1
|
Qin X, Wang H, Li Q, Hu D, Wang L, Zhou B, Liao R, Liu Y. Salidroside ameliorates acute liver transplantation rejection in rats by inhibiting neutrophil extracellular trap formation. Acta Biochim Biophys Sin (Shanghai) 2024; 56:833-843. [PMID: 38716542 PMCID: PMC11214976 DOI: 10.3724/abbs.2024055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/04/2024] [Indexed: 06/14/2024] Open
Abstract
Acute rejection is an important factor affecting the survival of recipients after liver transplantation. Salidroside has various properties, including anti-inflammatory, antioxidant, and hepatoprotective properties. This study aims to investigate whether salidroside can prevent acute rejection after liver transplantation and to examine the underlying mechanisms involved. An in vivo acute rejection model is established in rats that are pretreated with tacrolimus (1 mg/kg/d) or salidroside (10 or 20 mg/kg/d) for seven days after liver transplantation. In addition, an in vitro experiment is performed using neutrophils incubated with salidroside (1, 10, 50 or 100 μM). Hematoxylin-eosin staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, immunosorbent assays, immunofluorescence analysis, Evans blue staining, and western blot analysis are performed to examine the impact of salidroside on NET formation and acute rejection in vitro and in vivo. We find that Salidroside treatment reduces pathological liver damage, serum aminotransferase level, and serum levels of IL-1β, IL-6, and TNF-α in vivo. The expressions of proteins associated with the HMGB1/TLR-4/MAPK signaling pathway (HMGB1, TLR-4, p-ERK1/2, p-JNK, p-P38, cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, IL-1β, TNF-α, and IL-6) are also decreased after salidroside treatment. In vitro experiments show that the release of HMGB1/TLR-4/MAPK signaling pathway-associated proteins from neutrophils treated with lipopolysaccharide is decreased by salidroside. Moreover, salidroside inhibits NETosis and protects against acute rejection by regulating the HMGB1/TLR-4/MAPK signaling pathway. Furthermore, salidroside combined with tacrolimus has a better effect than either of the other treatments alone. In summary, salidroside can prevent acute liver rejection after liver transplantation by reducing neutrophil extracellular trap development through the HMGB1/TLR-4/MAPK signaling pathway.
Collapse
Affiliation(s)
- Xiaoyan Qin
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
- Department of General Surgery and Trauma SurgeryChildren’s Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqing400014China
| | - Han Wang
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Qi Li
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Dingheng Hu
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Liangxu Wang
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Baoyong Zhou
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Rui Liao
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Yanyao Liu
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| |
Collapse
|
2
|
Mou Y, Liao W, Li Y, Wan L, Liu J, Luo X, Shen H, Sun Q, Wang J, Tang J, Wang Z. Glycyrrhizin and the Related Preparations: An Inspiring Resource for the Treatment of Liver Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:315-354. [PMID: 38553799 DOI: 10.1142/s0192415x24500149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Liver diseases and their related complications endanger the health of millions of people worldwide. The prevention and treatment of liver diseases are still serious challenges both in China and globally. With the improvement of living standards, the prevalence of metabolic liver diseases, including non-alcoholic fatty liver disease and alcoholic liver disease, has increased at an alarming rate, resulting in more cases of end-stage liver disease. Therefore, the discovery of novel therapeutic drugs for the treatment of liver diseases is urgently needed. Glycyrrhizin (GL), a triterpene glycoside from the roots of licorice plants, possesses a wide range of pharmacological and biological activities. Currently, GL preparations (GLPs) have certain advantages in the treatment of liver diseases, with good clinical effects and fewer adverse reactions, and have shown broad application prospects through multitargeting therapeutic mechanisms, including antisteatotic, anti-oxidative stress, anti-inflammatory, immunoregulatory, antifibrotic, anticancer, and drug interaction activities. This review summarizes the currently known biological activities of GLPs and their medical applications in the treatment of liver diseases, and highlights the potential of these preparations as promising therapeutic options and their alluring prospects for the treatment of liver diseases.
