1
|
Fan W, Xing Y, Yan S, Liu W, Ning J, Tian F, Wang X, Zhan Y, Luo L, Cao M, Huang J, Cai L. DUSP5 regulated by YTHDF1-mediated m6A modification promotes epithelial-mesenchymal transition and EGFR-TKI resistance via the TGF-β/Smad signaling pathway in lung adenocarcinoma. Cancer Cell Int 2024; 24:208. [PMID: 38872157 DOI: 10.1186/s12935-024-03382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) patients have a dismal survival rate because of cancer metastasis and drug resistance. The study aims to identify the genes that concurrently modulate EMT, metastasis and EGFR-TKI resistance, and to investigate the underlying regulatory mechanisms. METHODS Cox regression and Kaplan-Meier analyses were applied to identify prognostic oncogenes in LUAD. Gene set enrichment analysis (GSEA) was used to indicate the biological functions of the gene. Wound-healing and Transwell assays were used to detect migratory and invasive ability. EGFR-TKI sensitivity was evaluated by assessing the proliferation, clonogenic survival and metastatic capability of cancer cells with treatment with gefitinib. Methylated RNA immunoprecipitation (MeRIP) and RNA immunoprecipitation (RIP) analyses established the level of m6A modification present on the target gene and the protein's capability to interact with RNA, respectively. Single-sample gene set enrichment (ssGSEA) algorithm used to investigate levels of immune cell infiltration. RESULTS Our study identified dual-specificity phosphatase 5 (DUSP5) as a novel and powerful predictor of adverse outcomes for LUAD by using public datasets. Functional enrichment analysis found that DUSP5 was positively enriched in EMT and transforming growth factor-beta (TGF-β) signaling pathway, a prevailing pathway involved in the induction of EMT. As expected, DUSP5 knockdown suppressed EMT via inhibiting the canonical TGF-β/Smad signaling pathway in in vitro experiments. Consistently, knockdown of DUSP5 was first found to inhibit migratory ability and invasiveness of LUAD cells in in vitro and prevent lung metastasis in in vivo. DUSP5 knockdown re-sensitized gefitinib-resistant LUAD cells to gefitinib, accompanying reversion of EMT progress. In LUAD tissue samples, we found 14 cytosine-phosphate-guanine (CpG) sites of DUSP5 that were negatively associated with DUSP5 gene expression. Importantly, 5'Azacytidine (AZA), an FDA-approved DNA methyltransferase inhibitor, restored DUSP5 expression. Moreover, RIP experiments confirmed that YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), a m6A reader protein, could bind DUSP5 mRNA. YTHDF1 promoted DUSP5 expression and the malignant phenotype of LUAD cells. In addition, the DUSP5-derived genomic model revealed the two clusters with distinguishable immune features and tumor mutational burden (TMB). CONCLUSIONS Briefly, our study discovered DUSP5 which was regulated by epigenetic modification, might be a potential therapeutic target, especially in LUAD patients with acquired EGFR-TKI resistance.
Collapse
Affiliation(s)
- Weina Fan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Shi Yan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Wei Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Jinfeng Ning
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fanglin Tian
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Xin Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Yuning Zhan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Lixin Luo
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Mengru Cao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China.
| | - Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China.
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China.
