1
|
van Oostveen WM, Huizinga TWJ, Fehres CM. Pathogenic role of anti-nuclear autoantibodies in systemic sclerosis: Insights from other rheumatic diseases. Immunol Rev 2024; 328:265-282. [PMID: 39248128 PMCID: PMC11659924 DOI: 10.1111/imr.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Systemic sclerosis (SSc) is a severe autoimmune disease characterized by vasculopathy, fibrosis, and dysregulated immunity, with hallmark autoantibodies targeting nuclear antigens such as centromere protein (ACA) and topoisomerase I (ATA). These autoantibodies are highly prevalent and disease-specific, rarely coexisting, thus serving as crucial biomarkers for SSc diagnosis. Despite their diagnostic value, their roles in SSc pathogenesis remain unclear. This review summarizes current literature on ACA and ATA in SSc, comparing them to autoantibodies in other rheumatic diseases to elucidate their potential pathogenic roles. Similarities are drawn with anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis, particularly regarding disease specificity and minimal pathogenic impact of antigen binding. In addition, differences between ANA and ACPA in therapeutic responses and Fab glycosylation patterns are reviewed. While ACA and ATA are valuable for disease stratification and monitoring activity, understanding their origins and the associated B cell responses is critical for advancing therapeutic strategies for SSc.
Collapse
Affiliation(s)
| | - Tom W. J. Huizinga
- Department of RheumatologyLeiden University Medical CenterLeidenThe Netherlands
| | - Cynthia M. Fehres
- Department of RheumatologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
2
|
Zhang SS, Zhang JW, Zhang KX, Cui WQ, Zhi HW, Li HT, Wu HY, Wang YH. Hsa-miR-877-5p Expression in Acute Ischemic Stroke Based on Bioinformatics Analysis and Clinical Validation. Mol Neurobiol 2024; 61:1990-2005. [PMID: 37837492 DOI: 10.1007/s12035-023-03675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
Inflammation and immunity play important roles in the pathogenesis of ischemic stroke. This study aimed to explore key regulatory genes in acute ischemic stroke (AIS) and their underlying mechanisms to provide new research targets for the diagnosis and treatment of ischemic stroke. We searched for differentially expressed mRNAs and miRNAs in patients with AIS and healthy populations in GEO databases, constructed a miRNA-mRNA network, and screened key miRNAs using least absolute shrinkage and selection operator regression and the support vector machine-recursive feature elimination model. Correlations between key miRNAs and infiltrating immune cells and inflammatory factors were analyzed using CIBERSORT and immunoassays and verified using clinical experiments. Bioinformatics analysis identified hsa-miR-877-5p as a key regulatory miRNA in AIS that can modulate immune and inflammatory responses. In clinical studies, it was verified by quantitative PCR analysis that the expression of hsa-miR-877-5p in the blood of AIS patients was higher than that of the healthy group. Then, enzyme-linked immunosorbent assay revealed that the expression of IL-23 and TNF-α related to inflammation in AIS patients was higher than that of the healthy. Quantitative PCR further found that the relative mRNA expression of IL-23, CXCR3, and TNF-α in AIS group was higher than that of the healthy group. This study may provide a basis for a more comprehensive understanding of the potential mechanism of the occurrence and development of AIS, and hsa-miR-877-5p and its downstream effectors IL-23, CXCR3, and TNF-α may be potential intervention targets in AIS.
Collapse
Affiliation(s)
- Si-Shuo Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road No.16369 in Lixia District, Jinan, China
| | - Ji-Wei Zhang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, University Road NO.4655 in Changqing District, Jinan, China
| | - Kai-Xin Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, University Road NO.4655 in Changqing District, Jinan, China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road No.16369 in Lixia District, Jinan, China
| | - Hong-Wei Zhi
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road No.16369 in Lixia District, Jinan, China
| | - Hai-Tao Li
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road No.16369 in Lixia District, Jinan, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road No.16369 in Lixia District, Jinan, China
| | - Ya-Han Wang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road No.16369 in Lixia District, Jinan, China.
