1
|
Ranga U, Panchapakesan A, Saini C. HIV-1 subtypes and latent reservoirs. Curr Opin HIV AIDS 2024; 19:87-92. [PMID: 38169308 DOI: 10.1097/coh.0000000000000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW We explore the current status of research on HIV-1 subtype-specific variations and their impact on HIV-1 latency. We also briefly address the controversy surrounding the decision-making process governing the ON/OFF states of HIV-1 transcription, specifically focusing on the regulatory elements, the long terminal repeat (LTR), and Tat. Understanding the decision-making process is crucial for developing effective intervention strategies, such as the 'shock-and-kill' approach, to reactivate latent HIV-1. RECENT FINDINGS Attention has been drawn to subtype-specific transcription factor binding site (TFBS) variations and the possible impact of these variations on viral latency. Further, diverse subtype-specific assays have been developed to quantify the latent viral reservoirs. One interesting observation is the relatively larger latent reservoirs in HIV-1B infection than those of other viral subtypes, which needs rigorous validation. The emergence of LTR-variant viral strains in HIV-1C demonstrating significantly higher levels of latency reversal has been reported. SUMMARY Despite persistent and substantial efforts, latent HIV-1 remains a formidable challenge to a functional cure. Determined and continued commitment is needed to understand the ON/OFF decision-making process of HIV-1 latency, develop rigorous assays for accurately quantifying the latent reservoirs, and identify potent latency-reversing agents and cocktails targeting multiple latency stages. The review emphasizes the importance of including diverse viral subtypes in future latency research.
Collapse
Affiliation(s)
- Udaykumar Ranga
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka
| | - Arun Panchapakesan
- Molecular Biology Laboratory, Y R Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, Tamil Nadu, India
| | - Chhavi Saini
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka
| |
Collapse
|
2
|
Valdebenito S, Ajasin D, Prideaux B, Eugenin EA. Correlative Imaging to Detect Rare HIV Reservoirs and Associated Damage in Tissues. Methods Mol Biol 2024; 2807:93-110. [PMID: 38743223 DOI: 10.1007/978-1-0716-3862-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Correlative light-electron microscopy (CLEM) has evolved in the last decades, especially after significant developments in sample preparation, imaging acquisition, software, spatial resolution, and equipment, including confocal, live-cell, super-resolution, and electron microscopy (scanning, transmission, focused ion beam, and cryo-electron microscopy). However, the recent evolution of different laser-related techniques, such as mass spectrometry imaging (MSI) and laser capture microdissection, could further expand spatial imaging capabilities into high-resolution OMIC approaches such as proteomic, lipidomics, small molecule, and drug discovery. Here, we will describe a protocol to integrate the detection of rare viral reservoirs with imaging mass spectrometry.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - David Ajasin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Brendan Prideaux
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Eliseo A Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA.
| |
Collapse
|
3
|
Zhang X, Chen J. HIV Reservoir: How to Measure It? Curr HIV/AIDS Rep 2023; 20:29-41. [PMID: 37004676 DOI: 10.1007/s11904-023-00653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 04/04/2023]
Abstract
PURPOSEOF REVIEW In the current quest for a complete cure for HIV/AIDS, the persistence of a long-lived reservoir of cells carrying replication-competent proviruses is the major challenge. Here, we describe the main elements and characteristics of several widely used assays of HIV latent reservoir detection. RECENT FINDINGS To date, researchers have developed several different HIV latent reservoir detection assays. Among them, the in vitro quantitative viral outgrowth assay (QVOA) has been the gold standard for assessing latent HIV-1 viral load. The intact proviral DNA assay (IPDA) based on PCR also demonstrated the predominance of defective viruses. However, these assays all have some drawbacks and may still be inadequate in detecting the presence of ultralow levels of latent virus in many patients who were initially thought to have been cured, but eventually showed viral rebound. An accurate and precise measurement of the HIV reservoir is therefore needed to evaluate curative strategies, aimed to functional cure or sterilizing cure.
