1
|
Ye F, Zhang Z, Shi L, Lu S, Li X, Mu W, Jiang Q, Yan B. Targeting glycolytic reprogramming by tsRNA-0032 for treating pathological lymphangiogenesis. Cell Death Dis 2025; 16:51. [PMID: 39870617 PMCID: PMC11772812 DOI: 10.1038/s41419-025-07366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism. tsRNA-0032 expression is significantly decreased in corneal suture model and human lymphatic endothelial cell (HLEC) model under inflammatory condition. Overexpression of tsRNA-0032 exerts anti-lymphangiogenic effects by inhibiting HLEC proliferation, migration, and tube formation. Moreover, overexpression of tsRNA-0032 inhibits suture-induced corneal lymphangiogenesis. tsRNA-0032 is mainly located in the cytoplasm and interacts with Ago2 protein. Overexpression of tsRNA-0032 reduces ATP production and decreases pyruvate and lactate levels by targeting PKM2, a key enzyme in glycolysis. This regulation of glycolysis alters cellular energy and metabolic balance in HLECs, contributing to anti-lymphangiogenic effects. Clinical data reveals that tsRNA-0032 levels are significantly reduced in corneal tissues of transplant recipients compared to donors, while PKM2 expression is elevated, highlighting the clinical relevance of tsRNA-0032/PKM2 axis in corneal lymphangiogenesis. This study offers new insights into the regulation of lymphangiogenesis and presents potential therapeutic targets for lymphangiogenesis-related diseases.
Collapse
Affiliation(s)
- Fan Ye
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziran Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Lianjun Shi
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Shuting Lu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Wan Mu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China.
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Duan L, Lin W, Zhang Y, Jin L, Xiao J, Wang H, Pang S, Wang H, Sun D, Gong Y, Li H. Exosomes in Autoimmune Diseases: A Review of Mechanisms and Diagnostic Applications. Clin Rev Allergy Immunol 2025; 68:5. [PMID: 39820756 DOI: 10.1007/s12016-024-09013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/19/2025]
Abstract
Exosomes, small extracellular vesicles secreted by various cell types, have emerged as key players in the pathophysiology of autoimmune diseases. These vesicles serve as mediators of intercellular communication, facilitating the transfer of bioactive molecules such as proteins, lipids, and nucleotide. In autoimmune diseases, exosomes have been implicated in modulating immune responses, oxidative stress, autophagy, gut microbes, and the cell cycle, contributing to disease initiation, progression, and immune dysregulation. Recent advancements in exosome isolation techniques and their molecular characterization have paved the way for exploring their clinical potential as biomarkers and therapeutic targets. This review focuses on the mechanisms by which exosomes influence autoimmune disease development and their potential clinical applications, particularly in diagnosis. The role of exosomes in autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type 1 diabetes mellitus (T1DM), inflammatory bowel disease (IBD), and Sjögren's syndrome (SS), is discussed in relation to their involvements in antigen presentation, T-cell activation, and the induction of inflammatory pathways. Additionally, exosome-based biomarkers offer promising non-invasive diagnostic tools for early diagnostic, disease monitoring, and therapeutic response assessment. However, challenges such as standardization of exosome isolation protocols and validation of their clinical significance remain. This review highlights the potential of exosomes as both diagnostic biomarkers and therapeutic targets in autoimmune diseases, emphasizing the need for further research to overcome current limitations and fully harness their clinical value.
Collapse
Affiliation(s)
- Lina Duan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wanying Lin
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yi Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lingyue Jin
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jie Xiao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Haifang Wang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shuyin Pang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Hongxia Wang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Dehua Sun
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Ying Gong
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Haixia Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
3
|
Jia H, Zhang L. tRNA-derived small RNAs in disease immunity. Theranostics 2025; 15:245-257. [PMID: 39744232 PMCID: PMC11667222 DOI: 10.7150/thno.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
Recently, members of a unique species of non-coding RNA, known as transfer RNA-derived small RNAs (tsRNAs) have been reported to serve multiple molecular functions, including in cells that mediate immunity. Because of their low molecular weights, tsRNAs were previously difficult to detect and were thus overlooked, until now. In this review, we delve into the biogenesis of tsRNAs and their diverse biological functions, ranging from transcriptional regulation to modulation of mRNA translation. We highlight the current evidence demonstrating their involvement in the immune response, as well as how tsRNAs modulate immunity to influence tumor growth and spread, autoimmune disease pathology and infection by pathogens. We surmise that tsRNAs are likely informative as diagnostic markers of cellular homeostasis and disease, and that therapeutic targeting of tsRNAs could be beneficial for a range of human diseases. Improved knowledge on the functions for tsRNAs in the mammalian immune system will enable us to leverage tsRNAs for their effective clinical use as treatments for human health challenges.
