1
|
Arnholdt-Schmitt B, Noceda C, Germano TA, Aziz S, Thiers KLL, Oliveira M, Bharadwaj R, Mohanapriya G, Sircar D, Costa JH. Validating alternative oxidase (AOX) gene family as efficient marker consortium for multiple-resilience in Xylella fastidiosa-infected Vitis holobionts. PLANT CELL REPORTS 2024; 43:236. [PMID: 39313563 DOI: 10.1007/s00299-024-03327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
KEY MESSAGE AOX gene family in motion marks in-born efficiency of respiration adjustment; can serve for primer screening, genotype ranking, in vitro-plant discrimination and a SMART perspective for multiple-resilient plant holobiont selection. The bacteria Xylella fastidiosa (Xf) is a climate-dependent, global threat to many crops of high socio-economic value, including grapevine. Currently designed breeding strategies for Xf-tolerant or -resistant genotypes insufficiently address the danger of biodiversity loss by focusing on selected threats, neglecting future environmental conditions. Thus, breeding strategies should be validated across diverse populations and acknowledge temperature changes and drought by minimizing the metabolic-physiologic effects of multiple stress-induced oxygen shortages. This research hypothesizes that multiple-resilient plant holobionts achieve lifelong adaptive robustness through early molecular and metabolic responses in primary stress target cells, which facilitate efficient respiration adjustment and cell cycle down-regulation. To validate this concept open-access transcriptome data were analyzed of xylem tissues of Xf-tolerant and -resistant Vitis holobionts from diverse trials and genetic origins from early hours to longer periods after Xf-inoculation. The results indicated repetitive involvement of alternative oxidase (AOX) transcription in episodes of down-regulated transcripts of cytochrome c oxidase (COX) at various critical time points before disease symptoms emerged. The relation between transcript levels of COX and AOX ('relCOX/AOX') was found promising for plant discrimination and primer screening. Furthermore, transcript levels of xylem-harbored bacterial consortia indicated common regulation with Xf and revealed stress-induced early down-regulation and later enhancement. LPS priming promoted the earlier increase in bacterial transcripts after Xf-inoculation. This proof-of-principle study highlights a SMART perspective for AOX-assisted plant selection towards multiple-resilience that includes Xf-tolerance. It aims to support timely future plant diagnostics and in-field substitution, sustainable agro-management, which protects population diversity and strengthens both conventional breeding and high-tech, molecular breeding research. Furthermore, the results suggested early up-regulation of bacterial microbiota consortia in vascular-enriched tissues as a novel additional trait for future studies on Xf-tolerance.
Collapse
Affiliation(s)
- Birgit Arnholdt-Schmitt
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal.
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil.
| | - Carlos Noceda
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Cell and Molecular Biotechnology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de La Vida y de La Agricultura, Universidad de Las Fuerzas Armadas-ESPE, Sangolquí, 171103, Ecuador
- Facultad de Ingeniería, Universidad Estatal de Milagro (UNEMI), Guayas, 091050, Ecuador
| | - Thais Andrade Germano
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil
| | - Shahid Aziz
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil
| | - Karine Leitão Lima Thiers
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil
| | - Manuela Oliveira
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Department of Mathematics and CIMA -Center for Research On Mathematics and Its Applications, Universidade de Évora, Évora, Portugal
| | - Revuru Bharadwaj
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
| | - Gunasekaran Mohanapriya
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- School of Biotechnology, A.V.P. College of Arts and Science, Tiruppur, 641652, India
| | - Debabrata Sircar
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - José Hélio Costa
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal.