| |
Collapse
|
3
|
Meiners S, Reynaert NL, Matthaiou AM, Rajesh R, Ahmed E, Guillamat-Prats R, Heijink IH, Cuevas-Ocaña S. The importance of translational science within the respiratory field. Breathe (Sheff) 2024; 20:230183. [PMID: 38746906 PMCID: PMC11091714 DOI: 10.1183/20734735.0183-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/07/2024] [Indexed: 01/06/2025] Open
Abstract
The Translational Science Working Group at the European Respiratory Society (ERS) aims to bridge the gap between basic and clinical science by providing a platform where scientists, clinicians and experts in the respiratory field can actively shape translational research. For the 2023 Congress, dedicated translational science sessions were created and sessions of interest to many assemblies from the clinical and the scientific point of view were tagged as translational sessions, attracting clinical and scientific experts to the same room to discuss relevant topics and strengthening translational efforts among all ERS assemblies.
Collapse
Affiliation(s)
- Silke Meiners
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Niki L. Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andreas M. Matthaiou
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion, Greece
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Rishi Rajesh
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Engi Ahmed
- Department of Respiratory Diseases, Univ Montpellier, CHU Montpellier, Montpellier, France
- PhyMedExp, Univ Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Raquel Guillamat-Prats
- Lung Immunity Translational Research Group in Respiratory Diseases, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Munich, Germany
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Departments of Pathology & Medical Biology and Pulmonary Diseases, Groningen Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Sara Cuevas-Ocaña
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Bin Y, Wei S, Chen R, Zhang H, Ren J, Liu P, Xin Z, Zhang T, Yang H, Wang K, Feng Z, Sun X, Chen Z, Zhang H. Dclre1c-Mutation-Induced Immunocompromised Mice Are a Novel Model for Human Xenograft Research. Biomolecules 2024; 14:180. [PMID: 38397417 PMCID: PMC10887050 DOI: 10.3390/biom14020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Severe combined immunodeficient (SCID) mice serve as a critical model for human xenotransplantation studies, yet they often suffer from low engraftment rates and susceptibility to graft-versus-host disease (GVHD). Moreover, certain SCID strains demonstrate 'immune leakage', underscoring the need for novel model development. Here, we introduce an SCID mouse model with a targeted disruption of the dclre1c gene, encoding Artemis, which is essential for V(D)J recombination and DNA repair during T cell receptor (TCR) and B cell receptor (BCR) assembly. Artemis deficiency precipitates a profound immunodeficiency syndrome, marked by radiosensitivity and compromised T and B lymphocyte functionality. Utilizing CRISPR/Cas9-mediated gene editing, we generated dclre1c-deficient mice with an NOD genetic background. These mice exhibited a radiosensitive SCID phenotype, with pronounced DNA damage and defective thymic, splenic and lymph node development, culminating in reduced T and B lymphocyte populations. Notably, both cell lines and patient-derived tumor xenografts were successfully engrafted into these mice. Furthermore, the human immune system was effectively rebuilt following peripheral blood mononuclear cells (PBMCs) transplantation. The dclre1c-knockout NOD mice described herein represent a promising addition to the armamentarium of models for xenotransplantation, offering a valuable platform for advancing human immunobiological research.
Collapse
Affiliation(s)
- Yixiao Bin
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Sanhua Wei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Tang Du Hospital, Fourth Military Medical University, Xi’an 710038, China;
| | - Ruo Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Haowei Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an 710032, China;
| | - Jing Ren
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Peijuan Liu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Zhiqian Xin
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Tianjiao Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Haijiao Yang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Ke Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Zhuan Feng
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Xiuxuan Sun
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Hai Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
5
|
Harada T, Kikushige Y, Miyamoto T, Uno K, Niiro H, Kawakami A, Koga T, Akashi K, Yoshizaki K. Peripheral helper-T-cell-derived CXCL13 is a crucial pathogenic factor in idiopathic multicentric Castleman disease. Nat Commun 2023; 14:6959. [PMID: 37907518 PMCID: PMC10618253 DOI: 10.1038/s41467-023-42718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Castleman disease (CD) is a rare lymphoproliferative disorder. Among subtypes of CD, idiopathic multicentric CD-not otherwise specified (iMCD-NOS) has a poor prognosis and its pathogenesis is largely unknown. Here we present a xenotransplantation model of iMCD-NOS pathogenesis. Immunodeficient mice, transplanted with lymph node (LN) cells from iMCD-NOS patients, develop iMCD-like lethal inflammation, while mice transplanted with LN cells from non-iMCD patients without inflammation serve as negative control. Grafts depleted of human CD3+ T cells fail to induce inflammation in vivo. Upon engraftment, peripheral helper T (Tph) cells expand and levels of human CXCL13 substantially increase in the sera of mice. A neutralizing antibody against human CXCL13 blocks development of inflammation and improves survival in the recipient mice. Our study thus indicates that Tph cells, producing CXCL13 play a critical role in the pathogenesis of iMCD-NOS, and establishes iMCD-NOS as an immunoregulatory disorder.
