1
|
Xue G, Zhang X, Li W, Zhang L, Zhang Z, Zhou X, Zhang D, Zhang L, Li Z. A logic-incorporated gene regulatory network deciphers principles in cell fate decisions. eLife 2024; 12:RP88742. [PMID: 38652107 PMCID: PMC11037919 DOI: 10.7554/elife.88742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.
Collapse
Affiliation(s)
- Gang Xue
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Xiaoyi Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Wanqi Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Lu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Zongxu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Xiaolin Zhou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Lei Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- Beijing International Center for Mathematical Research, Center for Machine Learning Research, Peking UniversityBeijingChina
| | - Zhiyuan Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| |
Collapse
|
2
|
Sirvent S, Vallejo AF, Corden E, Teo Y, Davies J, Clayton K, Seaby EG, Lai C, Ennis S, Alyami R, Douilhet G, Dean LSN, Loxham M, Horswill S, Healy E, Roberts G, Hall NJ, Friedmann PS, Singh H, Bennett CL, Ardern-Jones MR, Polak ME. Impaired expression of metallothioneins contributes to allergen-induced inflammation in patients with atopic dermatitis. Nat Commun 2023; 14:2880. [PMID: 37208336 DOI: 10.1038/s41467-023-38588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/29/2023] [Indexed: 05/21/2023] Open
Abstract
Regulation of cutaneous immunity is severely compromised in inflammatory skin disease. To investigate the molecular crosstalk underpinning tolerance versus inflammation in atopic dermatitis, we utilise a human in vivo allergen challenge study, exposing atopic dermatitis patients to house dust mite. Here we analyse transcriptional programmes at the population and single cell levels in parallel with immunophenotyping of cutaneous immunocytes revealed a distinct dichotomy in atopic dermatitis patient responsiveness to house dust mite challenge. Our study shows that reactivity to house dust mite was associated with high basal levels of TNF-expressing cutaneous Th17 T cells, and documents the presence of hub structures where Langerhans cells and T cells co-localised. Mechanistically, we identify expression of metallothioneins and transcriptional programmes encoding antioxidant defences across all skin cell types, that appear to protect against allergen-induced inflammation. Furthermore, single nucleotide polymorphisms in the MTIX gene are associated with patients who did not react to house dust mite, opening up possibilities for therapeutic interventions modulating metallothionein expression in atopic dermatitis.
Collapse
Affiliation(s)
- Sofia Sirvent
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andres F Vallejo
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emma Corden
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ying Teo
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - James Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Haematology, University College London (UCL) Cancer Institute, London, WC1E 6DD, UK
| | - Kalum Clayton
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Eleanor G Seaby
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Chester Lai
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sarah Ennis
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rfeef Alyami
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gemma Douilhet
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Lareb S N Dean
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthew Loxham
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sarah Horswill
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Eugene Healy
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Graham Roberts
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Nigel J Hall
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- University Surgery Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Peter S Friedmann
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Harinder Singh
- Departments of Immunology and Computational and Systems Biology, The University of Pittsburgh, Pittsburgh, USA
| | - Clare L Bennett
- Department of Haematology, University College London (UCL) Cancer Institute, London, WC1E 6DD, UK
| | - Michael R Ardern-Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Marta E Polak
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
- Janssen R&D, 1400 McKean Road, Spring House, PA, 19477, USA.
