1
|
Saraiva RM, Costa AR. Chagas Disease Reactivation after Heart Transplant: Importance of New Predictors. Arq Bras Cardiol 2024; 121:e20240284. [PMID: 39016416 DOI: 10.36660/abc.20240284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 07/18/2024] Open
Affiliation(s)
- Roberto M Saraiva
- Instituto Nacional de Infectologia Evandro Chagas - Fundação Oswaldo Cruz, Rio de Janeiro, RJ - Brasil
| | - Andréa R Costa
- Instituto Nacional de Infectologia Evandro Chagas - Fundação Oswaldo Cruz, Rio de Janeiro, RJ - Brasil
| |
Collapse
|
2
|
do Vale INPC, Almeida GG, Rimkute I, Liechti T, de Araújo FF, dos Santos LI, Henriques PM, Rocha MODC, Elói-Santos SM, Martins−Filho OA, Roederer M, Sher A, Jankovic D, Teixeira−Carvalho A, Antonelli LRDV. Signatures of CD4 + T and B cells are associated with distinct stages of chronic chagasic cardiomyopathy. Front Immunol 2024; 15:1385850. [PMID: 38726014 PMCID: PMC11079136 DOI: 10.3389/fimmu.2024.1385850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Chagas disease is a neglected parasitic disease caused by Trypanosoma cruzi. While most patients are asymptomatic, around 30% develop Chronic Chagasic Cardiomyopathy (CCC). Methods Here, we employed high-dimensional flow cytometry to analyze CD4+ T and B cell compartments in patients during the chronic phase of Chagas disease, presenting the asymptomatic and mild or moderate/severe cardiac clinical forms. Results Effector CD27-CD4+ T cells were expanded in both CCC groups, and only mild CCC patients showed higher frequencies of effector memory and T follicular helper (Tfh) cells than healthy donors (CTL) and asymptomatic patients. Unsupervised analysis confirmed these findings and further revealed the expansion of a specific subpopulation composed of Tfh, transitional, and central memory CD4+ T cells bearing a phenotype associated with strong activation, differentiation, and exhaustion in patients with mild but not moderate/severe CCC. In contrast, patients with mild and moderate/severe CCC had lower frequencies of CD4+ T cells expressing lower levels of activation markers, suggesting resting status, than CTL. Regarding the B cell compartment, no alterations were found in naïve CD21-, memory cells expressing IgM or IgD, marginal zone, and plasma cells in patients with Chagas disease. However, expansion of class-switched activated and atypical memory B cells was observed in all clinical forms, and more substantially in mild CCC patients. Discussion Taken together, our results showed that T. cruzi infection triggers changes in CD4+ T and B cell compartments that are more pronounced in the mild CCC clinical form, suggesting an orchestrated cellular communication during Chagas disease. Conclusion Overall, these findings reinforce the heterogeneity and complexity of the immune response in patients with chronic Chagas disease and may provide new insights into disease pathology and potential markers to guide clinical decisions.
