
Collapse
|
28
|
Hadizadeh N, Bagheri D, Shamsara M, Hamblin MR, Farmany A, Xu M, Liang Z, Razi F, Hashemi E. Extracellular vesicles biogenesis, isolation, manipulation and genetic engineering for potential in vitro and in vivo therapeutics: An overview. Front Bioeng Biotechnol 2022; 10:1019821. [PMID: 36406206 PMCID: PMC9672340 DOI: 10.3389/fbioe.2022.1019821] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/18/2022] [Indexed: 08/16/2023] Open
Abstract
The main goals of medicine consist of early detection and effective treatment of different diseases. In this regard, the rise of exosomes as carriers of natural biomarkers has recently attracted a lot of attention and managed to shed more light on the future of early disease diagnosis methods. Here, exosome biogenesis, its role as a biomarker in metabolic disorders, and recent advances in state-of-art technologies for exosome detection and isolation will be reviewed along with future research directions and challenges regarding the manipulation and genetic engineering of exosomes for potential in vitro and in vivo disease diagnosis approaches.
Collapse
Affiliation(s)
- Nastaran Hadizadeh
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Diba Bagheri
- Department of Molecular Genetics, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Abbas Farmany
- Dental Research Centre and Dental Implant Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mengdi Xu
- Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhuobin Liang
- Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen, China
| | - Farideh Razi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular—Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Hashemi
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen, China
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular—Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. Int J Mol Sci 2022; 23:ijms232112971. [PMID: 36361760 PMCID: PMC9659046 DOI: 10.3390/ijms232112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.
Collapse
|
30
|
Matsuzaka Y, Yashiro R. Regulation of Extracellular Vesicle-Mediated Immune Responses against Antigen-Specific Presentation. Vaccines (Basel) 2022; 10:1691. [PMID: 36298556 PMCID: PMC9607341 DOI: 10.3390/vaccines10101691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles (EVs) produced by various immune cells, including B and T cells, macrophages, dendritic cells (DCs), natural killer (NK) cells, and mast cells, mediate intercellular communication and have attracted much attention owing to the novel delivery system of molecules in vivo. DCs are among the most active exosome-secreting cells of the immune system. EVs produced by cancer cells contain cancer antigens; therefore, the development of vaccine therapy that does not require the identification of cancer antigens using cancer-cell-derived EVs may have significant clinical implications. In this review, we summarise the molecular mechanisms underlying EV-based immune responses and their therapeutic effects on tumour vaccination.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi 181-8611, Tokyo, Japan
| |
Collapse
|
31
|
Tan ZL, Li JF, Luo HM, Liu YY, Jin Y. Plant extracellular vesicles: A novel bioactive nanoparticle for tumor therapy. Front Pharmacol 2022; 13:1006299. [PMID: 36249740 PMCID: PMC9559701 DOI: 10.3389/fphar.2022.1006299] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Extracellular vesicles are tiny lipid bilayer-enclosed membrane particles, including apoptotic bodies, micro vesicles, and exosomes. Organisms of all life forms can secrete extracellular vesicles into their surrounding environment, which serve as important communication tools between cells and between cells and the environment, and participate in a variety of physiological processes. According to new evidence, plant extracellular vesicles play an important role in the regulation of transboundary molecules with interacting organisms. In addition to carrying signaling molecules (nucleic acids, proteins, metabolic wastes, etc.) to mediate cellular communication, plant cells External vesicles themselves can also function as functional molecules in the cellular microenvironment across cell boundaries. This review introduces the source and extraction of plant extracellular vesicles, and attempts to clarify its anti-tumor mechanism by summarizing the current research on plant extracellular vesicles for disease treatment. We speculate that the continued development of plant extracellular vesicle-based therapeutic and drug delivery platforms will benefit their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Yang-Yang Liu
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
32
|
Qian K, Fu W, Li T, Zhao J, Lei C, Hu S. The roles of small extracellular vesicles in cancer and immune regulation and translational potential in cancer therapy. J Exp Clin Cancer Res 2022; 41:286. [PMID: 36167539 PMCID: PMC9513874 DOI: 10.1186/s13046-022-02492-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs) facilitate the extracellular transfer of proteins, lipids, and nucleic acids and mediate intercellular communication among multiple cells in the tumour environment. Small extracellular vesicles (sEVs) are defined as EVs range in diameter from approximately 50 to 150 nm. Tumour-derived sEVs (TDsEVs) and immune cell-derived sEVs have significant immunological activities and participate in cancer progression and immune responses. Cancer-specific molecules have been identified on TDsEVs and can function as biomarkers for cancer diagnosis and prognosis, as well as allergens for TDsEVs-based vaccination. Various monocytes, including but not limited to dendritic cells (DCs), B cells, T cells, natural killer (NK) cells, macrophages, and myeloid-derived suppressor cells (MDSCs), secrete sEVs that regulate immune responses in the complex immune network with either protumour or antitumour effects. After engineered modification, sEVs from immune cells and other donor cells can provide improved targeting and biological effects. Combined with their naïve characteristics, these engineered sEVs hold great potential as drug carriers. When used in a variety of cancer therapies, they can adjunctly enhance the safety and antitumor efficacy of multiple therapeutics. In summary, both naïve sEVs in the tumour environment and engineered sEVs with effector cargoes are regarded as showing promising potential for use in cancer diagnostics and therapeutics.