| |
Collapse
|
2
|
Jing X, Qin X, Liu H, Liu H, Wang H, Qin J, Zhang Y, Cao S, Fan X. DNA damage response alterations in clear cell renal cell carcinoma: clinical, molecular, and prognostic implications. Eur J Med Res 2024; 29:107. [PMID: 38326910 PMCID: PMC10848511 DOI: 10.1186/s40001-024-01678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic responses. Nonetheless, the characteristics and significance of DDR alterations in clear cell renal cell carcinoma (ccRCC) remain undefined. This study aimed to explore the predictive role, molecular mechanism, and tumor immune profile of DDR genes in ccRCC. METHODS We prospectively sequenced 757 tumors and matched blood DNA samples from Chinese patients with ccRCC using next-generation sequencing (NGS) and analyzed data from 537 patients from The Cancer Genome Atlas (TCGA). A comprehensive analysis was performed. RESULTS Fifty-two percent of Chinese patients with ccRCC harbored DDR gene mutations and 57% of TCGA patients. The immunotherapy treatment prognosis of patients with DDR gene mutations was superior to that of patients without DDR gene mutations (p = 0.047). DDR gene mutations were associated with more gene mutations and a higher tumor mutation load (TMB, p < 0.001). Moreover, patients with DDR gene mutations have a distinct mutational signature compared with those with wild-type DDR. Furthermore, the DDR-mut group had elevated neoantigen load (including single-nucleotide variants (SNV) and indel neoantigen load, p = 0.037 and p = 0.002, respectively), TCR Shannon (p = 0.025), and neutrophils (p = 0.010). DDR gene mutations exhibited a distinct immune profile with significantly higher expression levels of TNFSF9, CD70, ICAM1, and indoleamine-2,3-dioxygenase (IDO) and lower expression levels of VTCN1 and IL12A. CONCLUSIONS Our data suggest that the detection of somatic mutations in DDR genes can predict the efficacy of immunotherapy in patients with ccRCC. Furthermore, we revealed the unique molecular and immune mechanisms underlying ccRCC with DDR gene mutations.
Collapse
Affiliation(s)
- Xiao Jing
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangcheng Qin
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Hao Liu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huanhuan Liu
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Huina Wang
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Jiayue Qin
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Yanui Zhang
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Xiaodong Fan
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, China.
| |
Collapse
|
3
|
Yu J, Li M, Ren B, Cheng L, Wang X, Ma Z, Yong WP, Chen X, Wang L, Goh BC. Unleashing the efficacy of immune checkpoint inhibitors for advanced hepatocellular carcinoma: factors, strategies, and ongoing trials. Front Pharmacol 2023; 14:1261575. [PMID: 37719852 PMCID: PMC10501787 DOI: 10.3389/fphar.2023.1261575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer, representing approximately 85% of cases. The diagnosis is often made in the middle and late stages, necessitating systemic treatment as the primary therapeutic option. Despite sorafenib being the established standard of care for advanced HCC in the past decade, the efficacy of systemic therapy remains unsatisfactory, highlighting the need for novel treatment modalities. Recent breakthroughs in immunotherapy have shown promise in HCC treatment, particularly with immune checkpoint inhibitors (ICIs). However, the response rate to ICIs is currently limited to approximately 15%-20% of HCC patients. Recently, ICIs demonstrated greater efficacy in "hot" tumors, highlighting the urgency to devise more effective approaches to transform "cold" tumors into "hot" tumors, thereby enhancing the therapeutic potential of ICIs. This review presented an updated summary of the factors influencing the effectiveness of immunotherapy in HCC treatment, identified potential combination therapies that may improve patient response rates to ICIs, and offered an overview of ongoing clinical trials focusing on ICI-based combination therapy.
Collapse
Affiliation(s)
- Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Boxu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wei Peng Yong
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Xu Y, Nowsheen S, Deng M. DNA Repair Deficiency Regulates Immunity Response in Cancers: Molecular Mechanism and Approaches for Combining Immunotherapy. Cancers (Basel) 2023; 15:cancers15051619. [PMID: 36900418 PMCID: PMC10000854 DOI: 10.3390/cancers15051619] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Defects in DNA repair pathways can lead to genomic instability in multiple tumor types, which contributes to tumor immunogenicity. Inhibition of DNA damage response (DDR) has been reported to increase tumor susceptibility to anticancer immunotherapy. However, the interplay between DDR and the immune signaling pathways remains unclear. In this review, we will discuss how a deficiency in DDR affects anti-tumor immunity, highlighting the cGAS-STING axis as an important link. We will also review the clinical trials that combine DDR inhibition and immune-oncology treatments. A better understanding of these pathways will help exploit cancer immunotherapy and DDR pathways to improve treatment outcomes for various cancers.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Somaira Nowsheen
- Department of Dermatology, University of California San Diego, San Diego, CA 92122, USA
- Correspondence: (S.N.); (M.D.)