| |
Collapse
|
3
|
Howell R, Davies J, Clarke MA, Appios A, Mesquita I, Jayal Y, Ringham-Terry B, Boned Del Rio I, Fisher J, Bennett CL. Localized immune surveillance of primary melanoma in the skin deciphered through executable modeling. SCIENCE ADVANCES 2023; 9:eadd1992. [PMID: 37043573 PMCID: PMC10096595 DOI: 10.1126/sciadv.add1992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
While skin is a site of active immune surveillance, primary melanomas often escape detection. Here, we have developed an in silico model to determine the local cross-talk between melanomas and Langerhans cells (LCs), the primary antigen-presenting cells at the site of melanoma development. The model predicts that melanomas fail to activate LC migration to lymph nodes until tumors reach a critical size, which is determined by a positive TNF-α feedback loop within melanomas, in line with our observations of murine tumors. In silico drug screening, supported by subsequent experimental testing, shows that treatment of primary tumors with MAPK pathway inhibitors may further prevent LC migration. In addition, our in silico model predicts treatment combinations that bypass LC dysfunction. In conclusion, our combined approach of in silico and in vivo studies suggests a molecular mechanism that explains how early melanomas develop under the radar of immune surveillance by LC.
Collapse
Affiliation(s)
| | | | - Matthew A. Clarke
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Anna Appios
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Inês Mesquita
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Yashoda Jayal
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Ben Ringham-Terry
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Isabel Boned Del Rio
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | | | | |
Collapse
|
4
|
Zhu Y, Yu Q, Su G, Shao N, Feng J, Xiang L, Zhou C, Yang P. Interferon-α2a induces CD4+ T cell apoptosis and suppresses Th1/Th17 responses via upregulating IRF1-mediated PDL1 expression in dendritic cells from Behcet's uveitis. Clin Immunol 2023; 250:109303. [PMID: 36997038 DOI: 10.1016/j.clim.2023.109303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Recombinant interferon-α2a (IFNα2a) has been widely used in the treatment of Behcet's uveitis (BU). However, the mechanism underlying its effects remains poorly understood. In this study, we investigated its effect on dendritic cells (DCs) and CD4+ T cells, which are essential for the development of BU. Our results showed that the expression of PDL1 and IRF1 was significantly decreased in DCs from active BU patients, and IFNα2a could significantly upregulate PDL1 expression in an IRF1-dependent manner. IFNα2a-treated DCs induced CD4+ T cells apoptosis and inhibited the Th1/Th17 immune response in association with reduced secretion of IFN-γ and IL-17. We also found that IFNα2a promoted Th1 cell differentiation and IL-10 secretion by CD4+ T cells. Finally, a comparison of patients before and after IFNα2a therapy revealed that the frequencies of Th1/Th17 cells significantly decreased in association with remission of uveitis after IFNα2a therapy. Collectively, these results show that IFNα2a could exert its effects by modulating the function of DCs and CD4+ T cells in BU.
Collapse
|
5
|
Chopra A, Gupta A. Skin as an immune organ and the site of biomimetic, non-invasive vaccination. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
Davies J, Sirvent S, Vallejo AF, Clayton K, Douilhet G, Keeler PS, West J, Ardern-Jones M, MacArthur BD, Singh H, Polak ME. Transcriptional programming of immunoregulatory responses in human Langerhans cells. Front Immunol 2022; 13:892254. [PMID: 36203560 PMCID: PMC9530347 DOI: 10.3389/fimmu.2022.892254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022] Open
Abstract
Human epidermal Langerhans cells (LCs) maintain immune homeostasis in the skin. To examine transcriptional programming of human primary LCs during homeostasis, we performed scRNA-seq analysis of LCs before and after migration from the epidermis, coupled with functional assessment of their regulatory T cell priming capabilities. The analysis revealed that steady-state LCs exist in a continuum of maturation states and upregulate antigen presentation genes along with an immunoregulatory module including the genes IDO1, LGALS1, LAMTOR1, IL4I, upon their migration. The migration-induced transition in genomic state is accompanied by the ability of LCs to more efficiently prime regulatory T cell responses in co-culture assays. Computational analyses of the scRNAseq datasets using SCENIC and Partial Information Decomposition in Context identified a set of migration-induced transcription factors including IRF4, KLF6 and RelB as key nodes within a immunoregulatory gene regulatory network. These findings support a model in which efficient priming of immunoregulatory responses by LCs is dependent on coordinated upregulation of a migration-coupled maturation program with a immunoregulation-promoting genomic module.