Collapse
|
33
|
Fang Z, Ding Y, Xue Z, Li P, Li J, Li F. Roles of exosomes as drug delivery systems in cancer immunotherapy: a mini-review. Discov Oncol 2022; 13:74. [PMID: 35962862 PMCID: PMC9375799 DOI: 10.1007/s12672-022-00539-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/04/2022] Open
Abstract
Exosomes can be released by a variety of cells and participate in intercellular communication in many physiological processes in the body. They can be used as carriers of cancer therapeutic drugs and have natural delivery capabilities. Some biologically active substances on exosomes, such as major histocompatibility complex (MHC), have been shown to be involved in exosome-mediated anticancer immune responses and have important regulatory effects on the immune system. Exosome-based drug delivery systems hold great promise in future cancer immunotherapy. However, there are still substantial challenges to be overcome in the clinical application of exosomes as drug carriers. This article reviews the biological characteristics of exosome drug delivery systems and their potential applications and challenges in cancer immunotherapy.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yixuan Ding
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Zhigang Xue
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Peijuan Li
- Dalian Medical University, Dalian, Liaoning, China.
| | - Jia Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
34
|
Abstract
Exosomes are a type of extracellular vesicles secreted by cells in normal or pathological conditions for cell-cell communication. With immunomodulatory characteristics and potential therapeutic properties, immune-cell-derived exosomes play an important role in cancer therapy. They express various antigens on their surface, which can be employed for antigen presentation, immunological activation, and metabolic regulation, leading to the killing of cancerous cells. In addition, immune-cell-derived exosomes have received extensive attention as a drug delivery platform in effective antitumor therapy due to their excellent biocompatibility, low immunogenicity, and high loading capacity. In this review, the biological and therapeutic characteristics of immune-cell-derived exosomes are comprehensively outlined. The antitumor mechanism of exosomes secreted by immune cells, including macrophages, dendritic cells, T cells, B cells, and natural killer cells, are systematically summarized. Moreover, the applications of immune-cell-derived exosomes as nanocarriers to transport antitumor agents (chemotherapeutic drugs, genes, proteins, etc.) are discussed. More importantly, the existing challenges of immune-cell-derived exosomes are pointed out, and their antitumor potentials are also discussed.
Collapse
Affiliation(s)
- Yongmei Zhao
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales 2145, Australia
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong 226019, China
| |
Collapse
|
35
|
Boyd-Gibbins N, Karagiannis P, Hwang DW, Kim SI. iPSCs in NK Cell Manufacturing and NKEV Development. Front Immunol 2022; 13:890894. [PMID: 35874677 PMCID: PMC9305199 DOI: 10.3389/fimmu.2022.890894] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022] Open
Abstract
Natural killer (NK) cell immunotherapies for cancer can complement existing T cell therapies while benefiting from advancements already made in the immunotherapy field. For NK cell manufacturing, induced pluripotent stem cells (iPSCs) offer advantages including eliminating donor variation and providing an ideal platform for genome engineering. At the same time, extracellular vesicles (EVs) have become a major research interest, and purified NK cell extracellular vesicles (NKEVs) have been shown to reproduce the key functions of their parent NK cells. NKEVs have the potential to be developed into a standalone therapeutic with reduced complexity and immunogenicity compared to cell therapies. This review explores the role iPSC technology can play in both NK cell manufacturing and NKEV development.