Collapse
Affiliation(s)
- Takuya Harada
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Toshihiro Miyamoto
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Kazuko Uno
- Luis Pasteur Center for Medical Research, Kyoto, Japan
| | - Hiroaki Niiro
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan.
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan.
| | - Kazuyuki Yoshizaki
- The Institute of Scientific and Industrial Research, SANKEN, Osaka University, Osaka, Japan.
- Medical corporation of Tokushukai, Osaka, Japan.
| |
Collapse
|
6
|
Shu Y, Peng F, Zhao B, Liu C, Li Q, Li H, Wang Y, Jiang Y, Lu T, Wang Q, Sun J, Feng H, Lu Z, Liu X, Wang J, Qiu W. Transfer of patient's peripheral blood mononuclear cells (PBMCs) disrupts blood-brain barrier and induces anti-NMDAR encephalitis: a study of novel humanized PBMC mouse model. J Neuroinflammation 2023; 20:164. [PMID: 37443034 DOI: 10.1186/s12974-023-02844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe autoimmune neuropsychiatric disease. Brain access of anti-NMDAR autoantibody through the blood-brain barrier (BBB) is essential for pathogenesis. Most previous animal models limit the investigation of etiologies of BBB damage in patients. METHODS In this study, we established a novel humanized mouse model of anti-NMDAR encephalitis by intraperitoneal injection of patients' peripheral blood mononuclear cells (PBMCs) into BALB/c Rag2-/-Il2rg-/-SirpαNODFlk2-/- mice. RESULTS We found that engraftment of patients' PBMCs not only produced potent anti-GluN1 autoantibodies, but also disrupted BBB integrity to allow brain access of autoantibodies, resulting in a hyperactive locomotor phenotype, anxiety- and depressive-like behaviors, cognitive deficits, as well as functional changes in corresponding brain regions. Transcriptome analysis suggested an exaggerated immune response and impaired neurotransmission in the mouse model and highlighted Il-1β as a hub gene implicated in pathological changes. We further demonstrated that Il-1β was produced by endothelial cells and disrupted BBB by repressing tight junction proteins. Treatment with Anakinra, an Il-1 receptor antagonist, ameliorated BBB damage and neuropsychiatric behaviors. CONCLUSIONS Our study provided a novel and clinically more relevant humanized mouse model of anti-NMDAR encephalitis and revealed an intrinsic pathogenic property of the patient's lymphocytes.
Collapse
Affiliation(s)
- Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Bingchu Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Chunxin Liu
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qihui Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Huilu Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tingting Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huiyu Feng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China.
- Institute of Neuroscience and Brain Diseases; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
7
|
Parodi M, Astigiano S, Carrega P, Pietra G, Vitale C, Damele L, Grottoli M, Guevara Lopez MDLL, Ferracini R, Bertolini G, Roato I, Vitale M, Orecchia P. Murine models to study human NK cells in human solid tumors. Front Immunol 2023; 14:1209237. [PMID: 37388731 PMCID: PMC10301748 DOI: 10.3389/fimmu.2023.1209237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Since the first studies, the mouse models have provided crucial support for the most important discoveries on NK cells, on their development, function, and circulation within normal and tumor tissues. Murine tumor models were initially set to study murine NK cells, then, ever more sophisticated human-in-mice models have been developed to investigate the behavior of human NK cells and minimize the interferences from the murine environment. This review presents an overview of the models that have been used along time to study NK cells, focusing on the most popular NOG and NSG models, which work as recipients for the preparation of human-in-mice tumor models, the study of transferred human NK cells, and the evaluation of various enhancers of human NK cell function, including cytokines and chimeric molecules. Finally, an overview of the next generation humanized mice is also provided along with a discussion on how traditional and innovative in-vivo and in-vitro approaches could be integrated to optimize effective pre-clinical studies.