Collapse
Affiliation(s)
- Isabela Natália Pascoal Campos do Vale
- Biology and Immunology of Infectious and Parasitic Diseases Group, René Rachou Institute, Oswaldo Cruz Foundation-FIOCRUZ, Belo Horizonte, Brazil
- Integrated Research Group in Biomarkers, René Rachou Institute, Oswaldo Cruz Foundation-FIOCRUZ, Belo Horizonte, Brazil
| | - Gregório Guilherme Almeida
- Biology and Immunology of Infectious and Parasitic Diseases Group, René Rachou Institute, Oswaldo Cruz Foundation-FIOCRUZ, Belo Horizonte, Brazil
| | - Inga Rimkute
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Thomas Liechti
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Fernanda Fortes de Araújo
- Integrated Research Group in Biomarkers, René Rachou Institute, Oswaldo Cruz Foundation-FIOCRUZ, Belo Horizonte, Brazil
| | - Luara Isabela dos Santos
- Biology and Immunology of Infectious and Parasitic Diseases Group, René Rachou Institute, Oswaldo Cruz Foundation-FIOCRUZ, Belo Horizonte, Brazil
- Departament of Basic Science, Faculty of Medical Sciences of Minas Gerais, Belo Horizonte, Brazil
| | - Priscilla Miranda Henriques
- Biology and Immunology of Infectious and Parasitic Diseases Group, René Rachou Institute, Oswaldo Cruz Foundation-FIOCRUZ, Belo Horizonte, Brazil
| | - Manoel Otávio da Costa Rocha
- Department of Clinical Medicine, Postgraduate Program in Infectious Diseases and Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Silvana Maria Elói-Santos
- Integrated Research Group in Biomarkers, René Rachou Institute, Oswaldo Cruz Foundation-FIOCRUZ, Belo Horizonte, Brazil
- Department of Complementary Propedeutics, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Olindo Assis Martins−Filho
- Integrated Research Group in Biomarkers, René Rachou Institute, Oswaldo Cruz Foundation-FIOCRUZ, Belo Horizonte, Brazil
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andréa Teixeira−Carvalho
- Integrated Research Group in Biomarkers, René Rachou Institute, Oswaldo Cruz Foundation-FIOCRUZ, Belo Horizonte, Brazil
| | - Lis Ribeiro do Valle Antonelli
- Biology and Immunology of Infectious and Parasitic Diseases Group, René Rachou Institute, Oswaldo Cruz Foundation-FIOCRUZ, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Mancino C, Pollet J, Zinger A, Jones KM, Villar MJ, Leao AC, Adhikari R, Versteeg L, Tyagi Kundu R, Strych U, Giordano F, Hotez PJ, Bottazzi ME, Taraballi F, Poveda C. Harnessing RNA Technology to Advance Therapeutic Vaccine Antigens against Chagas Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15832-15846. [PMID: 38518375 PMCID: PMC10996878 DOI: 10.1021/acsami.3c18830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Chagas disease (CD) (American trypanosomiasis caused by Trypanosoma cruzi) is a parasitic disease endemic in 21 countries in South America, with increasing global spread. When administered late in the infection, the current antiparasitic drugs do not prevent the onset of cardiac illness leading to chronic Chagasic cardiomyopathy. Therefore, new therapeutic vaccines or immunotherapies are under development using multiple platforms. In this study, we assessed the feasibility of developing an mRNA-based therapeutic CD vaccine targeting two known T. cruzi vaccine antigens (Tc24─a flagellar antigen and ASP-2─an amastigote antigen). We present the mRNA engineering steps, preparation, and stability of the lipid nanoparticles and evaluation of their uptake by dendritic cells, as well as their biodistribution in c57BL/J mice. Furthermore, we assessed the immunogenicity and efficacy of two mRNA-based candidates as monovalent and bivalent vaccine strategies using an in vivo chronic mouse model of CD. Our results show several therapeutic benefits, including reductions in parasite burdens and cardiac inflammation, with each mRNA antigen, especially with the mRNA encoding Tc24, and Tc24 in combination with ASP-2. Therefore, our findings demonstrate the potential of mRNA-based vaccines as a therapeutic option for CD and highlight the opportunities for developing multivalent vaccines using this approach.