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.N.); (M.D.)
| |
Collapse
|
5
|
The ferroptosis signature predicts the prognosis and immune microenvironment of nasopharyngeal carcinoma. Sci Rep 2023; 13:1861. [PMID: 36732567 PMCID: PMC9895067 DOI: 10.1038/s41598-023-28897-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a cancer with a high metastatic rate and poor prognosis. Growing studies suggest that ferroptosis take part in the development of tumours. At the same time, the connection between ferroptosis-related genes (FRGs) and the prognosis of NPC remains unclear. In this study, we explored the dysregulated FRGs between normal control and tumour samples of NPC. Firstly, 14 of 36 differentially expressed FRGs were identified in NPC tissues compared to normal tissues, among which ABCC1, GLS2, CS and HMGCR were associated with poor prognosis for patients. The four ferroptosis genes were used for consensus cluster analysis and two risk-related FRGs (ABCC1 and GLS2) were used in a risk model. The ROC curve revealed the good predictive performance of this risk signature. Multivariate analysis revealed that risk score and intratumoral TILs were independent risk factors linked to prognosis. Additionally, our results suggested that the risk signature was attached to the immune microenvironment. Moreover, the NPC patients with high risk were sensitive to chemotherapeutic drugs including axitinib, docetaxel, embelin, epothilone.B, parthenolide, thapsigargin, tipifarnib, vinorelbine. Finally, the expression of ABCC1 and GLS2 was validated in NPC tissues using immunohistochemistry. Together, these results revealed ferroptosis may be a potential biomarker in NPC and representing a promising future direction in prognosis and therapeutic strategy for the treatment of NPC.
Collapse
|
6
|
Wang L, Wang L, He P. Comprehensive analysis of immune-related gene signature based on ssGSEA algorithms in the prognosis and immune landscape of hepatocellular carcinoma. Front Genet 2022; 13:1064432. [PMID: 36568383 PMCID: PMC9780543 DOI: 10.3389/fgene.2022.1064432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a malignancy with a poor prognosis. This study aimed to distinguish patients with HCC having distinct tumour immune microenvironment (TIME) features and construct an immune-related gene signature (IRGs) to assess prognosis and provide a basis for personalised therapies. Methods: Transcriptomic data of patients with HCC were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We assessed the immune cell infiltration in each HCC specimen using single sample gene set enrichment analysis (ssGSEA) and classified all patients with HCC into high- and low-immune clusters using a hierarchical clustering algorithm. The ESTIMATE and CIBERSORT computational methods were employed to verify the stability and effectiveness of the immune clusters. Subsequently, the differentially expressed genes (DEGs) of the high- and low-immune clusters and the immune-related genes intersected to obtain the immune-related DEGs. The least absolute shrinkage and selection operator (LASSO) was then employed to screen the optimal genes for the construction of a prognostic predictive signature and to divide patients into high- and low-risk subgroups. The predictive efficacy of the IRGs was further confirmed using Kaplan-Meier survival curves, univariate and multifactorial Cox regression and time-dependent ROC curves in the TCGA and GSE14520 validation cohorts. Furthermore, we developed a nomogram to predict the prognosis. Tumour mutation burden (TMB) was also analysed in the risk groups. Additionally, gene ontology and gene set variation analysis were used for biological function and pathway exploration. Lastly, drug sensitivity analyses were employed to investigate prospective therapeutics in the two risk populations. Results: Immune cluster analysis based on ssGSEA could well distinguish the TIME characteristics of patients with HCC. The stromal score, immune score and ESTIMATE score were all lower in the low-immune cluster. Meanwhile, most of the immune checkpoint-related genes and HLA family genes were overexpressed in the high-immune cluster, suggesting that this cluster could be a beneficial population for immune checkpoint inhibitors therapy. There were 1,617 DEGs between the two immune clusters, of which 414 genes intersected with immune-associated genes. Furthermore, Cox regression analysis revealed 49 DEGs that were associated with survival. Then, 19 DEGs were screened using the LASSO algorithm for IRGs construction and patients were classified into high- and low-risk groups. Both the constructed signature and nomogram had good prognostic predictive efficacy. The signature-based risk score was an independent prognostic predictor in both the TCGA and GSE14520 cohorts. Additionally, there was no significant difference in TMB between the two risk populations. Lastly, the half-maximal inhibitory concentrations of certain chemotherapeutic and targeted therapeutic agents differed between the two risk groups. Conclusion: Our study provides a personalized tool for predicting the prognosis and TIME landscape of HCC and a basis for developing personalised treatment regimens.