Collapse
Affiliation(s)
- James Davies
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sofia Sirvent
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andres F. Vallejo
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kalum Clayton
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Gemma Douilhet
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Patrick S. Keeler
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jonathan West
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Michael Ardern-Jones
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ben D. MacArthur
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Harinder Singh
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, The University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Marta E. Polak, ; Harinder Singh,
| | - Marta E. Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- *Correspondence: Marta E. Polak, ; Harinder Singh,
| |
Collapse
|
7
|
The Roles of Skin Langerhans Cells in Immune Tolerance and Cancer Immunity. Vaccines (Basel) 2022; 10:vaccines10091380. [PMID: 36146458 PMCID: PMC9503294 DOI: 10.3390/vaccines10091380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Langerhans cells (LC) are a unique population of tissue-resident macrophages with dendritic cell (DC) functionality that form a network of cells across the epidermis of the skin. Their location at the skin barrier suggests an important role for LC as immune sentinels at the skin surface. The classification of LC as DC over the past few decades has driven the scientific community to extensively study how LC function as DC-like cells that prime T cell immunity. However, LC are a unique type of tissue-resident macrophages, and recent evidence also supports an immunoregulatory role of LC at steady state and during specific inflammatory conditions, highlighting the impact of cutaneous environment in shaping LC functionality. In this mini review, we discuss the recent literature on the immune tolerance function of LC in homeostasis and disease conditions, including malignant transformation and progression; as well as LC functional plasticity for adaption to microenvironmental cues and the potential connection between LC population heterogeneity and functional diversity. Future investigation into the molecular mechanisms that LC use to integrate different microenvironment cues and adapt immunological responses for controlling LC functional plasticity is needed for future breakthroughs in tumor immunology, vaccine development, and treatments for inflammatory skin diseases.
Collapse
|
8
|
MUM1/IRF4 is Highly Expressed in Dermatopathic Lymphadenopathy: Potential Utility in Diagnosis and Differential Diagnosis. Am J Surg Pathol 2022; 46:1514-1523. [PMID: 35877199 DOI: 10.1097/pas.0000000000001935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dermatopathic lymphadenopathy (DL) is a distinctive type of lymph node hyperplasia that typically occurs in the setting of chronic dermatologic diseases. DL generally self-resolves following disappearance of the underlying skin stimulus and does not require any specific therapy. We recently observed multiple myeloma oncogene 1/interferon regulatory factor 4 (MUM1/IRF4) expression in a case of DL using immunohistochemical methods. The goal of this study was to systematically assess DL cases for MUM1/IRF4 expression and to survey other histiocytic and Langerhans cell lesions. We particularly focused on Langerhans cell histiocytosis (LCH) because the differential diagnosis of DL versus LCH in lymph nodes can be challenging. We identified high expression of MUM1/IRF4 in all 22 cases of DL tested. Specifically, MUM1/IRF4+ dendritic cells comprised 50% to 90% (median, 80%) of all dendritic cells in the paracortex of dermatopathic lymph nodes, always showing moderate or strong intensity. Among 10 DL cases stained for MUM1/IRF4 and langerin/CD207 using dual immunohistochemistry, MUM1/IRF4+ and langerin+ Langerhans cells represented 5% to 60% (median, 30%) of paracortical dendritic cells. MUM1/IRF4 was also positive in reactive Langerhans cells in skin biopsy specimens of all cases of spongiotic dermatitis (n=10) and normal skin (n=15), and was negative in all cases of LCH (n=24), Rosai-Dorfman disease (n=10), follicular dendritic cell sarcoma (n=5) and histiocytic sarcoma (n=4). In aggregate, our findings support the utility of MUM1/IRF4 to highlight the dendritic cells of DL and to distinguish DL from other histiocytic and Langerhans cells lesions.
Collapse
|