Collapse
Affiliation(s)
- Chiara Mancino
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
| | - Jeroen Pollet
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Assaf Zinger
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Laboratory
for Bioinspired Nano Engineering and Translational Therapeutics, Department
of Chemical Engineering, Technion−Israel
Institute of Technology, Haifa 3200003, Israel
- Cardiovascular
Sciences Department, Houston Methodist Academic
Institute, Houston, Texas 77030, United States
- Neurosurgery
Department, Houston Methodist Academic Institute, Houston, Texas 77030, United States
| | - Kathryn M. Jones
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
- Department
of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Maria José Villar
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Ana Carolina Leao
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Rakesh Adhikari
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Leroy Versteeg
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
- Cell Biology
and Immunology Group, Wageningen University
& Research, Wageningen 6708 PB, The Netherlands
| | - Rakhi Tyagi Kundu
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Ulrich Strych
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Federica Giordano
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
| | - Peter J. Hotez
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
- Department
of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
- Department
of Biology, Baylor University, Waco, Texas 76798, United States
| | - Maria Elena Bottazzi
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
- Department
of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
- Department
of Biology, Baylor University, Waco, Texas 76798, United States
| | - Francesca Taraballi
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Cristina Poveda
- Department
of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Texas
Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| |
Collapse
|
4
|
Lozano KJG, Gonçalves Santos E, Vilas Boas DF, Oliveira RRG, Diniz LF, Benedetti MD, Carneiro CM, C Bandeira L, Faria G, Gonçalves RV, Novaes RD, Caldas S, Caldas IS. Schistosoma mansoni co-infection modulates Chagas disease development but does not impair the effect of benznidazole-based chemotherapy. Int Immunopharmacol 2024; 128:111467. [PMID: 38211479 DOI: 10.1016/j.intimp.2023.111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/05/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
The adequate management of parasite co-infections represents a challenge that has not yet been overcome, especially considering that the pathological outcomes and responses to treatment are poorly understood. Thus, this study aimed to evaluate the impact of Schistosoma mansoni infection on the efficacy of benznidazole (BZN)-based chemotherapy in Trypanosoma cruzi co-infected mice. BALB/c mice were maintained uninfected or co-infected with S. mansoni and T. cruzi, and were untreated or treated with BZN. Body weight, mortality, parasitemia, cardiac parasitism, circulating cytokines (Th1/Th2/Th17); as well as heart, liver and intestine microstructure were analyzed. The parasitemia peak was five times higher and myocarditis was more severe in co-infected than T. cruzi-infected mice. After reaching peak, parasitemia was effectively controlled in co-infected animals. BZN successfully controlled parasitemia in both co-infected and T. cruzi-infected mice and improved body mass, cardiac parasitism, myocarditis and survival in co-infected mice. Co-infection dampened the typical cytokine response to either parasite, and BZN reduced anti-inflammatory cytokines in co-infected mice. Despite BZN normalizing splenomegaly and liver cellular infiltration, it exacerbated hepatomegaly in co-infected mice. Co-infection or BZN exerted no effect on hepatic granulomas, but increased pulmonary and intestinal granulomas. Marked granulomatous inflammation was identified in the small intestine of all schistosomiasis groups. Taken together, our findings indicate that BZN retains its therapeutic efficacy against T. cruzi infection even in the presence of S. mansoni co-infection, but with organ-specific repercussions, especially in the liver.
Collapse
Affiliation(s)
- Kelly J G Lozano
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Elda Gonçalves Santos
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Diego F Vilas Boas
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Raphaela R G Oliveira
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Lívia F Diniz
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Monique D Benedetti
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Cláudia M Carneiro
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Federal University, Ouro Preto 35400-000, MG, Brazil
| | - Lorena C Bandeira
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Federal University, Ouro Preto 35400-000, MG, Brazil
| | - Gilson Faria
- Department of Research and Development., Ezequiel Dias Foundation, 30510-010, Belo Horizonte, MG, Brazil
| | - Reggiani V Gonçalves
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Rômulo D Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil
| | - Sérgio Caldas
- Department of Research and Development., Ezequiel Dias Foundation, 30510-010, Belo Horizonte, MG, Brazil
| | - Ivo S Caldas
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil.
| |
Collapse
|
5
|
Villar SR, Herreros-Cabello A, Callejas-Hernández F, Maza MC, Del Moral-Salmoral J, Gómez-Montes M, Rodríguez-Angulo HO, Carrillo I, Górgolas M, Bosch-Nicolau P, Molina I, Pérez-Molina JA, Monge-Maillo B, Bottasso OA, Beloscar J, Pérez AR, Fresno M, Gironès N. Discovery of circulating miRNAs as biomarkers of chronic Chagas heart disease via a small RNA-Seq approach. Sci Rep 2024; 14:1187. [PMID: 38216639 PMCID: PMC10786931 DOI: 10.1038/s41598-024-51487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Chagas disease affects approximately 7 million people worldwide in Latin America and is a neglected tropical disease. Twenty to thirty percent of chronically infected patients develop chronic Chagas cardiomyopathy decades after acute infection. Identifying biomarkers of Chagas disease progression is necessary to develop better therapeutic and preventive strategies. Circulating microRNAs are increasingly reliable biomarkers of disease and therapeutic targets. To identify new circulating microRNAs for Chagas disease, we performed exploratory small RNA sequencing from the plasma of patients and performed de novo miRNA prediction, identifying potential new microRNAs. The levels of the new microRNAs temporarily named miR-Contig-1519 and miR-Contig-3244 and microRNAs that are biomarkers for nonchagasic cardiomyopathies, such as miR-148a-3p and miR-224-5p, were validated by quantitative reverse transcription. We found a specific circulating microRNA signature defined by low miR-Contig-3244, miR-Contig-1519, and miR-148a-3 levels but high miR-224-5p levels for patients with chronic Chagas disease. Finally, we predicted in silico that these altered circulating microRNAs could affect the expression of target genes involved in different cellular pathways and biological processes, which we will explore in the future.