Collapse
Affiliation(s)
- Hongyuan Jia
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Linling Zhang
- Department of Respiratory and Critical Care, Chengdu Third People's Hospital, Chengdu, China
| |
Collapse
|
4
|
Shi B, Chen F, Gong J, Khan A, Qian X, Xu Z, Yang P. Urinary microbiome profiling as a non-invasive tool for identifying biomarkers in systemic lupus erythematosus and lupus nephritis. Front Cell Infect Microbiol 2024; 14:1364333. [PMID: 39691697 PMCID: PMC11649663 DOI: 10.3389/fcimb.2024.1364333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 11/05/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Bacteriome alterations have been implicated in the pathogenesis of systemic lupus erythematosus (SLE). However, the relationship between SLE and the urinary microbiome remains underexplored. This study aimed to characterize the urinary microbiome of SLE patients using 16S rRNA sequencing and to investigate its correlations with clinical parameters through integrative analyses. Methods Urine sediment samples were collected from individuals with SLE and lupus nephritis (LN) (n = 20), SLE without LN (n = 22), and healthy controls (HCs) (n = 23). DNA was extracted and subjected to 16S rRNA sequencing to profile the urinary microbiome. Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the diagnostic efficacy of urinary microbiota, while Spearman's correlation analysis was employed to identify links between specific microbial taxa and clinical parameters. Functional predictions of bacterial roles were performed using Picrust2. Results The urinary microbiota diagnostic model exhibited excellent performance in distinguishing SLE patients from HCs. Spearman's analysis revealed significant correlations between the urinary microbiome and clinical parameters. Specifically, Sphingomonas and Lachnospiraceae genera showed positive correlations with vitamin D levels, cylinderuria, and proteinuria, while Pedobacter, Aquabacterium, Delftia, and Achromobacter displayed negative correlations with proteinuria and albumin-to-creatinine ratio (ACR). Functional predictions indicated that the urinary microbiome might influence immune regulation through modulation of signaling pathways and metabolic processes. Discussion Our study is the first to reveal dysbiosis in the urinary microbiome of patients with SLE. Certain bacterial taxa in the urinary microbiome were identified as potential diagnostic biomarkers for SLE. Furthermore, the functional implications of these bacterial communities suggest their involvement in immune modulation, highlighting the potential for further investigation into their roles in SLE pathogenesis and diagnosis.
Collapse
Affiliation(s)
- Bo Shi
- Department of Clinical Laboratory, Nanjing Jiangning District Hospital of Traditional Chinese Medicine (TCM), Nanjing, China
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fei Chen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianmin Gong
- College of Life Science, Yangtze University, Jingzhou, China
| | - Adeel Khan
- Department of Biotechnology, University of Science and Technology Bannu, Bannu, KP, Pakistan
| | - Xiang Qian
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Yang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Peng J, Bu F, Duan L, Song A, Wang G, Zhang Z. Serum extracellular vesicles 3'tRF-ThrCGTand 3'tRF-mtlleGAT combined with tumor markers can serve as minimally invasive diagnostic predictors for colorectal cancer. Front Oncol 2024; 14:1474095. [PMID: 39497718 PMCID: PMC11532659 DOI: 10.3389/fonc.2024.1474095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Background Colorectal cancer (CRC) is a leading cause of morbidity and mortality, and timely diagnosis and intervention are crucial for cancer patients. Transfer RNA-derived fragments (tRFs) play a noncoding regulatory role in organisms. Serum EV(extracellular vesicles), as an integral mediator of intercellular transmission of genetic information vesicles in Transfer RNA-derived fragment (tRF RNA), are expected to be minimally invasive diagnostic and predictive biologic factors of CRC. Methods Collect serum samples from 205 CRC patients, and then isolate extracellular vesicles from the serum. Captured the physical morphology of EV through transmission electron microscopy. The particle size was detected by particle size assay, and protein expression on the surface of EV was verified by Western blot. Gene microarrays were screened for differentially expressed tRF-RNA. TRF RNAs were verified by qPCR for differential expression in 205 CRC patients and 201 healthy donors, assessing the CRC diagnostic efficiency by area under the curve (AUC). Results Compared with 201 healthy donors, CRC patients experienced significantly down-regulated serum EV 3'tRF-ThrCGT while significantly up-regulated 3'tRF-mtlleGAT. Serum EV 3'tRF-ThrCGT and 3'tRF-mtlleGAT predictive diagnostic efficiency: 0.669 and 0.656, and the combination of CEA and CA724 predictive diagnostic efficiency was 0.938. Conclusion The study data showed that 3'tRF-ThrCGT and 3'tRF-mtlelGAT can be minimally invasive diagnostic CRC indicators. The combination of tumor markers CEA and CA724 has important diagnostic significance.
