1
|
Hedin W, Bergman P, Akhirunessa M, Söderholm S, Buggert M, Granberg T, Gredmark-Russ S, Smith CIE, Pettke A, Wahren Borgström E. Severe Tick-Borne Encephalitis (TBE) in a Patient with X-Linked Agammaglobulinemia; Treatment with TBE Virus IgG Positive Plasma, Clinical Outcome and T Cell Responses. J Clin Immunol 2024; 44:116. [PMID: 38676861 PMCID: PMC11055791 DOI: 10.1007/s10875-024-01718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE A patient with X-linked agammaglobulinemia (XLA) and severe tick-borne encephalitis (TBE) was treated with TBE virus (TBEV) IgG positive plasma. The patient's clinical response, humoral and cellular immune responses were characterized pre- and post-infection. METHODS ELISA and neutralisation assays were performed on sera and TBEV PCR assay on sera and cerebrospinal fluid. T cell assays were conducted on peripheral blood the patient and five healthy vaccinated controls. RESULTS The patient was admitted to the hospital with headache and fever. He was not vaccinated against TBE but receiving subcutaneous IgG-replacement therapy (IGRT). TBEV IgG antibodies were low-level positive (due to scIGRT), but the TBEV IgM and TBEV neutralisation tests were negative. During hospitalisation his clinical condition deteriorated (Glasgow coma scale 3/15) and he was treated in the ICU with corticosteroids and external ventricular drainage. He was then treated with plasma containing TBEV IgG without apparent side effects. His symptoms improved within a few days and the TBEV neutralisation test converted to positive. Robust CD8+ T cell responses were observed at three and 18-months post-infection, in the absence of B cells. This was confirmed by tetramers specific for TBEV. CONCLUSION TBEV IgG-positive plasma given to an XLA patient with TBE without evident adverse reactions may have contributed to a positive clinical outcome. Similar approaches could offer a promising foundation for researching therapeutic options for patients with humoral immunodeficiencies. Importantly, a robust CD8+ T cell response was observed after infection despite the lack of B cells and indicates that these patients can clear acute viral infections and could benefit from future vaccination programs.
Collapse
Affiliation(s)
- Wilhelm Hedin
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Bergman
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden
| | - Mily Akhirunessa
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Söderholm
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Granberg
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra Pettke
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Emilie Wahren Borgström
- Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden.
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Chawla S, Jindal AK, Arora K, Tyagi R, Dhaliwal M, Rawat A. T Cell Abnormalities in X-Linked Agammaglobulinaemia: an Updated Review. Clin Rev Allergy Immunol 2022:10.1007/s12016-022-08949-7. [PMID: 35708830 PMCID: PMC9201264 DOI: 10.1007/s12016-022-08949-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 12/03/2022]
Abstract
X-linked agammaglobulinaemia (XLA) is a primary immunodeficiency (PID) resulting from a defect in the B cell development. It has conventionally been thought that T cells play a major role in the development and function of the B cell compartment. However, it has also been shown that B cells and T cells undergo bidirectional interactions and B cells also influence the structure and function of the T cell compartment. Patients with XLA offer a unique opportunity to understand the effect of absent B cells on the T cell compartment. In this review, we provide an update on abnormalities in the T cell compartment in patients with XLA. Studies have shown impaired memory T cells, follicular helper T cells, T regulatory cells and T helper 17 in patients with XLA. In addition, these patients have also been reported to have abnormal delayed cell-mediated immune responses and vaccine-specific T cell-mediated immune responses; defective T helper cell polarization and impaired T cell receptor diversity. At present, the clinical significance of these T cell abnormalities has not been studied in detail. However, these abnormalities may result in an increased risk of viral infections, autoimmunity, autoinflammation and possibly chronic lung disease. Abnormal response to SARS-Cov2 vaccine in patients with XLA and prolonged persistence of SARS-Cov2 virus in the respiratory tract of these patients may be related to abnormalities in the T cell compartment.
Collapse
Affiliation(s)
- Sanchi Chawla
- Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Ankur Kumar Jindal
- Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Kanika Arora
- Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Rahul Tyagi
- Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Manpreet Dhaliwal
- Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
3
|
Guo Q, Zhong Y, Wang Z, Cao T, Zhang M, Zhang P, Huang W, Bi J, Yuan Y, Ou M, Zou X, Xiao G, Yang Y, Liu S, Liu L, Wang Z, Zhang G, Wu L. Single-cell transcriptomic landscape identifies the expansion of peripheral blood monocytes as an indicator of HIV-1-TB co-infection. CELL INSIGHT 2022; 1:100005. [PMID: 37192986 PMCID: PMC10120323 DOI: 10.1016/j.cellin.2022.100005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 05/18/2023]
Abstract
Certain circulating cell subsets are involved in immune dysregulation in human immunodeficiency virus type 1 (HIV-1) and tuberculosis (TB) co-infection; however, the characteristics and role of these subclusters are unknown. Peripheral blood mononuclear cells (PBMCs) of patients with HIV-1 infection alone (HIV-pre) and those with HIV-1-TB co-infection without anti-TB treatment (HIV-pre & TB-pre) and with anti-TB treatment for 2 weeks (HIV-pre & TB-pos) were subjected to single-cell RNA sequencing (scRNA-seq) to characterize the transcriptome of different immune cell subclusters. We obtained > 60,000 cells and identified 32 cell subclusters based on gene expression. The proportion of immune-cell subclusters was altered in HIV-1-TB co-infected individuals compared with that in HIV-pre-group, indicating immune dysregulation corresponding to different disease states. The proportion of an inflammatory CD14+CD16+ monocyte subset was higher in the HIV-pre & TB-pre group than in the HIV-pre group; this was validated in an additional cohort (n = 80) via a blood cell differential test, which also demonstrated a good discriminative performance (area under the curve, 0.8046). These findings depicted the atlas of immune PBMC subclusters in HIV-1-TB co-infection and demonstrate that monocyte subsets in peripheral blood might serve as a discriminating biomarker for diagnosis of HIV-1-TB co-infection.
Collapse
Affiliation(s)
- Qinglong Guo
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Yu Zhong
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Zhifeng Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Tingzhi Cao
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Mingyuan Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Peiyan Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Waidong Huang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Bi
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Yue Yuan
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Ou
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Xuanxuan Zou
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guohui Xiao
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Yuan Yang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Shiping Liu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Longqi Liu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Zhaoqin Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Liang Wu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| |
Collapse
|