1
|
Qi Z, Peng J, Wang H, Wang L, Su Y, Ding L, Cao B, Zhao Y, Xing Q, Yang J. Modulating neuroinflammation and cognitive function in postoperative cognitive dysfunction via CCR5-GPCRs-Ras-MAPK pathway targeting with microglial EVs. CNS Neurosci Ther 2024; 30:e14924. [PMID: 39143678 PMCID: PMC11324532 DOI: 10.1111/cns.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
AIMS Postoperative cognitive dysfunction (POCD) is prevalent among the elderly, characterized primarily by cognitive decline after surgery. This study aims to explore how extracellular vesicles (EVs) derived from BV2 microglial cells, with and without the C-C chemokine receptor type 5 (CCR5), affect neuroinflammation, neuronal integrity, and cognitive function in a POCD mouse model. METHODS We collected EVs from LPS-stimulated BV2 cells expressing CCR5 (EVsM1) and from BV2 cells with CCR5 knockdown (EVsM1-CCR5). These were administered to POCD-induced mice. Protein interactions between CCR5, G-protein-coupled receptors (GPCRs), and Ras were analyzed using structure-based docking and co-immunoprecipitation (Co-IP). We assessed the phosphorylation of p38 and Erk, the expression of synaptic proteins PSD95 and MAP2, and conducted Morris Water Maze tests to evaluate cognitive function. RESULTS Structure-based docking and Co-IP confirmed interactions between CCR5, GPR, and Ras, suggesting a CCR5-GPCRs-Ras-MAPK pathway involvement in neuroinflammation. EVsM1 heightened neuroinflammation, reduced synaptic integrity, and impaired cognitive function in POCD mice. In contrast, EVsM1-CCR5 reduced neuroinflammatory markers, preserved synaptic proteins, enhanced dendritic spine structure, and improved cognitive outcomes. CONCLUSION EVsM1 induced neuroinflammation via the CCR5-GPCRs-Ras-MAPK pathway, with EVsM1-CCR5 showing protective effects on POCD progression, suggesting a new therapeutic strategy for POCD management via targeted modification of microglial EVs.
Collapse
Affiliation(s)
- Zheng Qi
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Junlin Peng
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Haitao Wang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Li Wang
- Biobank of The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yu Su
- Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Lan Ding
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Bin Cao
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yingying Zhao
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qinghe Xing
- Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jian‐jun Yang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
2
|
Akin C, Siebenhaar F, Wechsler JB, Youngblood BA, Maurer M. Detecting Changes in Mast Cell Numbers Versus Activation in Human Disease: A Roadblock for Current Biomarkers? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1727-1737. [PMID: 38467332 DOI: 10.1016/j.jaip.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
The pathophysiology of mast cell (MC)-driven disorders is diverse, ranging from localized reactions to systemic disorders caused by abnormal accumulation and activation in multiorgan systems. Prompt and accurate diagnosis is critically important, both for informing treatment and objective assessment of treatment outcomes. As new therapeutics are being developed to deplete MCs or silence them (eg, by engaging inhibitory receptors that block activation), new biomarkers are needed that can distinguish between MC activation versus burden. Serum tryptase is the gold standard for assessing both MC burden and activation; however, commercial tryptase assays have limitations related to timing of release, lack of discernment between inactive (α) and active (β) forms of tryptase, and interpatient variability of baseline levels. Alternative approaches to measuring MC activation include urinary MC mediators, flow cytometry-based assays or gene expression profiling. Additional markers of MC activation are needed for use in clinical diagnostics, to help selection of treatment of MC diseases, and for assessing outcomes of therapy. We review the spectrum of disorders with known or suspected MC contribution, describe the utility and limitations of current MC markers and assays, and discuss the need for new markers that can differentiate between MC activation and burden.