Collapse
Affiliation(s)
- Silvina R Villar
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Alfonso Herreros-Cabello
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Francisco Callejas-Hernández
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - María C Maza
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Javier Del Moral-Salmoral
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Mario Gómez-Montes
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | | | - Irene Carrillo
- Division of Infectious Diseases, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Górgolas
- Division of Infectious Diseases, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pau Bosch-Nicolau
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Israel Molina
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José A Pérez-Molina
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Begoña Monge-Maillo
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar A Bottasso
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Juan Beloscar
- Cátedra y Servicio de Cardiología, Sección Chagas, Hospital Provincial del Centenario, Rosario, Argentina
| | - Ana R Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Manuel Fresno
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid (IUBM-UAM), Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid (IUBM-UAM), Madrid, Spain.
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain.
| |
Collapse
|
6
|
Zhang A, Li M, Wang Y, Xiong Y, Zhu T, Qi X, Li J. Heat shock protein 90 C-terminal inhibitor PNSA promotes anticancer immunology of CD8 + T cells. Int Immunopharmacol 2023; 121:110471. [PMID: 37356120 DOI: 10.1016/j.intimp.2023.110471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
Penisuloxazin A (PNSA), a new compound from the fungus, is a novel C-terminal Hsp90 inhibitor reported by us before. It has been reported to possess antitumor activity and suppresses metastasis of breast cancer cells. However, the influence of PNSA on T cells is not fully understood. Here, we found that PNSA was much less toxic to lymphocytes than to tumor cells and it had no significant effect on populations of CD3+, CD4+ and CD8+ T lymphocytes. We discovered that PNSA directly enhanced the killing capacities of the CD8+ T and CD3+CD25- to CT26 cells, but not that of CD3+ cells due to the increase of Treg cells. What's more, PNSA pretreated tumor cells increase the sensitivity to CD8+ T cells mainly through the degradation of client protein of Hsp90 and declination of PD-L1 expression. Eventually, PNSA enhanced the killing ability of CD8+ and CD3+ T cells by simultaneously acting on lymphocytes and cancer cells. In vivo experiments, PNSA exhibited inhibition effects in the colon adenocarcinoma with increase of CD8 T cell infiltration in tumor tissues. All these results indicate that the novel Hsp90 C-terminal inhibitor-PNSA can promote lytic T cell immunological function to improve anticancer effect of PNSA, which provides a better foundation for anticancer drug development of PNSA in future.
Collapse
Affiliation(s)
- Aotong Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Mingfeng Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yanjuan Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ying Xiong
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237, China.