Collapse
Affiliation(s)
- Jiefei Peng
- Department of Clinical Laboratory, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-Drug Resistant Drug Research, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Fan Bu
- Department of Clinical Laboratory, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-Drug Resistant Drug Research, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Lei Duan
- Department of Clinical Laboratory, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-Drug Resistant Drug Research, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Anna Song
- Department of Reproduction and Genetics, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Guojun Wang
- Department of Neurosurgery, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Zhijun Zhang
- Department of Clinical Laboratory, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-Drug Resistant Drug Research, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| |
Collapse
|
6
|
Peng J, Zhang Y, Zhou G, Shao L, Li L, Zhang Z. Circulating serum exosomes i-tRF-AspGTC and tRF-1-SerCGA as diagnostic indicators for non-small cell lung cancer. Clin Transl Oncol 2024; 26:1988-1997. [PMID: 38502292 DOI: 10.1007/s12094-024-03423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND tRF-RNA-a representative of non-coding RNA (ncRNA)-is a precursor or fragment of mature tRNA and plays a crucial regulatory role in the occurrence and development of cancer. There is currently little research on tRF-RNA as a diagnostic marker in cancer, especially for NSCLC from serum exosomes. METHOD Serum exosomes were successfully extracted from serum; their physical morphology was captured by transmission electron microscopy (TEM); appropriate particle size detection was performed using qNano; surface labeling was verified through western blotting. Serum exosomes i-tRF-AspGTC and tRF-1-SerCGA were selected through gene microarray, and qPCR was used to validate their significance in 242 patients and 201 healthy individuals. The area under the curve (AUC) was used to evaluate the diagnostic indicators of non-small cell lung cancer (NSCLC). RESULT Compared with 201 healthy individuals, i-tRF-AspGTC and tRF-1-SerCGA were significantly downregulated in 242 NSCLC patients and 95 early-stage patients. For tRF-AspGTC and tRF-1-SerCGA, the predictive diagnostic efficiency rates of AUC were 0.690 and 0.680, respectively, whereas the early diagnostic efficiency rates were 0.656 and 0.688, respectively. The result of combined diagnosis with CEA and CYFRA21-1 was 0.928, and the early diagnostic efficiency was 0.843, which is a very high biological predictive factor for NSCLC. CONCLUSION The expression of serum exosomes i-tRF-AspGTC and tRF-1-SerCGA was significantly downregulated in NSCLC patients. These exosomes could be used as predictive indicators for diagnosis or early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Jiefei Peng
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian, 271000, China
| | - Yue Zhang
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Guangfei Zhou
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Luolin Shao
- Department of Dermatology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Lin Li
- Pharmacy Intravenous Admixture Services, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
| | - Zhijun Zhang
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
- Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian, 271000, China.