Collapse
Affiliation(s)
- Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Joshua B Wechsler
- Division of Gastroenterology, Hepatology, and Nutrition, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | | | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| |
Collapse
|
3
|
Qi Z, Yu Y, Su Y, Cao B, Shao H, Yang JJ. M1-Type Microglia-Derived Extracellular Vesicles Overexpressing IL-1R1 Promote Postoperative Cognitive Dysfunction by Regulating Neuronal Inflammation. Inflammation 2023; 46:2254-2269. [PMID: 37505422 DOI: 10.1007/s10753-023-01875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication after surgical anesthesia, mainly manifested as memory impairment, decreased attention, and cognitive function with mood and personality changes. Activated microglia (M1-type microglia) have been demonstrated to release inflammatory substances (IL-1β, TNF-α, etc.) that cause neuronal degeneration and death by activating the NF-κB signaling pathway and upregulating Caspase-3 and Bax. However, the pathogenesis of POCD is still not fully understood and needs further research. In the present study, we investigated the effect of M1-type microglia-derived extracellular vesicles (EVsM1-Microglia) in the pathological process of POCD. The levels of NF-κB phosphorylation and IL-1β protein expression in hippocampal neurons were significantly increased in the Surgery group, while PSD95 and MAP2 were significantly decreased. Surgery induced microglia activation, synapse-associated protein decrease, and neuronal degeneration in hippocampus. And the amount of spine and mushroom spine significantly decreased in surgical mice, which was reverted in the presence of IL-1R1 siRNA. In addition, EVsM1-Microglia promoted synaptic loss and neuron degeneration independent of surgery and microglia activation. Furthermore, EVsM1-Microglia promoted memory defects in surgical mice. We demonstrated that EVsM1-Microglia with high expression of IL-1R1 promote POCD development by regulating neuronal inflammation.
Collapse
Affiliation(s)
- Zheng Qi
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450000, People's Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450000, People's Republic of China
| | - Yang Yu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450000, People's Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450000, People's Republic of China
| | - Yu Su
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bin Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450000, People's Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450000, People's Republic of China
| | - Hua Shao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450000, People's Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450000, People's Republic of China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450000, People's Republic of China.
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
4
|
Miyake K, Ito J, Karasuyama H. Role of Basophils in a Broad Spectrum of Disorders. Front Immunol 2022; 13:902494. [PMID: 35693800 PMCID: PMC9186123 DOI: 10.3389/fimmu.2022.902494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Basophils are the rarest granulocytes and have long been overlooked in immunological research due to their rarity and similarities with tissue-resident mast cells. In the last two decades, non-redundant functions of basophils have been clarified or implicated in a broad spectrum of immune responses, particularly by virtue of the development of novel analytical tools for basophils. Basophils infiltrate inflamed tissues of patients with various disorders, even though they circulate in the bloodstream under homeostatic conditions. Depletion of basophils results in the amelioration or exaggeration of inflammation, depending on models of disease, indicating basophils can play either beneficial or deleterious roles in a context-dependent manner. In this review, we summarize the recent findings of basophil pathophysiology under various conditions in mice and humans, including allergy, autoimmunity, tumors, tissue repair, fibrosis, and COVID-19. Further mechanistic studies on basophil biology could lead to the identification of novel biomarkers or therapeutic targets in a broad range of diseases.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Milk-derived extracellular vesicles (MDEVs) are nanovesicles that carry microRNA (miRNA) DNA, RNA, proteins and lipids. MDEVs have a potential of therapeutic targets, based on their properties and cargo profile. The present review summarizes recent studies on MDEVs, their cargo and potential role in mammalian development. RECENT FINDINGS The detailed characterization of their miRNA cargo leads to the conclusion of their potential importance in the regulation of gene expression, immune function, development and infant growth.While their miRNAs are important regulatory elements and their profile expression was characterized in various mammalian milk sources, little is known about their effect on infant health and development. MiRNA activity in breast milk is likely influenced by the overall ecosystem of the early environment, including maternal characteristics, behaviors, and health. SUMMARY MDEVs may have an important role in early child development and infant future health. Understanding benefits of MDEVs characteristics have potential role on gut maturation, immune system development and the prevention of metabolic disorders.
Collapse
Affiliation(s)
- Regina Golan-Gerstl
- Department of Pediatrics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|