Collapse
Affiliation(s)
- Liangliang Wang
- Chemoradiotherapy Center of Oncology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China,Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo, China,*Correspondence: Liangliang Wang,
| | - Li Wang
- Department of General Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Peihong He
- Beilun Traditional Chinese Medicine Hospital, Ningbo, China
| |
Collapse
|
7
|
Zhang X, Wen J, Zhang G, Fan W, Tan J, Liu H, Li J. Identification and Validation of Novel Immunogenic Cell Death- and DNA Damage Response-Related Molecular Patterns Correlated with Immune Status and Prognosis in Hepatocellular Carcinoma. Transl Oncol 2022; 27:101600. [PMID: 36481605 PMCID: PMC9731848 DOI: 10.1016/j.tranon.2022.101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Immunogenic cell death (ICD) and DNA damage response (DDR) are involved in cancer progression and prognosis. Currently, chemotherapy is the first-line treatment for intermediate or advanced hepatocellular carcinoma (HCC), which is mostly based on platinum and anthracyclines that induce DNA damage and ICD. With the treatment of HCC with immune checkpoint inhibitors (ICIs), it is important to understand the molecular characteristics and prognostic values of ICD and DDR-related genes (IDRGs). We aimed to explore the characteristics of ICD and DDR-related molecular patterns, immune status, and the association of immunotherapy and prognosis with IDRGs in HCC. We identified IDRGs in HCC and evaluated their differential expression, biological behaviors, molecular characteristics, immune cell infiltration, and prognostic value. Prognostic IDRGs and subtypes were identified and validated. FFAR3, DDX1, POLR3G, FANCL, ADA, PI3KR1, DHX58, TPT1, MGMT, SLAMF6, and EIF2AK4 were determined as risk factors for HCC, and the biological experiments indicated that high FANCL expression is harmful to the treatment and prognosis. HCC was classified into high- and low-risk groups based on the median values of the risk factors to construct a predictive nomogram. These findings provide novel insights into the treatment and prognosis of HCC and provide a new research direction for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiaping Li
- Corresponding author at: Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, 510080, Guangzhou, PR China, Tel: +86-20-13352890908. Fax: +86-20-87755766.
| |
Collapse
|
8
|
Li L, Zou BJ, Zhao JZ, Liang JB, She ZY, Zhou WY, Lin SX, Tian L, Luo WJ, He FZ. A novel DNA damage repair-related signature for predicting prognositc and treatment response in non-small lung cancer. Front Oncol 2022; 12:961274. [PMID: 36408135 PMCID: PMC9673481 DOI: 10.3389/fonc.2022.961274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/14/2022] [Indexed: 10/06/2023] Open
Abstract
DNA damage repair (DDR) is essential for maintaining genome integrity and modulating cancer risk, progression, and therapeutic response. DDR defects are common among non-small lung cancer (NSCLC), resulting in new challenge and promise for NSCLC treatment. Thus, a thorough understanding of the molecular characteristics of DDR in NSCLC is helpful for NSCLC treatment and management. Here, we systematically analyzed the relationship between DDR alterations and NSCLC prognosis, and successfully established and validated a six-DDR gene prognostic model via LASSO Cox regression analysis based on the expression of prognostic related DDR genes, CDC25C, NEIL3, H2AFX, NBN, XRCC5, RAD1. According to this model, NSCLC patients were classified into high-risk subtype and low-risk subtype, each of which has significant differences between the two subtypes in clinical features, molecular features, immune cell components, gene mutations, DDR pathway activation status and clinical outcomes. The high-risk patients was characterized with worse prognosis, lower proportion and number of DDR mutations, unique immune profile and responsive to immunetherapy. And the low-risk patients tend to have superior survival, while being less responsive to immunotherapy and more sensitive to treatment with DNA-damaging chemotherapy drugs. Overall, this molecular classification based on DDR expression profile enables hierarchical management of patients and personalized clinical treatment, and provides potential therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Bao-jia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Juan-zhi Zhao
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jia-bi Liang
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zi-yue She
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wen-ying Zhou
- Department of Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Si-xiao Lin
- Department of Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lin Tian
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wen-ji Luo
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Fa-zhong He
- Department of Quality Control, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| |
Collapse
|
9
|
Testa U, Pelosi E, Castelli G. Clinical value of identifying genes that inhibit hepatocellular carcinomas. Expert Rev Mol Diagn 2022; 22:1009-1035. [PMID: 36459631 DOI: 10.1080/14737159.2022.2154658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