Collapse
Affiliation(s)
- Monica Parodi
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Simonetta Astigiano
- Animal Facility, IRCCS Ospedale Policlinico San Martino Genova, Genova, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Gabriella Pietra
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Chiara Vitale
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Laura Damele
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Melania Grottoli
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | | | - Riccardo Ferracini
- Department of Surgical Sciences, Bone and Dental Bioengineering Laboratory, C.I.R Dental School, University of Turin, Turin, Italy
- Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - Giulia Bertolini
- “Epigenomics and Biomarkers of Solid Tumors”, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilaria Roato
- Department of Surgical Sciences, Bone and Dental Bioengineering Laboratory, C.I.R Dental School, University of Turin, Turin, Italy
| | - Massimo Vitale
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Orecchia
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
8
|
Akbarzadeh R, Müller A, Humrich JY, Riemekasten G. When natural antibodies become pathogenic: autoantibodies targeted against G protein-coupled receptors in the pathogenesis of systemic sclerosis. Front Immunol 2023; 14:1213804. [PMID: 37359516 PMCID: PMC10285309 DOI: 10.3389/fimmu.2023.1213804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a chronic, multisystem connective tissue, and autoimmune disease with the highest case-specific mortality and complications among rheumatic diseases. It is characterized by complex and variable features such as autoimmunity and inflammation, vasculopathy, and fibrosis, which pose challenges in understanding the pathogenesis of the disease. Among the large variety of autoantibodies (Abs) present in the sera of patients suffering from SSc, functionally active Abs against G protein-coupled receptors (GPCRs), the most abundant integral membrane proteins, have drawn much attention over the last decades. These Abs play an essential role in regulating the immune system, and their functions are dysregulated in diverse pathological conditions. Emerging evidence indicates that functional Abs targeting GPCRs, such as angiotensin II type 1 receptor (AT1R) and the endothelin-1 type A receptor (ETAR), are altered in SSc. These Abs are part of a network with several GPCR Abs, such as those directed to the chemokine receptors or coagulative thrombin receptors. In this review, we summarize the effects of Abs against GPCRs in SSc pathologies. Extending the knowledge on pathophysiological roles of Abs against GPCRs could provide insights into a better understanding of GPCR contribution to SSc pathogenesis and therefore help in developing potential therapeutic strategies that intervene with pathological functions of these receptors.
Collapse
|
9
|
Distler JHW, Riemekasten G, Denton CP. The Exciting Future for Scleroderma. Rheum Dis Clin North Am 2023; 49:445-462. [PMID: 37028846 DOI: 10.1016/j.rdc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Emerging evidence shows that a complex interplay between cells and mediators and extracellular matrix factors may underlie the development and persistence of fibrosis in systemic sclerosis. Similar processes may determine vasculopathy. This article reviews recent progress in understanding how fibrosis becomes profibrotic and how the immune system, vascular, and mesenchymal compartment affect disease development. Early phase trials are informing about pathogenic mechanisms in vivo and reverse translation for observational and randomized trials is allowing hypotheses to be developed and tested. In addition to repurposing already available drugs, these studies are paving the way for the next generation of targeted therapeutics.
Collapse
Affiliation(s)
- Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nuremberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Christopher P Denton
- Division of Medicine, Department of Inflammation, Centre for Rheumatology, University College London, London, UK.