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237, China
| |
Collapse
|
7
|
Puerta CJ, Cuellar A, Lasso P, Mateus J, Gonzalez JM. Trypanosoma cruzi-specific CD8 + T cells and other immunological hallmarks in chronic Chagas cardiomyopathy: Two decades of research. Front Cell Infect Microbiol 2023; 12:1075717. [PMID: 36683674 PMCID: PMC9846209 DOI: 10.3389/fcimb.2022.1075717] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Trypanosoma cruzi, the causal agent of Chagas disease, has coexisted with humans for thousands of years. Therefore, the parasite has developed several mechanisms of antigenic variability that has allowed it to live inside the cells and evade the host immune response. Since T. cruzi displays an intracellular cycle-stage, our research team focused on providing insights into the CD8+ T cells immune response in chronic Chagas cardiomyopathy. We began our work in the 2000s studying parasite antigens that induce natural immune responses such as the KMP11 protein and TcTLE, its N-terminal derived peptide. Different approaches allowed us to reveal TcTLE peptide as a promiscuous CD8+ T cell epitope, able of inducing multifunctional cellular immune responses and eliciting a humoral response capable of decreasing parasite movement and infective capacity. Next, we demonstrated that as the disease progresses, total CD8+ T cells display a dysfunctional state characterized by a prolonged hyper-activation state along with an increase of inhibitory receptors (2B4, CD160, PD-1, TIM-3, CTLA-4) expression, an increase of specific terminal effector T cells (TTE), a decrease of proliferative capacity, a decrease of stem cell memory (TSCM) frequency, and a decrease of CD28 and CD3ζ expression. Thus, parasite-specific CD8+ T cells undergo clonal exhaustion, distinguished by an increase in late-differentiated cells, a mono-functional response, and enhanced expression of inhibitory receptors. Finally, it was found that anti-parasitic treatment induces an improved CD8+ T cell response in asymptomatic individuals, and a mouse animal model led us to establish a correlation between the quality of the CD8+ T cell responses and the outcome of chronic infection. In the future, using OMICs strategies, the identification of the specific cellular signals involved in disease progression will provide an invaluable resource for discovering new biomarkers of progression or new vaccine and immunotherapy strategies. Also, the inclusion of the TcTLE peptide in the rational design of epitope-based vaccines, the development of immunotherapy strategies using TSCM or the blocking of inhibitory receptors, and the use of the CD8+ T cell response quality to follow treatments, immunotherapies or vaccines, all are alternatives than could be explored in the fight against Chagas disease.
Collapse
Affiliation(s)
- Concepción J. Puerta
- Laboratory of Molecular Parasitology, Infectious Diseases Group, Department of Microbiology, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Cuellar
- Clinical Laboratory Sciences Group, Department of Microbiology, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Laboratory of Molecular Parasitology, Infectious Diseases Group, Department of Microbiology, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jose Mateus
- Laboratory of Molecular Parasitology, Infectious Diseases Group, Department of Microbiology, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - John M. Gonzalez
- Group of Biomedical Sciences, School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
8
|
Biscari L, Maza MC, Farré C, Kaufman CD, Amigorena S, Fresno M, Gironès N, Alloatti A. Sec22b-dependent antigen cross-presentation is a significant contributor of T cell priming during infection with the parasite Trypanosoma cruzi. Front Cell Dev Biol 2023; 11:1138571. [PMID: 36936692 PMCID: PMC10014565 DOI: 10.3389/fcell.2023.1138571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Antigen cross-presentation is a vital mechanism of dendritic cells and other antigen presenting cells to orchestrate the priming of cytotoxic responses towards killing of infected or cancer cells. In this process, exogenous antigens are internalized by dendritic cells, processed, loaded onto MHC class I molecules and presented to CD8+ T cells to activate them. Sec22b is an ER-Golgi Intermediate Compartment resident SNARE protein that, in partnership with sintaxin4, coordinates the recruitment of the transporter associated with antigen processing protein and the peptide loading complex to phagosomes, where antigenic peptides that have been proteolyzed in the cytosol are loaded in MHC class I molecules and transported to the cell membrane. The silencing of Sec22b in dendritic cells primary cultures and conditionally in dendritic cells of C57BL/6 mice, critically impairs antigen cross-presentation, but neither affects other antigen presentation routes nor cytokine production and secretion. Mice with Sec22b conditionally silenced in dendritic cells (Sec22b-/-) show deficient priming of CD8+ T lymphocytes, fail to control tumor growth, and are resistant to anti-checkpoint immunotherapy. In this work, we show that Sec22b-/- mice elicit a deficient specific CD8+ T cell response when challenged with sublethal doses of Trypanosoma cruzi trypomastigotes that is associated with increased blood parasitemia and diminished survival.