INTRODUCTION Primary liver cancer is a major health problem being the sixth most frequent cancer in the world and the fourth most frequent cause of cancer-related death in the world. The most common histological type of liver cancer is hepatocellular carcinoma (HCC, 75-80%). AREAS COVERED Based on primary literature, this review provides an updated analysis of studies of genetic characterization of HCC at the level of gene mutation profiling, copy number alterations and gene expression, with definition of molecular subgroups and identification of some molecular biomarkers and therapeutic targets. EXPERT OPINION A detailed and comprehensive study of the genetic abnormalities characterizing different HCC subsets represents a fundamental tool for a better understanding of the disease heterogeneity and for the identification of subgroups of patients responding or resistant to targeted treatments and for the discovery of new therapeutic targets. It is expected that a comprehensive characterization of these tumors may provide a fundamental contribution to improve the survival of a subset of HCC patients. Immunotherapy represents a new fundamental strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| | - Germana Castelli
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| |
Collapse
|
10
|
Shi C, Qin K, Lin A, Jiang A, Cheng Q, Liu Z, Zhang J, Luo P. The role of DNA damage repair (DDR) system in response to immune checkpoint inhibitor (ICI) therapy. J Exp Clin Cancer Res 2022; 41:268. [PMID: 36071479 PMCID: PMC9450390 DOI: 10.1186/s13046-022-02469-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
As our understanding of the mechanisms of cancer treatment has increased, a growing number of studies demonstrate pathways through which DNA damage repair (DDR) affects the immune system. At the same time, the varied response of patients to immune checkpoint blockade (ICB) therapy has prompted the discovery of various predictive biomarkers and the study of combination therapy. Here, our investigation explores the interactions involved in combination therapy, accompanied by a review that summarizes currently identified and promising predictors of response to immune checkpoint inhibitors (ICIs) that are useful for classifying oncology patients. In addition, this work, which discusses immunogenicity and several components of the tumor immune microenvironment, serves to illustrate the mechanism by which higher response rates and improved efficacy of DDR inhibitors (DDRi) in combination with ICIs are achieved.
Collapse
|
11
|
Smith MA, Van Alsten SC, Walens A, Damrauer JS, Maduekwe UN, Broaddus RR, Love MI, Troester MA, Hoadley KA. DNA Damage Repair Classifier Defines Distinct Groups in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14174282. [PMID: 36077818 PMCID: PMC9454479 DOI: 10.3390/cancers14174282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary DNA repair pathways have been implicated in hepatocellular carcinoma outcomes. We found that hepatocellular carcinomas (HCC) could be separated into two groups (high and low) based on the overall expression of genes involved in DNA repair. Among the low repair group, there were three subgroups, one of which shared features of the high repair group. Given the important role of liver in metabolism and detoxification and its regenerative capacity, proliferation and DNA damage responses are critical in subdividing major biological categories of liver tumors. High repair samples showed more proliferative and regenerative signatures and had poorer outcomes versus the low repair that were more associated with the genes involved in normal liver biology. These biological groups suggest that dysregulation in endogenous liver processes promotes a pro-tumorigenic microenvironment that may facilitate tumor progression or identify tumors that require more substantial clinical intervention. Abstract DNA repair pathways have been associated with variability in hepatocellular carcinoma (HCC) clinical outcomes, but the mechanism through which DNA repair varies as a function of liver regeneration and other HCC characteristics is poorly understood. We curated a panel of 199 genes representing 15 DNA repair pathways to identify DNA repair expression classes and evaluate their associations with liver features and clinicopathologic variables in The Cancer Genome Atlas (TCGA) HCC study. We identified two groups in HCC, defined by low or high expression across all DNA repair pathways. The low-repair group had lower grade and retained the expression of classical liver markers, whereas the high-repair group had more clinically aggressive features, increased p53 mutant-like gene expression, and high liver regenerative gene expression. These pronounced features overshadowed the variation in the low-repair subset, but when considered separately, the low-repair samples included three subgroups: L1, L2, and L3. L3 had high DNA repair expression with worse progression-free (HR 1.24, 95% CI 0.81–1.91) and overall (HR 1.63, 95% CI 0.98–2.71) survival. High-repair outcomes were also significantly worse compared with the L1 and L2 groups. HCCs vary in DNA repair expression, and a subset of tumors with high regeneration profoundly disrupts liver biology and poor prognosis.