| |
Collapse
|
10
|
Autoreactive B cell responses targeting nuclear antigens in systemic sclerosis: Implications for disease pathogenesis. Semin Arthritis Rheum 2023; 58:152136. [PMID: 36403538 DOI: 10.1016/j.semarthrit.2022.152136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
A hallmark of disease pathogenesis of systemic sclerosis (SSc) is the presence of autoreactive B cell responses targeting nuclear proteins. Almost all SSc-patients harbour circulating antinuclear autoantibodies of which anti-topoisomerase 1, anti-centromere protein, anti-RNA polymerase III and anti-fibrillarin autoantibodies (ATA, ACA, ARA and AFA, respectively) are the most common and specific for SSc. In clinical practice, autoantibodies serve as diagnostic biomarkers and can aid in the identification of clinical phenotypes of the disease. However, factors driving disease progression in SSc are still poorly understood, and it is difficult to predict disease trajectories in individual patients. Moreover, treatment decisions remain rather empirical, with variable response rates in clinical trials due to patient heterogeneity. Current evidence has indicated that certain patients may benefit from B cell targeting therapies. Hence, it is important to understand the contribution of the antinuclear autoantibodies and their underlying B cell response to the disease pathogenesis of SSc.
Collapse
|
11
|
Bieber K, Hundt JE, Yu X, Ehlers M, Petersen F, Karsten CM, Köhl J, Kridin K, Kalies K, Kasprick A, Goletz S, Humrich JY, Manz RA, Künstner A, Hammers CM, Akbarzadeh R, Busch H, Sadik CD, Lange T, Grasshoff H, Hackel AM, Erdmann J, König I, Raasch W, Becker M, Kerstein-Stähle A, Lamprecht P, Riemekasten G, Schmidt E, Ludwig RJ. Autoimmune pre-disease. Autoimmun Rev 2023; 22:103236. [PMID: 36436750 DOI: 10.1016/j.autrev.2022.103236] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Approximately 5% of the world-wide population is affected by autoimmune diseases. Overall, autoimmune diseases are still difficult to treat, impose a high burden on patients, and have a significant economic impact. Like other complex diseases, e.g., cancer, autoimmune diseases develop over several years. Decisive steps in the development of autoimmune diseases are (i) the development of autoantigen-specific lymphocytes and (often) autoantibodies and (ii) potentially clinical disease manifestation at a later stage. However, not all healthy individuals with autoantibodies develop disease manifestations. Identifying autoantibody-positive healthy individuals and monitoring and inhibiting their switch to inflammatory autoimmune disease conditions are currently in their infancy. The switch from harmless to inflammatory autoantigen-specific T and B-cell and autoantibody responses seems to be the hallmark for the decisive factor in inflammatory autoimmune disease conditions. Accordingly, biomarkers allowing us to predict this progression would have a significant impact. Several factors, such as genetics and the environment, especially diet, smoking, exposure to pollutants, infections, stress, and shift work, might influence the progression from harmless to inflammatory autoimmune conditions. To inspire research directed at defining and ultimately targeting autoimmune predisease, here, we review published evidence underlying the progression from health to autoimmune predisease and ultimately to clinically manifest inflammatory autoimmune disease, addressing the following 3 questions: (i) what is the current status, (ii) what is missing, (iii) and what are the future perspectives for defining and modulating autoimmune predisease.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Unit of Dermatology and Skin Research Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Christoph M Hammers
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | | | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Alexander M Hackel
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Inke König
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Mareike Becker
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Anja Kerstein-Stähle
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany.