| |
Collapse
|
7
|
Chen YM, Tang KT, Liu HJ, Huang ST, Liao TL. tRF-His-GTG-1 enhances NETs formation and interferon-α production in lupus by extracellular vesicle. Cell Commun Signal 2024; 22:354. [PMID: 38972975 PMCID: PMC11229248 DOI: 10.1186/s12964-024-01730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Hyperactive neutrophil extracellular traps (NETs) formation plays a crucial role in active severe systemic lupus erythematosus (SLE). However, what triggers the imbalance in dysregulated NETs formation in SLE is elusive. Transfer RNA-derived small RNAs (tsRNAs) are novel non-coding RNAs, which participate in various cellular processes. We explore the role of tsRNAs on NETs formation in SLE. METHODS We analyzed the levels of NETs DNA and platelet-derived extracellular vesicles (pEVs) from 50 SLE patients and 20 healthy control subjects. The effects of pEVs on NETs formation were evaluated by using immunofluorescence assay and myeloperoxidase-DNA PicoGreen assay. The regulatory mechanism of pEVs on NETs formation and inflammatory cytokines production were investigated using an in vitro cell-based assay. RESULTS Increased circulating NETs DNA and pEVs were shown in SLE patients and were associated with disease activity (P < 0.005). We demonstrated that SLE patient-derived immune complexes (ICs) induced platelet activation, followed by pEVs release. ICs-triggered NETs formation was significantly enhanced in the presence of pEVs through Toll-like receptor (TLR) 8 activation. Increased levels of tRF-His-GTG-1 in pEVs and neutrophils of SLE patients were associated with disease activity. tRF-His-GTG-1 interacted with TLR8 to prime p47phox phosphorylation in neutrophils, resulting in reactive oxygen species production and NETs formation. Additionally, tRF-His-GTG-1 modulated NF-κB and IRF7 activation in neutrophils upon TLR8 engagement, resulting IL-1β, IL-8, and interferon-α upregulation, respectively. CONCLUSIONS The level of tRF-His-GTG-1 was positively correlated with NETs formation in SLE patients; tRF-His-GTG-1 inhibitor could efficiently suppress ICs-triggered NETs formation/hyperactivation, which may become a potential therapeutic target.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Xitun Dist, Taichung, 40705, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Hung-Jen Liu
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shih-Ting Huang
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Xitun Dist, Taichung, 40705, Taiwan.
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
8
|
Yang P, Sun Y, Wang C, Li Z, Han Y, Gong J, Khan A, Wang J, Wang Y, Jin F, Li Z. Serum exosomal tsRNA biomarkers: A novel strategy for identifying lupus nephritis. Clin Transl Med 2024; 14:e1677. [PMID: 38760892 PMCID: PMC11101668 DOI: 10.1002/ctm2.1677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/20/2024] Open
Affiliation(s)
- Ping Yang
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of PhysiologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologySchool of Life SciencesNJU Advanced Institute of Life SciencesNanjing UniversityNanjingChina
| | - Yifan Sun
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Laboratory MedicineNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
| | - Chenlan Wang
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of PhysiologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologySchool of Life SciencesNJU Advanced Institute of Life SciencesNanjing UniversityNanjingChina
| | - Zhibo Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Yiyuan Han
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Jianming Gong
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Adeel Khan
- Department of BiotechnologyUniversity of Science and TechnologyBannuPakistan
| | - Jin Wang
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of PhysiologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologySchool of Life SciencesNJU Advanced Institute of Life SciencesNanjing UniversityNanjingChina
| | - Yanbo Wang
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of PhysiologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologySchool of Life SciencesNJU Advanced Institute of Life SciencesNanjing UniversityNanjingChina
| | - Fangfang Jin
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Zhiyang Li
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Laboratory MedicineNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
| |
Collapse
|
9
|
Li D, Xie X, Yin N, Wu X, Yi B, Zhang H, Zhang W. tRNA-Derived Small RNAs: A Novel Regulatory Small Noncoding RNA in Renal Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:1-11. [PMID: 38322624 PMCID: PMC10843216 DOI: 10.1159/000533811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/23/2023] [Indexed: 02/08/2024]
Abstract
Background tRNA-derived small RNAs (tsRNAs) are an emerging class of small noncoding RNAs derived from tRNA cleavage. Summary With the development of high-throughput sequencing, various biological roles of tsRNAs have been gradually revealed, including regulation of mRNA stability, transcription, translation, direct interaction with proteins and as epigenetic factors, etc. Recent studies have shown that tsRNAs are also closely related to renal disease. In clinical acute kidney injury (AKI) patients and preclinical AKI models, the production and differential expression of tsRNAs in renal tissue and plasma were observed. Decreased expression of tsRNAs was also found in urine exosomes from chronic kidney disease patients. Dysregulation of tsRNAs also appears in models of nephrotic syndrome and patients with lupus nephritis. And specific tsRNAs were found in high glucose model in vitro and in serum of diabetic nephropathy patients. In addition, tsRNAs were also differentially expressed in patients with kidney cancer and transplantation. Key Messages In the present review, we have summarized up-to-date works and reviewed the relationship and possible mechanisms between tsRNAs and kidney diseases.