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil.
| |
Collapse
|
2
|
Echavarria R, Cardona-Muñoz EG, Ortiz-Lazareno P, Andrade-Sierra J, Gómez-Hermosillo LF, Casillas-Moreno J, Campos-Bayardo TI, Román-Rojas D, García-Sánchez A, Miranda-Díaz AG. The Role of the Oxidative State and Innate Immunity Mediated by TLR7 and TLR9 in Lupus Nephritis. Int J Mol Sci 2023; 24:15234. [PMID: 37894915 PMCID: PMC10607473 DOI: 10.3390/ijms242015234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Lupus nephritis (LN) is a severe complication of systemic lupus erythematosus (SLE) and is considered one of the leading causes of mortality. Multiple immunological pathways are involved in the pathogenesis of SLE, which makes it imperative to deepen our knowledge about this disease's immune-pathological complexity and explore new therapeutic targets. Since an altered redox state contributes to immune system dysregulation, this document briefly addresses the roles of oxidative stress (OS), oxidative DNA damage, antioxidant enzymes, mitochondrial function, and mitophagy in SLE and LN. Although adaptive immunity's participation in the development of autoimmunity is undeniable, increasing data emphasize the importance of innate immunity elements, particularly the Toll-like receptors (TLRs) that recognize nucleic acid ligands, in inflammatory and autoimmune diseases. Here, we discuss the intriguing roles of TLR7 and TLR9 in developing SLE and LN. Also included are the essential characteristics of conventional treatments and some other novel and little-explored alternatives that offer options to improve renal function in LN.
Collapse
Affiliation(s)
- Raquel Echavarria
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (R.E.); (P.O.-L.)
- Investigadores por México, Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México 03940, Mexico
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Pablo Ortiz-Lazareno
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (R.E.); (P.O.-L.)
| | - Jorge Andrade-Sierra
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Luis Francisco Gómez-Hermosillo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Jorge Casillas-Moreno
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Tannia Isabel Campos-Bayardo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Daniel Román-Rojas
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Andrés García-Sánchez
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| |
Collapse
|
3
|
Yan Z, Chen Q, Xia Y. Oxidative Stress Contributes to Inflammatory and Cellular Damage in Systemic Lupus Erythematosus: Cellular Markers and Molecular Mechanism. J Inflamm Res 2023; 16:453-465. [PMID: 36761905 PMCID: PMC9907008 DOI: 10.2147/jir.s399284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease with complex pathogenesis, the treatment of which relies exclusively on the use of immunosuppressants. Increased oxidative stress is involved in causing inflammatory and cellular defects in the pathogenesis of SLE. Various inflammatory and cellular markers including oxidative modifications of proteins, lipids, and DNA contribute to immune system dysregulation and trigger an aggressive autoimmune attack through molecular mechanisms like enhanced NETosis, mTOR pathway activation, and imbalanced T-cell differentiation. Accordingly, the detection of inflammatory and cellular markers is important for providing an accurate assessment of the extent of oxidative stress. Oxidative stress also reduces DNA methylation, thus allowing the increased expression of affected genes. As a result, pharmacological approaches targeting oxidative stress yield promising results in treating patients with SLE. The purpose of this review is to examine the involvement of oxidative stress in the pathogenesis and management of SLE.
Collapse
Affiliation(s)
- Zhu Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Qin Chen
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China,Correspondence: Yumin Xia, Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, 157 Xiwu Road, Xi’an, 710004, People’s Republic of China, Tel/Fax +86-29-87679969, Email
| |
Collapse
|
4
|
Transcriptome Analyses in a Selected Gene Set Indicate Alternative Oxidase (AOX) and Early Enhanced Fermentation as Critical for Salinity Tolerance in Rice. PLANTS 2022; 11:plants11162145. [PMID: 36015448 PMCID: PMC9415304 DOI: 10.3390/plants11162145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022]
Abstract
Plants subjected to stress need to respond rapidly and efficiently to acclimatize and survive. In this paper, we investigated a selected gene set potentially involved in early cell reprogramming in two rice genotypes with contrasting salinity tolerance (Pokkali tolerant and IR29 susceptible) in order to advance knowledge of early molecular mechanisms of rice in dealing with salt stress. Selected genes were evaluated in available transcriptomic data over a short period of 24 h and involved enzymes that avoid ROS formation (AOX, UCP and PTOX), impact ATP production (PFK, ADH and COX) or relate to the antioxidant system. Higher transcript accumulation of AOX (ROS balancing), PFK and ADH (alcohol fermentation) was detected in the tolerant genotype, while the sensitive genotype revealed higher UCP and PTOX transcript levels, indicating a predominant role for early transcription of AOX and fermentation in conferring salt stress tolerance to rice. Antioxidant gene analyses supported higher oxidative stress in IR29, with transcript increases of cytosolic CAT and SOD from all cell compartments (cytoplasm, peroxisome, chloroplast and mitochondria). In contrast, Pokkali increased mRNA levels from the AsA-GSH cycle as cytosolic/mitochondrial DHAR was involved in ascorbate recovery. In addition, these responses occurred from 2 h in IR29 and 10 h in Pokkali, indicating early but ineffective antioxidant activity in the susceptible genotype. Overall, our data suggest that AOX and ADH can play a critical role during early cell reprogramming for improving salt stress tolerance by efficiently controlling ROS formation in mitochondria. We discuss our results in relation to gene engineering and editing approaches to develop salinity-tolerant crops.