Collapse
Affiliation(s)
- Lucía Biscari
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ma Carmen Maza
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Cecilia Farré
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cintia Daniela Kaufman
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sebastian Amigorena
- Institut Curie, INSERM U932, Immunity and Cancer, PSL University, Paris, France
| | - Manuel Fresno
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, Madrid, Spain
| | - Núria Gironès
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, Madrid, Spain
| | - Andrés Alloatti
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- *Correspondence: Andrés Alloatti,
| |
Collapse
|
9
|
Ferragut F, Cruz KM, Gallardo JP, Fernández M, Hernández Vasquez Y, Gómez KA. Activation-induced marker assays for identification of Trypanosoma cruzi-specific CD4 or CD8 T cells in chronic Chagas disease patients. Immunology 2022; 169:185-203. [PMID: 36567491 DOI: 10.1111/imm.13622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Abstract
Antigen-specific T cells are central to the adaptive immune response against T. cruzi infection and underpin the efficacy of on-going vaccine strategies. In this context, the present study focuses on T-cell assays that define the parasite-specificity on the basis of upregulation of TCR stimulation-induced surface markers. For this purpose, we tested different dual marker combinations (OX40, CD25, CD40L, CD137, CD69, PD-L1, CD11a, CD49d, HLA-DR, CD38) to reliably identify activated CD4+ and CD8+ T-cell populations from PBMCs of chronic Chagas disease (CCD) patients after 12 or 24 h of stimulation with T. cruzi lysate. Results demonstrated that activation-induced markers (AIM) assays combining the expression of OX40, CD25, CD40L, CD137, CD69 and/or PD-L1 surface markers are efficient at detecting T. cruzi-specific CD4+ T cells in CCD patients, in comparison to non-infected donors, after both stimulation times. For CD8+ T cells, only PD-L1/OX40 after 24 h of antigen exposure resulted to be useful to track a parasite-specific response. We also demonstrated that the agnostic activation is mediated by different T. cruzi strains, such as Dm28c, CL Brener or Sylvio. Additionally, we successfully used this approach to identify the phenotype of activated T lymphocytes based on the expression of CD45RA and CCR7. Overall, our results show that different combinations of AIM markers represent an effective and simple tool for the detection of T. cruzi-specific CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Fátima Ferragut
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Karen M Cruz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan P Gallardo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marisa Fernández
- Instituto Nacional de Parasitología 'Dr. Mario Fatala Chabén' (INP-ANLIS), Ciudad Autónoma de Buenos Aires, Argentina
| | - Yolanda Hernández Vasquez
- Instituto Nacional de Parasitología 'Dr. Mario Fatala Chabén' (INP-ANLIS), Ciudad Autónoma de Buenos Aires, Argentina
| | - Karina A Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
10
|
The Characterization of Cardiac Explants Reveals Unique Fibrosis Patterns and a Predominance of CD8+ T Cell Subpopulations in Patients with Chronic Chagas Cardiomyopathy. Pathogens 2022; 11:pathogens11121402. [PMID: 36558736 PMCID: PMC9788058 DOI: 10.3390/pathogens11121402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
AIM The present study aimed to characterize the histopathological findings and the phenotype of inflammatory cells in the myocardial tissue of patients with end-stage heart failure (ESHF) secondary to CCC in comparison with ESHF secondary to non-Chagas cardiomyopathies (NCC). METHODS A total of 32 explanted hearts were collected from transplanted patients between 2014 and 2017. Of these, 21 were classified as CCC and 11 as other NCC. A macroscopic analysis followed by a microscopic analysis were performed. Finally, the phenotypes of the inflammatory infiltrates were characterized using flow cytometry. RESULTS Microscopic analysis revealed more extensive fibrotic involvement in patients with CCC, with more frequent foci of fibrosis, collagen deposits, and degeneration of myocardial fibers, in addition to identifying foci of inflammatory infiltrate of greater magnitude. Finally, cell phenotyping identified more memory T cells, mainly CD8+CD45RO+ T cells, and fewer transitioning T cells (CD45RA+/CD45RO+) in patients with CCC compared with the NCC group. CONCLUSIONS CCC represents a unique form of myocardial involvement characterized by abundant inflammatory infiltrates, severe interstitial fibrosis, extensive collagen deposits, and marked cardiomyocyte degeneration. The structural myocardial changes observed in late-stage Chagas cardiomyopathy appear to be closely related to the presence of cardiac fibrosis and the colocalization of collagen fibers and inflammatory cells, a finding that serves as a basis for the generation of new hypotheses aimed at better understanding the role of inflammation and fibrogenesis in the progression of CCC. Finally, the predominance of memory T cells in CCC compared with NCC hearts highlights the critical role of the parasite-specific lymphocytic response in the course of the infection.