| |
Collapse
|
12
|
Chen J, Liao S, Xiao Z, Pan Q, Wang X, Shen K, Wang S, Yang L, Guo F, Liu HF, Pan Q. The development and improvement of immunodeficient mice and humanized immune system mouse models. Front Immunol 2022; 13:1007579. [PMID: 36341323 PMCID: PMC9626807 DOI: 10.3389/fimmu.2022.1007579] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
Animal models play an indispensable role in the study of human diseases. However, animal models of different diseases do not fully mimic the complex internal environment of humans. Immunodeficient mice are deficient in certain genes and do not express these or show reduced expression in some of their cells, facilitating the establishment of humanized mice and simulation of the human environment in vivo. Here, we summarize the developments in immunodeficient mice, from the initial nude mice lacking T lymphocytes to NOD/SCID rgnull mice lacking T, B, and NK cell populations. We describe existing humanized immune system mouse models based on immunodeficient mice in which human cells or tissues have been transplanted to establish a human immune system, including humanized-peripheral blood mononuclear cells (Hu-PBMCs), humanized hematopoietic stem cells (Hu-HSCs), and humanized bone marrow, liver, thymus (Hu-BLT) mouse models. The different methods for their development involve varying levels of complexity and humanization. Humanized mice are widely used in the study of various diseases to provide a transitional stage for clinical research. However, several challenges persist, including improving the efficiency of reconstructing the human B cell immune response, extending lifespan, improving the survival rate of mice to extend the observation period, and improving the development of standardized commercialized models and as well as their use. Overall, there are many opportunities and challenges in the development of humanized immune system mouse models which can provide novel strategies for understanding the mechanisms and treatments of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qingjun Pan
- *Correspondence: Hua-feng Liu, ; Qingjun Pan,
| |
Collapse
|
13
|
Establishment of a humanized animal model of systemic sclerosis in which T helper-17 cells from patients with systemic sclerosis infiltrate and cause fibrosis in the lungs and skin. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1577-1585. [PMID: 36175484 PMCID: PMC9534900 DOI: 10.1038/s12276-022-00860-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by inflammation, microangiopathy, and progressive fibrosis in the skin and internal organs. To evaluate the pathophysiologic mechanisms and efficacies of potential therapeutics for SSc, a preclinical model recapitulating the disease phenotypes is needed. Here, we introduce a novel animal model for SSc using immunodeficient mice injected with peripheral blood mononuclear cells (PBMCs) from SSc patients. Human PBMCs acquired from SSc patients and healthy controls were transferred into NOD.Cg-PrkdcscidIl2rgtm1Wjl (NSG) mice with concurrent bleomycin injection. Blood, skin, and lung tissues were acquired and analyzed after PBMC engraftment. In addition, we investigated whether the humanized murine model could be used to assess the efficacy of potential therapeutics for SSc. Human PBMCs from SSc patients and healthy controls were engrafted into the blood, skin, and lung tissues of NSG mice. Histological analysis of affected tissues from mice treated with SSc PBMCs (SSc hu-mice) demonstrated substantial inflammation, fibrosis and vasculopathy with human immune cell infiltration and increased expression of IL-17, TGF-β, CCL2, CCL3, and CXCL9. The proportions of circulating and tissue-infiltrating T helper 17 (Th17) cells were elevated in SSc hu-mice. These cells showed increased expression of CXCR3 and phosphorylated STAT3. SSc hu-mice treated with rebamipide and other potential Th17-cell-modulating drugs presented significantly reduced tissue fibrosis. Mice injected with patient-derived PBMCs show promise as an animal model of SSc. A humanized mouse model of the autoimmune disease systemic sclerosis (SSc) could improve understanding of disease progression and provide a trial platform for potential treatments. SSc results in inflammation and progressive fibrosis in the skin, heart, lungs and kidneys. Existing animal models for SSc are unable to fully mimic the mechanisms behind the disease. Mi-La Cho and Sung-Hwan Park at the Catholic University of Korea, Seoul, South Korea, and co-workers injected peripheral blood cells from patients with SSc into immune-deficent mice, generating a humanized animal model. Several weeks after, the team analysed blood and tissue samples from the mice and found significant inflammation and fibrosis in the skin and lungs, consistent with SSc. Levels of proinflammatory proteins and specific human T-helper cells were significantly elevated, providing possible insights into disease initiation and progression.
Collapse
|
14
|
Graßhoff H, Fourlakis K, Comdühr S, Riemekasten G. Autoantibodies as Biomarker and Therapeutic Target in Systemic Sclerosis. Biomedicines 2022; 10:2150. [PMID: 36140251 PMCID: PMC9496142 DOI: 10.3390/biomedicines10092150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disorder characterized by immune dysregulation evoking the pathophysiological triad of inflammation, fibrosis and vasculopathy. In SSc, several alterations in the B-cell compartment have been described, leading to polyclonal B-cell hyperreactivity, hypergammaglobulinemia and autoantibody production. Autoreactive B cells and autoantibodies promote and maintain pathologic mechanisms. In addition, autoantibodies in SSc are important biomarkers for predicting clinical phenotype and disease progression. Autoreactive B cells and autoantibodies represent potentially promising targets for therapeutic approaches including B-cell-targeting therapies, as well as strategies for unselective and selective removal of autoantibodies. In this review, we present mechanisms of the innate immune system leading to the generation of autoantibodies, alterations of the B-cell compartment in SSc, autoantibodies as biomarkers and autoantibody-mediated pathologies in SSc as well as potential therapeutic approaches to target these.