Collapse
|
5
|
Melatonin: highlighting its use as a potential treatment for SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:143. [PMID: 35187603 PMCID: PMC8858600 DOI: 10.1007/s00018-021-04102-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Numerous pharmaceutical drugs have been repurposed for use as treatments for COVID-19 disease. These drugs have not consistently demonstrated high efficacy in preventing or treating this serious condition and all have side effects to differing degrees. We encourage the continued consideration of the use of the antioxidant and anti-inflammatory agent, melatonin, as a countermeasure to a SARS-CoV-2 infection. More than 140 scientific publications have identified melatonin as a likely useful agent to treat this disease. Moreover, the publications cited provide the rationale for the use of melatonin as a prophylactic agent against this condition. Melatonin has pan-antiviral effects and it diminishes the severity of viral infections and reduces the death of animals infected with numerous different viruses, including three different coronaviruses. Network analyses, which compared drugs used to treat SARS-CoV-2 in humans, also predicted that melatonin would be the most effective agent for preventing/treating COVID-19. Finally, when seriously infected COVID-19 patients were treated with melatonin, either alone or in combination with other medications, these treatments reduced the severity of infection, lowered the death rate, and shortened the duration of hospitalization. Melatonin’s ability to arrest SARS-CoV-2 infections may reduce health care exhaustion by limiting the need for hospitalization. Importantly, melatonin has a high safety profile over a wide range of doses and lacks significant toxicity. Some molecular processes by which melatonin resists a SARS-CoV-2 infection are summarized. The authors believe that all available, potentially beneficial drugs, including melatonin, that lack toxicity should be used in pandemics such as that caused by SARS-CoV-2.
Collapse
|
6
|
Costa JH, Aziz S, Noceda C, Arnholdt-Schmitt B. Major Complex Trait for Early De Novo Programming 'CoV-MAC-TED' Detected in Human Nasal Epithelial Cells Infected by Two SARS-CoV-2 Variants Is Promising to Help in Designing Therapeutic Strategies. Vaccines (Basel) 2021; 9:1399. [PMID: 34960145 PMCID: PMC8708361 DOI: 10.3390/vaccines9121399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Early metabolic reorganization was only recently recognized as an essentially integrated part of immunology. In this context, unbalanced ROS/RNS levels connected to increased aerobic fermentation, which is linked to alpha-tubulin-based cell restructuring and control of cell cycle progression, were identified as a major complex trait for early de novo programming ('CoV-MAC-TED') during SARS-CoV-2 infection. This trait was highlighted as a critical target for developing early anti-viral/anti-SARS-CoV-2 strategies. To obtain this result, analyses had been performed on transcriptome data from diverse experimental cell systems. A call was released for wide data collection of the defined set of genes for transcriptome analyses, named 'ReprogVirus', which should be based on strictly standardized protocols and data entry from diverse virus types and variants into the 'ReprogVirus Platform'. This platform is currently under development. However, so far, an in vitro cell system from primary target cells for virus attacks that could ideally serve for standardizing the data collection of early SARS-CoV-2 infection responses has not been defined. RESULTS Here, we demonstrate transcriptome-level profiles of the most critical 'ReprogVirus' gene sets for identifying 'CoV-MAC-TED' in cultured human nasal epithelial cells infected by two SARS-CoV-2 variants differing in disease severity. Our results (a) validate 'Cov-MAC-TED' as a crucial trait for early SARS-CoV-2 reprogramming for the tested virus variants and (b) demonstrate its relevance in cultured human nasal epithelial cells. CONCLUSION In vitro-cultured human nasal epithelial cells proved to be appropriate for standardized transcriptome data collection in the 'ReprogVirus Platform'. Thus, this cell system is highly promising to advance integrative data analyses with the help of artificial intelligence methodologies for designing anti-SARS-CoV-2 strategies.