Collapse
|
11
|
Romanelli M, Amaral M, Thevenard F, Santa Cruz LM, Regasini LO, Migotto AE, Lago JHG, Tempone AG. Mitochondrial Imbalance of Trypanosoma cruzi Induced by the Marine Alkaloid 6-Bromo-2'-de- N-Methylaplysinopsin. ACS OMEGA 2022; 7:28561-28570. [PMID: 35990437 PMCID: PMC9387129 DOI: 10.1021/acsomega.2c03395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/09/2023]
Abstract
Chagas disease, caused by Trypanosoma cruzi, affects seven million people worldwide and lacks effective treatments. Using bioactivity-guided fractionation, NMR, and electrospray ionization-high resolution mass spectrometry (ESI-HRMS) spectral analysis, the indole alkaloid 6-bromo-2'-de-N-methylaplysinopsin (BMA) was isolated and chemically characterized from the marine coral Tubastraea tagusensis. BMA was tested against trypomastigotes and intracellular amastigotes of T. cruzi, resulting in IC50 values of 62 and 5.7 μM, respectively, with no mammalian cytotoxicity. The mechanism of action studies showed that BMA induced no alterations in the plasma membrane permeability but caused depolarization of the mitochondrial membrane potential, reducing ATP levels. Intracellular calcium levels were also reduced after the treatment, which was associated with pH alteration of acidocalcisomes. Using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF)/MS analysis, alterations of mass spectral signals were observed after treatment with BMA, suggesting a different mechanism from benznidazole. In silico pharmacokinetic-pharmacodynamic (PKPD) parameters suggested a drug-likeness property, supporting the promising usefulness of this compound as a new hit for optimizations.
Collapse
Affiliation(s)
- Maiara
M. Romanelli
- Centre
for Parasitology and Mycology, Adolfo Lutz
Institute, Av Dr Arnaldo 351, São Paulo, SP 01246-000, Brazil
| | - Maiara Amaral
- Centre
for Parasitology and Mycology, Adolfo Lutz
Institute, Av Dr Arnaldo 351, São Paulo, SP 01246-000, Brazil
| | - Fernanda Thevenard
- Centre
of Natural Sciences and Humanities, Federal
University of ABC (UFABC), Avenida dos Estados 5001, Santo Andre, SP 09210-580, Brazil
| | - Lucas M. Santa Cruz
- Department
of Organic Contaminants, Instituto Adolfo
Lutz, Av Dr Arnaldo 355, São Paulo, SP 01246-000, Brazil
| | - Luis O. Regasini
- Department
of Chemistry and Environmental Sciences, Institute of Biosciences,
Humanities and Exact Sciences, Universidade
Estadual Paulista, R. Cristóvão Colombo 2265, São
Jose do Rio Preto, SP 15054-000, Brazil
| | - Alvaro E. Migotto
- Centre
for Marine Biology, Universidade de São
Paulo, Rodovia Manoel Hypólito do Rego, Km 131, São Sebastião, São Paulo, SP 11600-000, Brazil
| | - João Henrique G. Lago
- Centre
of Natural Sciences and Humanities, Federal
University of ABC (UFABC), Avenida dos Estados 5001, Santo Andre, SP 09210-580, Brazil
| | - Andre G. Tempone
- Centre
for Parasitology and Mycology, Adolfo Lutz
Institute, Av Dr Arnaldo 351, São Paulo, SP 01246-000, Brazil
| |
Collapse
|
12
|
Hu RS, Wu J, Zhang L, Zhou X, Zhang Y. CD8TCEI-EukPath: A Novel Predictor to Rapidly Identify CD8+ T-Cell Epitopes of Eukaryotic Pathogens Using a Hybrid Feature Selection Approach. Front Genet 2022; 13:935989. [PMID: 35937988 PMCID: PMC9354802 DOI: 10.3389/fgene.2022.935989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 12/02/2022] Open
Abstract
Computational prediction to screen potential vaccine candidates has been proven to be a reliable way to provide guarantees for vaccine discovery in infectious diseases. As an important class of organisms causing infectious diseases, pathogenic eukaryotes (such as parasitic protozoans) have evolved the ability to colonize a wide range of hosts, including humans and animals; meanwhile, protective vaccines are urgently needed. Inspired by the immunological idea that pathogen-derived epitopes are able to mediate the CD8+ T-cell-related host adaptive immune response and with the available positive and negative CD8+ T-cell epitopes (TCEs), we proposed a novel predictor called CD8TCEI-EukPath to detect CD8+ TCEs