Collapse
Affiliation(s)
- Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Xialing Luo
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Jing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
- Department of Obstetrics and Gynecology, Bishan Hospital of Traditional Chinese Medicine, Chongqing 402760, P. R. China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Zhilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| |
Collapse
|
3
|
Kahan R, Cray PL, Abraham N, Gao Q, Hartwig MG, Pollara JJ, Barbas AS. Sterile inflammation in liver transplantation. Front Med (Lausanne) 2023; 10:1223224. [PMID: 37636574 PMCID: PMC10449546 DOI: 10.3389/fmed.2023.1223224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Sterile inflammation is the immune response to damage-associated molecular patterns (DAMPs) released during cell death in the absence of foreign pathogens. In the setting of solid organ transplantation, ischemia-reperfusion injury results in mitochondria-mediated production of reactive oxygen and nitrogen species that are a major cause of uncontrolled cell death and release of various DAMPs from the graft tissue. When properly regulated, the immune response initiated by DAMP-sensing serves as means of damage control and is necessary for initiation of recovery pathways and re-establishment of homeostasis. In contrast, a dysregulated or overt sterile inflammatory response can inadvertently lead to further injury through recruitment of immune cells, innate immune cell activation, and sensitization of the adaptive immune system. In liver transplantation, sterile inflammation may manifest as early graft dysfunction, acute graft failure, or increased risk of immunosuppression-resistant rejection. Understanding the mechanisms of the development of sterile inflammation in the setting of liver transplantation is crucial for finding reliable biomarkers that predict graft function, and for development of therapeutic approaches to improve long-term transplant outcomes. Here, we discuss the recent advances that have been made to elucidate the early signs of sterile inflammation and extent of damage from it. We also discuss new therapeutics that may be effective in quelling the detrimental effects of sterile inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrew S. Barbas
- Duke Ex-Vivo Organ Lab (DEVOL)—Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Motomura T, Faccioli LA, Diaz-Aragon R, Kocas-Kilicarslan ZN, Haep N, Florentino RM, Amirneni S, Cetin Z, Peri BS, Morita K, Ostrowska A, Takeishi K, Soto-Gutierrez A, Tafaleng EN. From a Single Cell to a Whole Human Liver: Disease Modeling and Transplantation. Semin Liver Dis 2022; 42:413-422. [PMID: 36044927 PMCID: PMC9718640 DOI: 10.1055/a-1934-5404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although the underlying cause may vary across countries and demographic groups, liver disease is a major cause of morbidity and mortality globally. Orthotopic liver transplantation is the only definitive treatment for liver failure but is limited by the lack of donor livers. The development of drugs that prevent the progression of liver disease and the generation of alternative liver constructs for transplantation could help alleviate the burden of liver disease. Bioengineered livers containing human induced pluripotent stem cell (iPSC)-derived liver cells are being utilized to study liver disease and to identify and test potential therapeutics. Moreover, bioengineered livers containing pig hepatocytes and endothelial cells have been shown to function and survive after transplantation into pig models of liver failure, providing preclinical evidence toward future clinical applications. Finally, bioengineered livers containing human iPSC-derived liver cells have been shown to function and survive after transplantation in rodents but require considerable optimization and testing prior to clinical use. In conclusion, bioengineered livers have emerged as a suitable tool for modeling liver diseases and as a promising alternative graft for clinical transplantation. The integration of novel technologies and techniques for the assembly and analysis of bioengineered livers will undoubtedly expand future applications in basic research and clinical transplantation.