Collapse
Affiliation(s)
- José Hélio Costa
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil;
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Montemor-o-Novo, Portugal;
| | - Shahid Aziz
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil;
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Montemor-o-Novo, Portugal;
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Montemor-o-Novo, Portugal;
- Plant Molecular and Cellular Biotechnology/Industrial Biotechnology and Bioproducts, Department of Life and Agricultural Sciences, Universidad de las Fuerzas Armadas-ESPE, Quito 171103, Ecuador
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil;
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Montemor-o-Novo, Portugal;
| |
Collapse
|
7
|
Bharadwaj R, Noceda C, Mohanapriya G, Kumar SR, Thiers KLL, Costa JH, Macedo ES, Kumari A, Gupta KJ, Srivastava S, Adholeya A, Oliveira M, Velada I, Sircar D, Sathishkumar R, Arnholdt-Schmitt B. Adaptive Reprogramming During Early Seed Germination Requires Temporarily Enhanced Fermentation-A Critical Role for Alternative Oxidase Regulation That Concerns Also Microbiota Effectiveness. FRONTIERS IN PLANT SCIENCE 2021; 12:686274. [PMID: 34659277 PMCID: PMC8518632 DOI: 10.3389/fpls.2021.686274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/10/2021] [Indexed: 05/05/2023]
Abstract
Plants respond to environmental cues via adaptive cell reprogramming that can affect whole plant and ecosystem functionality. Microbiota constitutes part of the inner and outer environment of the plant. This Umwelt underlies steady dynamics, due to complex local and global biotic and abiotic changes. Hence, adaptive plant holobiont responses are crucial for continuous metabolic adjustment at the systems level. Plants require oxygen-dependent respiration for energy-dependent adaptive morphology, such as germination, root and shoot growth, and formation of adventitious, clonal, and reproductive organs, fruits, and seeds. Fermentative paths can help in acclimation and, to our view, the role of alternative oxidase (AOX) in coordinating complex metabolic and physiological adjustments is underestimated. Cellular levels of sucrose are an important sensor of environmental stress. We explored the role of exogenous sucrose and its interplay with AOX during early seed germination. We found that sucrose-dependent initiation of fermentation during the first 12 h after imbibition (HAI) was beneficial to germination. However, parallel upregulated AOX expression was essential to control negative effects by prolonged sucrose treatment. Early downregulated AOX activity until 12 HAI improved germination efficiency in the absence of sucrose but suppressed early germination in its presence. The results also suggest that seeds inoculated with arbuscular mycorrhizal fungi (AMF) can buffer sucrose stress during germination to restore normal respiration more efficiently. Following this approach, we propose a simple method to identify organic seeds and low-cost on-farm perspectives for early identifying disease tolerance, predicting plant holobiont behavior, and improving germination. Furthermore, the research strengthens the view that AOX can serve as a powerful functional marker source for seed hologenomes.
Collapse
Affiliation(s)
- Revuru Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Gunasekharan Mohanapriya
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Sarma Rajeev Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Karine Leitão Lima Thiers
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - José Hélio Costa
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Elisete Santos Macedo
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Aprajita Kumari
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, New Delhi, India
| | - Kapuganti Jagadis Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, New Delhi, India
| | - Shivani Srivastava
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gurugram, India
| | - Alok Adholeya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gurugram, India
| | - Manuela Oliveira
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Mathematics and CIMA - Center for Research on Mathematics and Its Applications, Universidade de Évora, Évora, Portugal
| | - Isabel Velada
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Debabrata Sircar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Birgit Arnholdt-Schmitt
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|