Collapse
Affiliation(s)
| | - Peter Karagiannis
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Do Won Hwang
- Research and Development Center, THERABEST Co., Ltd., Seoul, South Korea
| | - Shin-Il Kim
- THERABEST Japan, Inc., Kobe, Japan
- Research and Development Center, THERABEST Co., Ltd., Seoul, South Korea
- *Correspondence: Shin-Il Kim,
| |
Collapse
|
36
|
Georgatzakou HT, Fortis SP, Papageorgiou EG, Antonelou MH, Kriebardis AG. Blood Cell-Derived Microvesicles in Hematological Diseases and beyond. Biomolecules 2022; 12:803. [PMID: 35740926 PMCID: PMC9220817 DOI: 10.3390/biom12060803] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Microvesicles or ectosomes represent a major type of extracellular vesicles that are formed by outward budding of the plasma membrane. Typically, they are bigger than exosomes but smaller than apoptotic vesicles, although they may overlap with both in size and content. Their release by cells is a means to dispose redundant, damaged, or dangerous material; to repair membrane lesions; and, primarily, to mediate intercellular communication. By participating in these vital activities, microvesicles may impact a wide array of cell processes and, consequently, changes in their concentration or components have been associated with several pathologies. Of note, microvesicles released by leukocytes, red blood cells, and platelets, which constitute the vast majority of plasma microvesicles, change under a plethora of diseases affecting not only the hematological, but also the nervous, cardiovascular, and urinary systems, among others. In fact, there is evidence that microvesicles released by blood cells are significant contributors towards pathophysiological states, having inflammatory and/or coagulation and/or immunomodulatory arms, by either promoting or inhibiting the relative disease phenotypes. Consequently, even though microvesicles are typically considered to have adverse links with disease prognosis, progression, or outcomes, not infrequently, they exert protective roles in the affected cells. Based on these functional relations, microvesicles might represent promising disease biomarkers with diagnostic, monitoring, and therapeutic applications, equally to the more thoroughly studied exosomes. In the current review, we provide a summary of the features of microvesicles released by blood cells and their potential implication in hematological and non-hematological diseases.
Collapse
Affiliation(s)
- Hara T. Georgatzakou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Marianna H. Antonelou
- Department of Biology, Section of Cell Biology and Biophysics, National & Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| |
Collapse
|
37
|
Ham H, Medlyn M, Billadeau DD. Locked and Loaded: Mechanisms Regulating Natural Killer Cell Lytic Granule Biogenesis and Release. Front Immunol 2022; 13:871106. [PMID: 35558071 PMCID: PMC9088006 DOI: 10.3389/fimmu.2022.871106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
NK cell-mediated cytotoxicity is a critical element of our immune system required for protection from microbial infections and cancer. NK cells bind to and eliminate infected or cancerous cells via direct secretion of cytotoxic molecules toward the bound target cells. In this review, we summarize the current understanding of the molecular regulations of NK cell cytotoxicity, focusing on lytic granule development and degranulation processes. NK cells synthesize apoptosis-inducing proteins and package them into specialized organelles known as lytic granules (LGs). Upon activation of NK cells, LGs converge with the microtubule organizing center through dynein-dependent movement along microtubules, ultimately polarizing to the cytotoxic synapse where they subsequently fuse with the NK plasma membrane. From LGs biogenesis to degranulation, NK cells utilize several strategies to protect themselves from their own cytotoxic molecules. Additionally, molecular pathways that enable NK cells to perform serial killing are beginning to be elucidated. These advances in the understanding of the molecular pathways behind NK cell cytotoxicity will be important to not only improve current NK cell-based anti-cancer therapies but also to support the discovery of additional therapeutic opportunities.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Michael Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Billadeau
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States.,Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
38
|