Collapse
Affiliation(s)
- Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xian Xie
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Ni Yin
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xueqin Wu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| |
Collapse
|
10
|
Zhang L, Liu J, Hou Y. Classification, function, and advances in tsRNA in non-neoplastic diseases. Cell Death Dis 2023; 14:748. [PMID: 37973899 PMCID: PMC10654580 DOI: 10.1038/s41419-023-06250-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
tRNA-derived small RNAs (tsRNAs) are non-coding small RNAs produced by specific endonucleases following the processing and splicing of precursor or mature tRNAs upon starvation, oxidative stress, hypoxia, and other adverse conditions. tRNAs are classified into two major categories, tRNA fragments (tRFs) and tRNA-derived stress-induced small RNAs (tiRNAs), based on differences in splice sites. With the development of high-throughput sequencing technologies in recent years, tsRNAs have been found to have important biological functions, including inhibition of apoptosis, epigenetic regulation, cell-cell communication, translation, and regulation of gene expression. Additionally, these molecules have been found to be aberrantly expressed in various diseases and to be involved in several pathological processes. In this article, the classification and nomenclature, biological functions, and potential use of tsRNAs as diagnostic biomarkers and therapeutic targets in non-neoplastic diseases are reviewed. Although tsRNA research is at its infancy, their potential in the treatment of non-tumor diseases warrants further investigation.
Collapse
Affiliation(s)
- Liou Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Liu
- Translational Research Experiment Department, Science Experiment Center, China Medical University, Shenyang, China.
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
11
|
Flores-Chova A, Martinez-Arroyo O, Riffo-Campos AL, Ortega A, Forner MJ, Cortes R. Plasma Exosomal Non-Coding RNA Profile Associated with Renal Damage Reveals Potential Therapeutic Targets in Lupus Nephritis. Int J Mol Sci 2023; 24:ijms24087088. [PMID: 37108249 PMCID: PMC10139178 DOI: 10.3390/ijms24087088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Despite considerable progress in our understanding of systemic lupus erythematosus (SLE) pathophysiology, patient diagnosis is often deficient and late, and this has an impact on disease progression. The aim of this study was to analyze non-coding RNA (ncRNA) packaged into exosomes by next-generation sequencing to assess the molecular profile associated with renal damage, one of the most serious complications of SLE, to identify new potential targets to improve disease diagnosis and management using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The plasma exosomes had a specific ncRNA profile associated with lupus nephritis (LN). The three ncRNA types with the highest number of differentially expressed transcripts were microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and piwi-interacting RNAs (piRNAs). We identified an exosomal 29-ncRNA molecular signature, of which 15 were associated only with LN presence; piRNAs were the most representative, followed by lncRNAs and miRNAs. The transcriptional regulatory network showed a significant role for four lncRNAs (LINC01015, LINC01986, AC087257.1 and AC022596.1) and two miRNAs (miR-16-5p and miR-101-3p) in network organization, targeting critical pathways implicated in inflammation, fibrosis, epithelial-mesenchymal transition and actin cytoskeleton. From these, a handful of potential targets, such as transforming growth factor-β (TGF-β) superfamily binding proteins (activin-A, TGFB receptors, etc.), WNT/β-catenin and fibroblast growth factors (FGFs) have been identified for use as therapeutic targets of renal damage in SLE.