of eukaryotic pathogens. Our method integrated multiple amino acid sequence-based hybrid features, employed a well-established feature selection technique, and eventually built an efficient machine learning classifier to differentiate CD8+ TCEs from non-CD8+ TCEs. Based on the feature selection results, 520 optimal hybrid features were used for modeling by utilizing the LightGBM algorithm. CD8TCEI-EukPath achieved impressive performance, with an accuracy of 79.255% in ten-fold cross-validation and an accuracy of 78.169% in the independent test. Collectively, CD8TCEI-EukPath will contribute to rapidly screening epitope-based vaccine candidates, particularly from large peptide-coding datasets. To conduct the prediction of CD8+ TCEs conveniently, an online web server is freely accessible (http://lab.malab.cn/∼hrs/CD8TCEI-EukPath/).
Collapse
Affiliation(s)
- Rui-Si Hu
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou, China
| | - Jin Wu
- School of Management, Shenzhen Polytechnic, Shenzhen, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Xun Zhou
- Beidahuang Industry Group General Hospital, Harbin, China
- *Correspondence: Xun Zhou, ; Ying Zhang,
| | - Ying Zhang
- Department of Anesthesiology, Hospital (T.C.M) Affiliated of Southwest Medical University, Luzhou, China
- *Correspondence: Xun Zhou, ; Ying Zhang,
| |
Collapse
|
13
|
Biscari L, Kaufman CD, Farré C, Huhn V, Pacini MF, Balbi CB, Gómez KA, Pérez AR, Alloatti A. Immunization With Lipopolysaccharide-Activated Dendritic Cells Generates a Specific CD8+ T Cell Response That Confers Partial Protection Against Infection With Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 12:897133. [PMID: 35903201 PMCID: PMC9318436 DOI: 10.3389/fcimb.2022.897133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Lipopolysaccharide (LPS) induces the activation of dendritic cells (DCs) throughout the engagement of toll-like receptor 4. LPS-activated DCs show increased capacity to process and present pathogen-derived antigens to activate naïve T cells. DCs-based vaccines have been successfully used to treat some cancer types, and lately transferred to the field of infectious diseases, in particular against HIV. However, there is no vaccine or DC therapy for any parasitic disease that is currently available. The immune response against Trypanosoma cruzi substantially relies on T cells, and both CD4+ and CD8+ T lymphocytes are required to control parasite growth. Here, we develop a vaccination strategy based on DCs derived from bone marrow, activated with LPS and loaded with TsKb20, an immunodominant epitope of the trans-sialidase family of proteins. We extensively characterized the CD8+ T cell response generated after immunization and compared three different readouts: a tetramer staining, ELISpot and Activation-Induced Marker (AIM) assays. To our knowledge, this work shows for the first time a proper set of T cell markers to evaluate specific CD8+ T cell responses in mice. We also show that our immunization scheme confers protection against T. cruzi, augmenting survival and reducing parasite burden in female but not male mice. We conclude that the immunization with LPS-activated DCs has the potential to prime significant CD8+ T cell responses in C57BL/6 mice independently of the sex, but this response will only be effective in female, possibly due to mice sexual dimorphisms in the response generated against T. cruzi.
Collapse
Affiliation(s)
- Lucía Biscari
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Cintia Daniela Kaufman
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Cecilia Farré
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Victoria Huhn
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - María Florencia Pacini
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Camila Bulfoni Balbi
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Karina Andrea Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrés Alloatti
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- *Correspondence: Andrés Alloatti,
| |
Collapse
|