Li Y, Zhao W, Wang Y, Wang H, Liu S. Extracellular vesicle-mediated crosstalk between pancreatic cancer and stromal cells in the tumor microenvironment. J Nanobiotechnology 2022; 20:208. [PMID: 35501802 PMCID: PMC9063273 DOI: 10.1186/s12951-022-01382-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) interacts closely with the tumor microenvironment (TME). The TME is remodeled by crosstalk between pancreatic cancer cells and stromal cells, and is critical for cancer progression. Extracellular vesicles (EVs), including exosomes and microvesicles, help facilitate an exchange of information both within the TME and to distant organs. EVs have also been identified as potential diagnostic biomarkers, therapeutic targets, and drug carriers for pancreatic cancer treatment. Thus, understanding the selective packaging of EVs cargo and its mechanistic impact will increase our understanding of cancer biology. In this review, we collect and analyze recent findings of the pancreatic cancer-stromal cell interactions mediated by EVs and the mechanisms involved in cancer-related immunity and chemoresistance. These studies demonstrate the vital role of EVs in pancreatic cancer reprogramming and TME remodeling. We also summarize the EVs identified as potential PDAC diagnostic biomarkers and possible therapeutic targets. This greater understanding is a promising avenue for transitioning EVs from bench to bedside.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Zhao
- Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yanli Wang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
39
|
Calvo V, Izquierdo M. T Lymphocyte and CAR-T Cell-Derived Extracellular Vesicles and Their Applications in Cancer Therapy. Cells 2022; 11:790. [PMID: 35269412 PMCID: PMC8909086 DOI: 10.3390/cells11050790] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Extracellular vesicles (EV) are a very diverse group of cell-derived vesicles released by almost all kind of living cells. EV are involved in intercellular exchange, both nearby and systemically, since they induce signals and transmit their cargo (proteins, lipids, miRNAs) to other cells, which subsequently trigger a wide variety of biological responses in the target cells. However, cell surface receptor-induced EV release is limited to cells from the immune system, including T lymphocytes. T cell receptor activation of T lymphocytes induces secretion of EV containing T cell receptors for antigen and several bioactive molecules, including proapoptotic proteins. These EV are specific for antigen-bearing cells, which make them ideal candidates for a cell-free, EV-dependent cancer therapy. In this review we examine the generation of EV by T lymphocytes and CAR-T cells and some potential therapeutic approaches of these EV.
Collapse
Affiliation(s)
- Victor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Manuel Izquierdo
- Departamento de Metabolismo y Señalización Celular, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
40
|
Whiteside TL. Tumor-Infiltrating Lymphocytes and Their Role in Solid Tumor Progression. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:89-106. [PMID: 35165861 PMCID: PMC9113058 DOI: 10.1007/978-3-030-91311-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor-infiltrating lymphocytes (TIL) are an important component of the tumor environment. Their role in tumor growth and progression has been debated for decades. Today, emphasis has shifted to beneficial effects of TIL for the host and to therapies optimizing the benefits by reducing immune suppression in the tumor microenvironment. Evidence indicates that when TILs are present in the tumor as dense aggregates of activated immune cells, tumor prognosis and responses to therapy are favorable. Gene signatures and protein profiling of TIL at the population and single-cell levels provide clues not only about their phenotype and numbers but also about TIL potential functions in the tumor. Correlations of the TIL data with clinicopathological tumor characteristics, clinical outcome, and patients' survival indicate that TILs exert influence on the disease progression, especially in colorectal carcinomas and breast cancer. At the same time, the recognition that TIL signatures vary with time and cancer progression has initiated investigations of TIL as potential prognostic biomarkers. Multiple mechanisms are utilized by tumors to subvert the host immune system. The balance between pro- and antitumor responses of TIL largely depends on the tumor microenvironment, which is unique in each cancer patient. This balance is orchestrated by the tumor and thus is shifted toward the promotion of tumor growth. Changes occurring in TIL during tumor progression appear to serve as a measure of tumor aggressiveness and potentially provide a key to selecting therapeutic strategies and inform about prognosis.
Collapse
Affiliation(s)
- Theresa L Whiteside
- Departments of Pathology and Immunology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|