Collapse
Affiliation(s)
- Xinyu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Stevenson EM, Terry S, Copertino D, Leyre L, Danesh A, Weiler J, Ward AR, Khadka P, McNeil E, Bernard K, Miller IG, Ellsworth GB, Johnston CD, Finkelsztein EJ, Zumbo P, Betel D, Dündar F, Duncan MC, Lapointe HR, Speckmaier S, Moran-Garcia N, Papa MP, Nicholes S, Stover CJ, Lynch RM, Caskey M, Gaebler C, Chun TW, Bosque A, Wilkin TJ, Lee GQ, Brumme ZL, Jones RB. SARS CoV-2 mRNA vaccination exposes latent HIV to Nef-specific CD8 + T-cells. Nat Commun 2022; 13:4888. [PMID: 35985993 PMCID: PMC9389512 DOI: 10.1038/s41467-022-32376-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/26/2022] [Indexed: 12/05/2022] Open
Abstract
Efforts to cure HIV have focused on reactivating latent proviruses to enable elimination by CD8+ cytotoxic T-cells. Clinical studies of latency reversing agents (LRA) in antiretroviral therapy (ART)-treated individuals have shown increases in HIV transcription, but without reductions in virologic measures, or evidence that HIV-specific CD8+ T-cells were productively engaged. Here, we show that the SARS-CoV-2 mRNA vaccine BNT162b2 activates the RIG-I/TLR - TNF - NFκb axis, resulting in transcription of HIV proviruses with minimal perturbations of T-cell activation and host transcription. T-cells specific for the early gene-product HIV-Nef uniquely increased in frequency and acquired effector function (granzyme-B) in ART-treated individuals following SARS-CoV-2 mRNA vaccination. These parameters of CD8+ T-cell induction correlated with significant decreases in cell-associated HIV mRNA, suggesting killing or suppression of cells transcribing HIV. Thus, we report the observation of an intervention-induced reduction in a measure of HIV persistence, accompanied by precise immune correlates, in ART-suppressed individuals. However, we did not observe significant depletions of intact proviruses, underscoring challenges to achieving (or measuring) HIV reservoir reductions. Overall, our results support prioritizing the measurement of granzyme-B-producing Nef-specific responses in latency reversal studies and add impetus to developing HIV-targeted mRNA therapeutic vaccines that leverage built-in LRA activity.
Collapse
Affiliation(s)
- Eva M Stevenson
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sandra Terry
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Dennis Copertino
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Louise Leyre
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Ali Danesh
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jared Weiler
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Adam R Ward
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Pragya Khadka
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Evan McNeil
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Kevin Bernard
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Itzayana G Miller
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Grant B Ellsworth
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Carrie D Johnston
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Eli J Finkelsztein
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Weill Cornell Medical College, New York, NY, USA
| | - Doron Betel
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Applied Bioinformatics Core, Weill Cornell Medical College, New York, NY, USA
| | - Friederike Dündar
- Applied Bioinformatics Core, Weill Cornell Medical College, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Maggie C Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Hope R Lapointe
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Sarah Speckmaier
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Nadia Moran-Garcia
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Michelle Premazzi Papa
- Dept of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Samuel Nicholes
- Dept of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Carissa J Stover
- Dept of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Rebecca M Lynch
- Dept of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID, NIH, Bethesda, MD, USA
| | - Alberto Bosque
- Dept of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Timothy J Wilkin
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Guinevere Q Lee
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - R Brad Jones
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
5
|
Mishra S, Gohil Y, Mehta K, D'silva A, Amanullah A, Selvam D, Pargain N, Nala N, Sanjeeva GN, Ranga U. An Optimized Tat/Rev Induced Limiting Dilution Assay for the Characterization of HIV-1 Latent Reservoirs. Bio Protoc 2022; 12:e4391. [PMID: 35800103 PMCID: PMC9081478 DOI: 10.21769/bioprotoc.4391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/27/2021] [Accepted: 03/02/2022] [Indexed: 12/29/2022] Open
Abstract
The administration of antiretroviral therapy (ART) leads to a rapid reduction in plasma viral load in HIV-1 seropositive subjects. However, when ART is suspended, the virus rebounds due to the presence of a latent viral reservoir. Several techniques have been developed to characterize this latent viral reservoir. Of the various assay formats available presently, the Tat/Rev induced limiting dilution assay (TILDA) offers the most robust and technically simple assay strategy. The TILDA formats reported thus far are limited by being selective to one or a few HIV-1 genetic subtypes, thus, restricting them from a broader level application. The novel TILDA, labelled as U-TILDA ('U' for universal), can detect all the major genetic subtypes of HIV-1 unbiasedly, and with comparable sensitivity of detection. U-TILDA is well suited to characterize the latent reservoirs of HIV-1 and aid in the formulation of cure strategies. Graphical abstract.
Collapse
Affiliation(s)
- Swarnima Mishra
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Yuvrajsinh Gohil
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Kavita Mehta
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Anish D'silva
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Afzal Amanullah
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Deepak Selvam
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Neelam Pargain
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Narendra Nala
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - G. N. Sanjeeva
- Department of Pediatric Genetics, Indira Gandhi Institute of Child Health, Bengaluru, India
| | - Udaykumar Ranga
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
,
*For correspondence: ;
| |
Collapse
|