Collapse
Affiliation(s)
- Markia A. Smith
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah C. Van Alsten
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrea Walens
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeffrey S. Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ugwuji N. Maduekwe
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Russell R. Broaddus
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael I. Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melissa A. Troester
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Katherine A. Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence:
| |
Collapse
|
12
|
Chen Y, Huang M, Zhu J, Xu L, Cheng W, Lu X, Yan F. Identification of a DNA Damage Response and Repair-Related Gene-Pair Signature for Prognosis Stratification Analysis in Hepatocellular Carcinoma. Front Pharmacol 2022; 13:857060. [PMID: 35496321 PMCID: PMC9038539 DOI: 10.3389/fphar.2022.857060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Nowadays, although the cause of hepatocellular carcinoma (HCC) mortality and recurrence remains at a high level, the 5-year survival rate is still very low. The DNA damage response and repair (DDR) pathway may affect HCC patients’ survival by influencing tumor development and therapeutic response. It is necessary to identify a prognostic DDR-related gene signature to predict the outcome of patients. Methods: Level 3 mRNA expression and clinical information were extracted from the TCGA website. The GSE14520 datasets, ICGC-LIRI datasets, and a Chinese HCC cohort were served as validation sets. Univariate Cox regression analysis and LASSO-penalized Cox regression analysis were performed to construct the DDR-related gene pair (DRGP) signature. Kaplan–Meier survival curves and time-dependent receiver operating characteristic (ROC) analysis curves were calculated to determine the predictive ability of this prognostic model. Then, a prognostic nomogram was established to help clinical management. We investigated the difference in biological processes between HRisk and LRisk by conducting several enrichment analyses. The TIDE algorithm and R package “pRRophetic” were applied to estimate the immunotherapeutic and chemotherapeutic response. Results: We constructed the prognostic signature based on 23 DDR-related gene pairs. The patients in the training datasets were divided into HRisk and LRisk groups at median cut-off. The HRisk group had significantly poorer OS than the LRisk group, and the signature was an independent prognostic indicator in HCC. Furthermore, a nomogram of the riskscore combined with TNM stage was constructed and detected by the calibration curve and decision curve. The LRisk group was associated with higher expression of HBV oncoproteins and metabolism pathways, while DDR-relevant pathways and cell cycle process were enriched in the HRisk group. Moreover, patients in the LRisk group may be more beneficial from immunotherapy. We also found that TP53 gene was more frequently mutated in the HRisk group. As for chemotherapeutic drugs commonly used in HCC, the HRisk group was highly sensitive to 5-fluorouracil, while the LRisk group presented with a significantly higher response to gefitinib and gemcitabine. Conclusion: Overall, we developed a novel DDR-related gene pair signature and nomogram to assist in predicting survival outcomes and clinical treatment of HCC patients. It also helps understand the underlying mechanisms of different DDR patterns in HCC.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengjia Huang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junkai Zhu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Xu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenxuan Cheng
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaofan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Lou S, Wang Y, Zhang J, Yin X, Zhang Y, Wang Y, Xue Y. Patient-Level DNA Damage Repair Pathway Profiles and Anti-Tumor Immunity for Gastric Cancer. Front Immunol 2022; 12:806324. [PMID: 35082793 PMCID: PMC8785952 DOI: 10.3389/fimmu.2021.806324] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