Collapse
Affiliation(s)
- Ana Flores-Chova
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Angela L Riffo-Campos
- Millennium Nucleus on Sociomedicine (SocioMed) and Universidad de La Frontera, Doctorado en Ciencias Medicas, Temuco 4780000, Chile
- Department of Computer Science, ETSE, University of Valencia, 46010 Valencia, Spain
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBERCV (CIBER of Cardiovascular Diseases), 28029 Madrid, Spain
| | - Maria J Forner
- Internal Medicine Unit, Hospital Clinico Universitario, 46010 Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| |
Collapse
|
12
|
Yang P, Xu R, Chen F, Chen S, Khan A, Li L, Zhang X, Wang Y, Xu Z, Shen H. Fungal gut microbiota dysbiosis in systemic lupus erythematosus. Front Microbiol 2023; 14:1149311. [PMID: 37089568 PMCID: PMC10115219 DOI: 10.3389/fmicb.2023.1149311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionDespite recent developments in our comprehension of how the gut microbiota and systemic lupus erythematosus (SLE) are related. The mycobiome: which is a small but crucial part of the gut microbiota and is involved in hosts’ homeostasis and physiological processes, remained unexplored in SLE.MethodsWe profiled the gut fungal mycobiota based on internal transcribed spacer region 1 (ITS1) sequencing for the gut microbial DNA from the SLE individuals with lupus nephritis (LN) (n = 23), SLE without LN (n = 26) and healthy controls (n = 14) enrolled in Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School.ResultsThe ITS sequencing generated a total of 4.63 million valid tags which were stratified into 4,488 operational taxonomic units (OTUs) and identified about 13 phyla and 262 genera. Patients with SLE were characterized with unique fungal flora feature. The fungal microbiomes of the three groups displayed distinct beta diversity from each other. Compared with HC group, the abundance of fungal dysbiosis was reflected in a higher ratio of opportunistic fungi in SLE or LN group, as well as the loss of Rhizopus and Malassezia. The main principal components of the flora between the SLE and LN group were generally consistent. The relative abundance of Vanrija in the fecal fungal community was higher in LN group, while the relative abundance of Fusarium was higher in SLE group. Moreover, our data revealed superior diagnostic accuracy for SLE with the fungal species (e.g. Candida, Meyerozyma). Correlations between gut fungi and clinical parameters were identified by Spearman’s correlation analysis. Interestingly, Aspergillus in SLE patients was positively correlated with ACR, 24 h proteinuria, proteinuria, anti-dsDNA, ANA, and SLEDAI, while Rhizopus was negatively correlated with lymphocytes and Hb. Finally, we successfully cultured the fungi and identified it as Candida glabrata by microscopic observation and mass spectrometry.DiscussionWe first explored the highly significant gut fungal dysbiosis and ecology in patients with SLE, and demonstrated the applicability of fungal species as SLE diagnostic tools, signifying that the gut fungal mycobiome-host interplay can potentially contribute in disease pathogenesis.
Collapse
Affiliation(s)
- Ping Yang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Rui Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, China
| | - Fei Chen
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shanshan Chen
- Department of Rheumatology and Immunology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Adeel Khan
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, China
| | - Xiaoshan Zhang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yanbo Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, China
- Yanbo Wang,
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Zhipeng Xu,
| | - Han Shen
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Han Shen,
| |
Collapse
|
13
|
Chen S, Zhang X, Meng K, Sun Y, Shu R, Han Y, Feng Q, Li Z, Yang P, Liang J. Urinary exosome tsRNAs as novel markers for diagnosis and prediction of lupus nephritis. Front Immunol 2023; 14:1077645. [PMID: 36845141 PMCID: PMC9946979 DOI: 10.3389/fimmu.2023.1077645] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Objective Lupus nephritis (LN) is one of the most severe organ manifestations of systemic lupus erythematosus (SLE). Early identification of renal disease in SLE is important. Renal biopsy is currently recognized as the gold standard for diagnosing LN, however, it is invasive and inconvenient for dynamic monitoring. Urine has been considered more promising and valuable than blood in identifying inflamed kidney tissue. Here, we determine whether the