Collapse
Affiliation(s)
- Hanna Graßhoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, 23538 Lübeck, Germany
| | | | | | | |
Collapse
|
15
|
Shu Y, Yue X, Wax J, Kasper B, Yin J, Wang X, Zhang L, Ahmadi M, Heidecke H, Müller A, Lamprecht P, Yu X, Riemekasten G, Petersen F. Both T and B cells are indispensable for the development of a PBMC transfer-induced humanized mouse model for SSc. Arthritis Res Ther 2022; 24:209. [PMID: 36008863 PMCID: PMC9404611 DOI: 10.1186/s13075-022-02896-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, a novel humanized mouse model for systemic sclerosis (SSc) was established by transferring peripheral blood mononuclear cells (PBMC) from patients with SSc to Rag2-/-Il2rg-/- immunodeficient mice. Here, we aimed to investigate the role of T and B cells in this humanized mouse model. METHODS T and B cells were depleted in vitro from freshly isolated PBMC using anti-CD3 and anti-CD19 magnetic microbeads, respectively. Subsequently, PBMC and T or B cell-depleted PBMC were transferred into Rag2-/-/Il2rg-/- mice via intraperitoneal injection. Twelve weeks after the transfer, mice were sacrificed and evaluated. RESULTS Mice transferred with whole PBMC from SSc patients developed systemic inflammation in the lungs, kidneys, and liver, and 6 out of 11 mice died or had to be sacrificed during the experiment. By contrast, such inflammation and death were not observed in mice transferred with corresponding T or B cell-depleted PBMC. In line with this finding, transfer with whole PBMC restored the splenic white pulp composing of human T, B, and plasma cells and led to the production of a considerable amount of human autoantibodies in recipient mice, while those immunological features were rarely observed in mice that received T or B cell-depleted PBMC. In contrast to our previous findings demonstrating a transfer of the protective effect of a B cell therapy into the mouse, treatment of SSc patients with chemical immunosuppressive drugs did not affect the pathogenicity of PBMC. CONCLUSIONS This study demonstrates that both T and B cells are indispensable for the pathogenesis of the PBMC transfer-induced mouse model for SSc.
Collapse
Affiliation(s)
- Yaqing Shu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845, Borstel, Germany
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyang Yue
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845, Borstel, Germany
- Department of Histology and Embryology, School of Basic Medical Science, Guangxi Medical University, Nanning, Guangxi, China
| | - Jacqueline Wax
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845, Borstel, Germany
| | - Brigitte Kasper
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845, Borstel, Germany
| | - Junping Yin
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845, Borstel, Germany
| | - Xiaoqing Wang
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845, Borstel, Germany
| | - Liang Zhang
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845, Borstel, Germany
| | - Marjan Ahmadi
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845, Borstel, Germany
| | - Harald Heidecke
- Department of Histology and Embryology, School of Basic Medical Science, Guangxi Medical University, Nanning, Guangxi, China
| | - Antje Müller
- CellTrend GmbH, Im Biotechnologiepark, 14943, Luckenwalde, Germany
| | - Peter Lamprecht
- Department of Rheumatology, University of Lübeck, 23538, Lübeck, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845, Borstel, Germany
| | - Gabriela Riemekasten
- CellTrend GmbH, Im Biotechnologiepark, 14943, Luckenwalde, Germany.
- Department of Rheumatology, University of Lübeck, 23538, Lübeck, Germany.
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845, Borstel, Germany.