DNA damage repair (DDR) comprises the detection and correction of alterations in the chemical structure of DNA. The dysfunction of the DDR process has been determined to have important implications for tumor carcinogenesis, malignancy progression, treatment resistance, and prognosis assessment. However, the role of the DDR process in gastric cancer (GC) remains to be fully understood. Thus, a total of 2,019 GC samples from our hospital (Harbin Medical University Cancer Hospital in china) and 12 public data sets were included in our study. In this study, single-sample gene set enrichment analysis (ssGSEA) was used to generate the DDR pathway activity profiles of 8 DDR sub-pathways and identify a DDR pathway signature by combining the DDR sub-pathway gene sets. The DDR pathway profiling’s impacts on the clinical outcomes, biological functions, genetic variants, immune heterogeneity, and treatment responses were analyzed through multidimensional genomics and clinical data. The results demonstrate that the DDR pathway profiling was clearly distinguished between tumor and normal tissues. The DDR pathway profiling reveals patient-level variations, which may contribute to explaining the high heterogeneity of human GC for the biological features and treatment outcomes. Thus, tumors with low DDR signature scores were independently correlated with shorter overall survival time and significantly associated with mesenchymal, invasion, and metastasis phenotypes. The statistical model integrating this DDR pathway signature with other clinical predictors outperforms each predictor alone for predicting overall survival in discrimination, calibration, and net clinical benefit. Moreover, low DDR signature scores were tightly associated with genome stability, characterized by low tumor mutational burden (TMB) and low fractions of genome alteration. Furthermore, this study confirms that patients with low DDR pathway signature scores might not benefit from adjuvant chemotherapy and a monoclonal antibody directed against programmed cell death-1 ligand 1 (anti-PD1) therapy. These findings highlighted that the DDR pathway profiling confers important implications for patients with GC and provides insights into the specific clinical and molecular features underlying the DDR process, which may help to facilitate clinical management.
Collapse
Affiliation(s)
- Shenghan Lou
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yufei Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Yin
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yao Zhang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yimin Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
14
|
Xia W, Peng T, Guan R, Zhou Y, Zeng C, Lin Y, Wu Z, Tan H. Development of a novel prognostic nomogram for the early recurrence of liver cancer after curative hepatectomy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1541. [PMID: 34790747 PMCID: PMC8576734 DOI: 10.21037/atm-21-4837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant cancers worldwide. Curative resection is an effective treatment but HCC recurrence rates remain high. This study aimed to establish a novel prognostic nomogram to assess the risk of recurrence in patients following curative resection. METHODS A total of 410 patients undergoing HCC curative resection were recruited from the Guangdong Provincial People's Hospital (GDPH). The cohort was divided into a training group (n=291) and a validation group (n=97). The risk factors for HCC early recurrence within 1 year of curative hepatectomy were identified. Finally, a multivariate prognostic nomogram was developed and validated. RESULTS Age, tumor number, tumor capsule, portal vein tumor thrombi, pathological grade, vascular tumor emboli, activated partial thromboplastin time (APTT), and tumor size were identified as independent prognostic risk factors for HCC early recurrence within 1 year of curative hepatectomy. The area under the receiver operating characteristic (ROC) curve (AUC) was 0.806 [95% confidence interval (CI): 0.755 to 0.857; P<0.001], and no AUC/ROC statistical difference was detected between the training and validation sets. CONCLUSIONS The nomogram effectively predicted postoperative HCC recurrence within 1 year after curative hepatectomy, which may be a useful tool for the postoperative treatment or follow up for HCC patients.
Collapse
Affiliation(s)
- Wuzheng Xia
- Department of Organ Transplant, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tianyi Peng
- Department of Hepatobiliary Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Renguo Guan
- Department of Hepatobiliary Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Zhou
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cong Zeng
- Department of General Practice, Hospital of South China Normal University, Guangzhou, China
| | - Ye Lin
- Department of Hepatobiliary Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhongshi Wu
- Department of Hepatobiliary Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongmei Tan
- Day Operating Room, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|