1
|
van Hoek ML, Marchesani A, Rawat M. Diverse roles of low-molecular weight thiol GSH in Francisella's virulence, location sensing and GSH-stealing from host. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100218. [PMID: 38303966 PMCID: PMC10831187 DOI: 10.1016/j.crmicr.2023.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Low-molecular weight (LMW) thiols, encompassing peptides and small proteins with active cysteine residue(s), are important to bacteria as they are involved in a wide range of redox reactions. They include the tripeptide glutathione (GSH) and the small redox proteins, thioredoxins and glutaredoxins. We review the low MW thiols and related molecules in Francisella species and what role they may play in growth and virulence. Genes for GSH biosynthesis, metabolism and thioredoxins are present in all strains of Francisella, including the fully human-virulent strains. GSH and cysteine (CSH) are the major LMW thiols in Francisella extracts. We explore the potential role of the LMW thiols to overcome the nutritional challenges of intracellular growth (high GSH conditions) as well as the nutritional challenges of planktonic growth (low GSH conditions), and their contribution to Francisella's sensing its environmental location. Francisella may also use GSH as a source of CSH, for which it is auxotrophic. "Glutathione stealing" from the host may be an important part of Francisella's success strategy as a facultative intracellular pathogen both to detect its location and obtain CSH. An understanding of GSH metabolism in Francisella provides insights into the interaction of this pathogen with its host and may reveal additional targets for therapeutic intervention for tularemia infections.
Collapse
Affiliation(s)
- Monique L. van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | | | - Mamta Rawat
- Biology Department, California State University, Fresno, CA, United States
| |
Collapse
|
2
|
Chen D, Wu H, Shi X, Xu S, Zhang Z. Editorial: Community series in the mechanism of trace elements on regulating immunity in prevention and control of human and animal diseases, volume II. Front Immunol 2023; 14:1215080. [PMID: 37287966 PMCID: PMC10242182 DOI: 10.3389/fimmu.2023.1215080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Affiliation(s)
- Dan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Mu J, Lei L, Zheng Y, Liu J, Li J, Li D, Wang G, Liu Y. Oxidative Stress Induced by Selenium Deficiency Contributes to Inflammation, Apoptosis and Necroptosis in the Lungs of Calves. Antioxidants (Basel) 2023; 12:antiox12040796. [PMID: 37107171 PMCID: PMC10135166 DOI: 10.3390/antiox12040796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Selenium is an essential trace element for health that can only be obtained through food. However, the pathological processes of selenium deficiency in cattle have received little attention. This study investigated the effects of selenium deficiency on oxidative stress, apoptosis, inflammation, and necroptosis in the lungs of weaning calves compared with healthy calves as controls. The lung selenium content and the expression of 11 selenoproteins mRNA in selenium-deficient calves were substantially reduced compared with the controls. Pathological results showed engorged alveolar capillaries, thickened alveolar septa, and diffuse interstitial inflammation throughout the alveolar septa. The levels of GSH and T-AOC, as well as the CAT, SOD, and TrxR activities, were significantly decreased compared with healthy calves. MDA and H2O2 were significantly elevated. Meanwhile, the apoptosis activation in the Se-D group was validated. Next, in the Se-D group, several pro-inflammatory cytokines showed higher expression. Further research revealed that the lungs in the Se-D group experienced inflammation via hyperactive NF-κB and MAPK pathways. The high level of expression of c-FLIP, MLKL, RIPK1, and RIPK3 indicated that necroptosis also causes lung damage during selenium deficiency.
Collapse
Affiliation(s)
- Jing Mu
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lei Lei
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yingce Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia Liu
- Veterinary Medical Teaching Hospital, Northeast Agricultural University, Harbin 150038, China
| | - Jie Li
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ding Li
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Guanbo Wang
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Yun Liu
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Liu X, Zhang H, Yan B, Yeung KWK, Liao Y, Ouyang L, Liu X. On-Off Phagocytosis and Switchable Macrophage Activation Stimulated with NIR for Infected Percutaneous Tissue Repair of Polypyrrole-Coated Sulfonated PEEK. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205048. [PMID: 36515274 PMCID: PMC9929275 DOI: 10.1002/advs.202205048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Intelligent control of the immune response is essential for obtaining percutaneous implants with good sterilization and tissue repair abilities. In this study, polypyrrole (Ppy) nanoparticles enveloping a 3D frame of sulfonated polyether ether ketone (SP) surface are constructed, which enhance the surface modulus and hardness of the sulfonated layer by forming a cooperative structure of simulated reinforced concrete and exhibit a superior photothermal effect. Ppy-coated SP could quickly accumulate heat on the surface by responding to 808 nm near-infrared (NIR) light, thereby killing bacteria, and destroying biofilms. Under NIR stimulation, the phagocytosis and M1 activation of macrophages cultured on Ppy-coated SP are enhanced by activating complement 3 and its receptor, CD11b. Phagocytosis and M1 activation are impaired along with abolishment of NIR stimulation in the Ppy-coated SP group, which is favorable for tissue repair. Ppy-coated SP promotes Collagen-I, vascular endothelial growth factor, connective tissue growth factor, and α-actin (Acta2) expression by inducing M2 polarization owing to its higher surface modulus. Overall, Ppy-coated SP with enhanced mechanical properties could be a good candidate for clinical percutaneous implants through on-off phagocytosis and switchable macrophage activation stimulated with NIR.
Collapse
Affiliation(s)
- Xingdan Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024China
| | - Bangcheng Yan
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Kelvin W. K. Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaGuangdong Engineering Technology Research Center for Orthopaedic Trauma RepairDepartment of Orthopaedics and TraumatologyThe University of Hong Kong Shenzhen HospitalShenzhen518053China
| | - Yun Liao
- Department of PharmacyTongren HospitalShanghai Jiao Tong University School of MedicineShanghai200336China
| | - Liping Ouyang
- Department of PharmacyTongren HospitalShanghai Jiao Tong University School of MedicineShanghai200336China
- Hongqiao International Institute of MedicineShanghai Jiao Tong University School of MedicineShanghai200336China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024China
| |
Collapse
|