Collapse
Affiliation(s)
- Takashi Motomura
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lanuza A.P. Faccioli
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ricardo Diaz-Aragon
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Nils Haep
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rodrigo M. Florentino
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sriram Amirneni
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zeliha Cetin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Bhaavna S. Peri
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kazutoyo Morita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kazuki Takeishi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Edgar N. Tafaleng
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Liu Y, Pu X, Qin X, Gong J, Huang Z, Luo Y, Mou T, Zhou B, Shen A, Wu Z. Neutrophil Extracellular Traps Regulate HMGB1 Translocation and Kupffer Cell M1 Polarization During Acute Liver Transplantation Rejection. Front Immunol 2022; 13:823511. [PMID: 35603144 PMCID: PMC9120840 DOI: 10.3389/fimmu.2022.823511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Neutrophil extracellular traps (NETs) play important roles in hepatic ischemic reperfusion injury (IRI) and acute rejection (AR)-induced immune responses to inflammation. After liver transplantation, HMGB1, an inflammatory mediator, contributes to the development of AR. Even though studies have found that HMGB1 can promote NET formation, the correlation between NETs and HMGB1 in the development of AR following liver transplantation has not been elucidated. In this study, levels of serum NETs were significantly elevated in patients after liver transplantation. Moreover, we found that circulating levels of NETs were negatively correlated with liver function. In addition, liver transplantation and elevated extracellular HMGB1 promoted NET formation. The HMGB1/TLR-4/MAPK signaling pathway, which is initiated by HMGB1, participates in NET processes. Moreover, in the liver, Kupffer cells were found to be the main cells secreting HMGB1. NETs induced Kupffer cell M1 polarization and decreased the intracellular translocation of HMGB1 by inhibiting DNase-1. Additionally, co-treatment with TAK-242 (a TLR-4 inhibitor) and rapamycin more effectively alleviated the damaging effects of AR following liver transplantation than either drug alone.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Pu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyan Qin
- Department of General Surgery and Trauma Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Children Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Children Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Junhua Gong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zuotian Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhai Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tong Mou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Baoyong Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ai Shen
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Dong Y, Ming B, Dong L. The Role of HMGB1 in Rheumatic Diseases. Front Immunol 2022; 13:815257. [PMID: 35250993 PMCID: PMC8892237 DOI: 10.3389/fimmu.2022.815257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
HMGB1, a highly conserved non-histone nuclear protein, is widely expressed in mammalian cells. HMGB1 in the nucleus binds to the deoxyribonucleic acid (DNA) to regulate the structure of chromosomes and maintain the transcription, replication, DNA repair, and nucleosome assembly. HMGB1 is actively or passively released into the extracellular region during cells activation or necrosis. Extracellular HMGB1 as an alarmin can initiate immune response alone or combined with other substances such as nucleic acid to participate in multiple biological processes. It has been reported that HMGB1 is involved in various inflammatory responses and autoimmunity. This review article summarizes the physiological function of HMGB1, the post-translational modification of HMGB1, its interaction with different receptors, and its recent advances in rheumatic diseases and strategies for targeted therapy.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Zhang J, Li Z, Chandrasekar A, Li S, Ludolph A, Boeckers TM, Huber-Lang M, Roselli F, Olde Heuvel F. Fast Maturation of Splenic Dendritic Cells Upon TBI Is Associated With FLT3/FLT3L Signaling. Front Immunol 2022; 13:824459. [PMID: 35281004 PMCID: PMC8907149 DOI: 10.3389/fimmu.2022.824459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
The consequences of systemic inflammation are a significant burden after traumatic brain injury (TBI), with almost all organs affected. This response consists of inflammation and concurrent immunosuppression after injury. One of the main immune regulatory organs, the spleen, is highly interactive with the brain. Along this brain–spleen axis, both nerve fibers as well as brain-derived circulating mediators have been shown to interact directly with splenic immune cells. One of the most significant comorbidities in TBI is acute ethanol intoxication (EI), with almost 40% of patients showing a positive blood alcohol level (BAL) upon injury. EI by itself has been shown to reduce proinflammatory mediators dose-dependently and enhance anti-inflammatory mediators in the spleen. However, how the splenic immune modulatory effect reacts to EI in TBI remains unclear. Therefore, we investigated early splenic immune responses after TBI with and without EI, using gene expression screening of cytokines and chemokines and fluorescence staining of thin spleen sections to investigate cellular mechanisms in immune cells. We found a strong FLT3/FLT3L induction 3 h after TBI, which was enhanced by EI. The FLT3L induction resulted in phosphorylation of FLT3 in CD11c+ dendritic cells, which enhanced protein synthesis, maturation process, and the immunity of dendritic cells, shown by pS6, peIF2A, MHC-II, LAMP1, and CD68 by immunostaining and TNF-α expression by in-situ hybridization. In conclusion, these data indicate that TBI induces a fast maturation and immunity of dendritic cells which is associated with FLT3/FLT3L signaling and which is enhanced by EI prior to TBI.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany
| | - Zhenghui Li
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany.,Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - Akila Chandrasekar
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany
| | - Shun Li
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE) , Ulm, Germany
| | - Tobias Maria Boeckers
- German Center for Neurodegenerative Diseases (DZNE) , Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE) , Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Florian Olde Heuvel
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany
| |
Collapse
|