1
|
Krysko O, Korsakova D, Teufelberger A, De Meyer A, Steels J, De Ruyck N, van Ovost J, Van Nevel S, Holtappels G, Coppieters F, Ivanchenko M, Braun H, Vedunova M, Krysko DV, Bachert C. Differential protease content of mast cells and the processing of IL-33 in Alternaria alternata induced allergic airway inflammation in mice. Front Immunol 2023; 14:1040493. [PMID: 37153601 PMCID: PMC10154570 DOI: 10.3389/fimmu.2023.1040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Background Recent in vitro studies strongly implicated mast cell-derived proteases as regulators of IL-33 activity by enzymatic cleavage in its central domain. A better understanding of the role of mast cell proteases on IL-33 activity in vivo is needed. We aimed to compare the expression of mast cell proteases in C57BL/6 and BALB/c mice, their role in the cleavage of IL-33 cytokine, and their contribution to allergic airway inflammation. Results In vitro, full-length IL-33 protein was efficiently degraded by mast cell supernatants of BALB/c mice in contrast to the mast cell supernatants from C57BL/6 mice. RNAseq analysis indicated major differences in the gene expression profiles of bone marrow-derived mast cells from C57BL/6 and BALB/c mice. In Alternaria alternata (Alt) - treated C57BL/6 mice the full-length form of IL-33 was mainly present, while in BALB/c mice, the processed shorter form of IL-33 was more prominent. The observed cleavage pattern of IL-33 was associated with a nearly complete lack of mast cells and their proteases in the lungs of C57BL/6 mice. While most inflammatory cells were similarly increased in Alt-treated C57BL/6 and BALB/c mice, C57BL/6 mice had significantly more eosinophils in the bronchoalveolar lavage fluid and IL-5 protein levels in their lungs than BALB/c mice. Conclusion Our study demonstrates that lung mast cells differ in number and protease content between the two tested mouse strains and could affect the processing of IL-33 and inflammatory outcome of Alt -induced airway inflammation. We suggest that mast cells and their proteases play a regulatory role in IL-33-induced lung inflammation by limiting its proinflammatory effect via the IL-33/ST2 signaling pathway.
Collapse
Affiliation(s)
- Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
- *Correspondence: Olga Krysko,
| | - Darya Korsakova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Andrea Teufelberger
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Amse De Meyer
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Jill Steels
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Natalie De Ruyck
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Judith van Ovost
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Sharon Van Nevel
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Gabriele Holtappels
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics Ghent (CMGG), Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Mikhail Ivanchenko
- Institute of Information Technology, Mathematics and Mechanics, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Harald Braun
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Maria Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany
- First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China
| |
Collapse
|
2
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
3
|
Roberts LB, Berkachy R, Wane M, Patel DF, Schnoeller C, Lord GM, Gounaris K, Ryffel B, Quesniaux V, Darby M, Horsnell WGC, Selkirk ME. Differential Regulation of Allergic Airway Inflammation by Acetylcholine. Front Immunol 2022; 13:893844. [PMID: 35711456 PMCID: PMC9196131 DOI: 10.3389/fimmu.2022.893844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/03/2022] [Indexed: 01/14/2023] Open
Abstract
Acetylcholine (ACh) from neuronal and non-neuronal sources plays an important role in the regulation of immune responses and is associated with the development of several disease pathologies. We have previously demonstrated that group 2 innate lymphoid cell (ILC2)-derived ACh is required for optimal type 2 responses to parasitic infection and therefore sought to determine whether this also plays a role in allergic inflammation. RoraCre+ChatLoxP mice (in which ILC2s cannot synthesize ACh) were exposed to an allergenic extract of the fungus Alternaria alternata, and immune responses in the airways and lung tissues were analyzed. Airway neutrophilia and expression of the neutrophil chemoattractants CXCL1 and CXCL2 were enhanced 24 h after exposure, suggesting that ILC2-derived ACh plays a role in limiting excessive pulmonary neutrophilic inflammation. The effect of non-selective depletion of ACh was examined by intranasal administration of a stable parasite-secreted acetylcholinesterase. Depletion of airway ACh in this manner resulted in a more profound enhancement of neutrophilia and chemokine expression, suggesting multiple cellular sources for the release of ACh. In contrast, depletion of ACh inhibited Alternaria-induced activation of ILC2s, suppressing the expression of IL-5, IL-13, and subsequent eosinophilia. Depletion of ACh reduced macrophages with an alternatively activated M2 phenotype and an increase in M1 macrophage marker expression. These data suggest that ACh regulates allergic airway inflammation in several ways, enhancing ILC2-driven eosinophilia but suppressing neutrophilia through reduced chemokine expression.
Collapse
Affiliation(s)
- Luke B. Roberts
- Department of Life Sciences, Imperial College London, London, United Kingdom,School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London, United Kingdom,*Correspondence: Luke B. Roberts, ; Murray E. Selkirk,
| | - Rita Berkachy
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Madina Wane
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Dhiren F. Patel
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Corinna Schnoeller
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Graham M. Lord
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London, United Kingdom,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kleoniki Gounaris
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Bernhard Ryffel
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Rue Dupanloup, Orléans, France
| | - Valerie Quesniaux
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Rue Dupanloup, Orléans, France
| | - Matthew Darby
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - William G. C. Horsnell
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Rue Dupanloup, Orléans, France,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Murray E. Selkirk
- Department of Life Sciences, Imperial College London, London, United Kingdom,*Correspondence: Luke B. Roberts, ; Murray E. Selkirk,
| |
Collapse
|
4
|
Van Nevel S, Declercq J, Holtappels G, Lambrecht BN, Bachert C. Granulocyte Colony-Stimulating Factor: Missing Link for Stratification of Type 2-high and Type 2-low Chronic Rhinosinusitis Patients. J Allergy Clin Immunol 2022; 149:1655-1665.e5. [DOI: 10.1016/j.jaci.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 10/18/2022]
|
5
|
Cayrol C. IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells 2021; 11:cells11010107. [PMID: 35011670 PMCID: PMC8750818 DOI: 10.3390/cells11010107] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) family that is expressed in the nuclei of endothelial and epithelial cells of barrier tissues, among others. It functions as an alarm signal that is released upon tissue or cellular injury. IL-33 plays a central role in the initiation and amplification of type 2 innate immune responses and allergic inflammation by activating various target cells expressing its ST2 receptor, including mast cells and type 2 innate lymphoid cells. Depending on the tissue environment, IL-33 plays a wide variety of roles in parasitic and viral host defense, tissue repair and homeostasis. IL-33 has evolved a variety of sophisticated regulatory mechanisms to control its activity, including nuclear sequestration and proteolytic processing. It is involved in many diseases, including allergic, inflammatory and infectious diseases, and is a promising therapeutic target for the treatment of severe asthma. In this review, I will summarize the literature around this fascinating pleiotropic cytokine. In the first part, I will describe the basics of IL-33, from the discovery of interleukin-33 to its function, including its expression, release and signaling pathway. The second part will be devoted to the regulation of IL-33 protein leading to its activation or inactivation.
Collapse
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|