| |
Collapse
|
16
|
Riemekasten G, Distler JH. A broad look into the future of systemic sclerosis. Ther Adv Musculoskelet Dis 2022; 14:1759720X221109404. [PMID: 35966183 PMCID: PMC9373175 DOI: 10.1177/1759720x221109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Systemic sclerosis (SSc) is a systemic autoimmune disease with the key features of inflammation, vasculopathy and fibrosis. This article focussed on emerging fields based on the authors' current work and expertise. The authors provide a hierarchical structure into the studies of the pathogenesis of SSc starting with the contribution of environmental factors. Regulatory autoantibodies (abs) are discussed, which are parts of the human physiology and are specifically dysregulated in SSc. Abs against the angiotensin II receptor subtype 1 (AT1R) and the endothelin receptor type A (ETAR) are discussed in more detail. Extracellular vesicles are another novel player to possess disease processes. Fibroblasts are a key effector cell in SSc. Therefore, the current review will provide an overview about their plasticity in the phenotype and function. Promising nuclear receptors as key regulators of transcriptional programmes will be introduced as well as epigenetic modifications, which are pivotal to maintain the profibrotic fibroblast phenotype independent of external stimuli. Fibroblasts from SSc patients exhibit a specific signalling and reactivate developmental pathways and stem cell maintenance such as by employing hedgehog and WNT, which promote fibroblast-to-myofibroblast transition and extracellular matrix generation. Pharmacological interventions, although for other indications, are already in clinical use to address pathologic signalling.
Collapse
Affiliation(s)
- Gabriela Riemekasten
- Clinic for Rheumatology and Clinical
Immunology, University Clinic Schleswig-Holstein and University
of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jörg H.W. Distler
- Department of Internal Medicine 3,
Universitätsklinikum Erlangen, Friedrich-Alexander-University
(FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Liossis SNC, Staveri C. The Role of B Cells in Scleroderma Lung Disease Pathogenesis. Front Med (Lausanne) 2022; 9:936182. [PMID: 35860745 PMCID: PMC9289134 DOI: 10.3389/fmed.2022.936182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic, autoimmune, multisystem disease characterized by tissue fibrosis that, apart from the skin, may affect the lungs among other organs. B cells have been found in tissue lymphocytic infiltrates; in the lungs are encountered in lymphoid aggregates. The abnormal and hyperreactive B cell in SSc may initiate and perpetuate the fibrotic process via incompletely understood mechanisms. Studies in animal models of SSc have demonstrated that B cell dysregulation is an early event in disease pathogenesis. Functional disturbances of BCR signaling such as decreased inhibitory CD22 signal transduction or augmented CD19-mediated signaling result in prolonged B cell activation. Antagonism of BAFF, a cytokine known for his central role in B cell survival and maturation, not only suppresses the production of fibrogenic cytokines such as IL-6 and IL-10, but also amplifies antifibrogenic cytokine secretion such as IFN-γ and it finally contributes to skin fibrosis attenuation. B cells subsets in SSc patients display several abnormalities. Naïve B cells are increased, in contrast to switched memory B cells that are not only decreased but also activated. Disturbances in the expression of molecules that are involved in B cell tuning have also been described. Interestingly, a distinct B cell population characterized by anergy and exhaustion has been found to be increased in patients with SSc-ILD. Another B cell subset, the CD30+GM-Beff, is capable to differentiate monocytes to dendritic cells and is increased in SSc patients with ILD. Of note, patients with SSc-ILD exhibit increased expression of the inhibitory receptor FcγRIIB on naïve and double negative B cells aiming perhaps to counterbalance the abnormal B cell activation. Studies of B cell targeted treatments have demonstrated promising clinical efficacy. Therefore, B cell eliminating therapies could be integrated into the therapeutic armamentarium of patients suffering from SSc-ILD aiming to at least stabilize the fibrotic lung process.
Collapse
Affiliation(s)
- Stamatis-Nick C. Liossis
- Division of Rheumatology, Department of Internal Medicine, Patras University Hospital, Patras, Greece
- Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
- *Correspondence: Stamatis-Nick C. Liossis
| | - Chrysanthi Staveri
- Division of Rheumatology, Department of Internal Medicine, Patras University Hospital, Patras, Greece
| |
Collapse
|
18
|
Distler O, Ludwig RJ, Niemann S, Riemekasten G, Schreiber S. Editorial: Precision Medicine in Chronic Inflammation. Front Immunol 2021; 12:770462. [PMID: 34630441 PMCID: PMC8495129 DOI: 10.3389/fimmu.2021.770462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/12/2023] Open
Affiliation(s)
- Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Zurich, Germany
| | - Stefan Niemann
- Research Center Borstel, Molecular and Experimental Mycobacteriology, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | | | - Stefan Schreiber
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|