signatures of tRNA-derived small noncoding RNA (tsRNA) in urinary exosomes can serve as novel biomarkers for the diagnosis of LN. Methods tsRNA sequencing was performed in exosome extracted from pooled urine of 20 LN patients and 20 SLE without LN, and the top 10 upregulated tsRNAs were screened as candidate markers of LN. The candidate urinary exosomal tsRNAs were primarily elected by TaqMan probe-based quantitative reverse transcription-PCR (RT-PCR) in 40 samples (20 LN and 20 SLE without LN) in the training phase. In the validation phase, selected tsRNAs from the training phase were further confirmed in a larger cohort (54 LN patients and 39 SLE without LN). Receiver operating characteristic curve (ROC) analysis was conducted to evaluate the diagnostic efficacy. Results Upregulated levels of tRF3-Ile-AAT-1 and tiRNA5-Lys-CTT-1 in the urinary exosomes were observed in LN compared with SLE without LN (P < 0.0001 and P < 0.001) and healthy controls (P < 0.01 and P < 0.01), with the area under the curve (AUC) of 0.777 (95% CI: 0.681-0.874, sensitivity 79.63%, specificity 66.69%) and 0.715 (95% CI: 0.610-0.820, sensitivity 66.96%, specificity 76.92%) for discriminating LN from SLE without LN patients. SLE patients with mild activity and moderate to severe activity had higher levels of urinary exosome derived tRF3-Ile AAT-1 (P = 0.035 and P < 0.001) and tiRNA5-Lys-CTT-1 (P = 0.021 and P < 0.001) compared with patients with no activity. Moreover, bioinformatics analysis revealed that both of the tsRNAs regulate the immune process by modulating metabolism and signal pathway. Conclusion In this study, we demonstrated that urinary exosome tsRNAs can be served as noninvasive biomarkers for the efficient diagnosis and prediction of nephritis in SLE.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Rheumatology and Immunology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoshan Zhang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Kaifang Meng
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yifan Sun
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ruilu Shu
- Department of Rheumatology and Immunology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yan Han
- Department of Rheumatology and Immunology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qingxiu Feng
- Department of Rheumatology and Immunology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China,*Correspondence: Jun Liang, ; Zhiyang Li, ; Ping Yang,
| | - Ping Yang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China,*Correspondence: Jun Liang, ; Zhiyang Li, ; Ping Yang,
| | - Jun Liang
- Department of Rheumatology and Immunology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China,*Correspondence: Jun Liang, ; Zhiyang Li, ; Ping Yang,
| |
Collapse
|
14
|
Zhang S, Xie Y, Yu X, Ge J, Ye G, Guo J. Absolute quantification of a plasma tRNA-derived fragment for the diagnosis and prognosis of gastric cancer. Front Oncol 2023; 13:1106997. [PMID: 37139153 PMCID: PMC10151007 DOI: 10.3389/fonc.2023.1106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Background The transition from a healthy gastric mucosa to gastric cancer is a multi-step process. Early screening can significantly improve the survival rate of gastric cancer patients. A reliable liquid biopsy for gastric cancer prediction is urgently needed and since tRNA-derived fragments (tRFs) are abundant in various body fluids, tRFs are possible new biomarkers for gastric cancer. Methods A total of 438 plasma samples from patients with different gastric mucosal lesions as well as healthy individuals were collected. A specific reverse transcription primer, a forward primer, a reverse primer, and a TaqMan probe were designed. A standard curve was constructed and an absolute quantitation method was devised for detection of tRF-33-P4R8YP9LON4VDP in plasma samples of individuals with differing gastric mucosa lesions. Receiver operating characteristic curves were constructed to evaluate the diagnostic values of tRF-33-P4R8YP9LON4VDP for individual with differing gastric mucosa. A Kaplan-Meier curve was established to calculate the prognostic value of tRF-33-P4R8YP9LON4VDP for advanced gastric cancer patients. Finally, a multivariate Cox regression analysis was performed to assess the independent prognostic value of tRF-33-P4R8YP9LON4VDP for advanced gastric cancer patients. Results A detection method for plasma tRF-33-P4R8YP9LON4VDP was successfully established. Levels of plasma tRF-33-P4R8YP9LON4VDP were shown to reflect a gradient change from healthy individuals to gastritis patients to early and advanced gastric cancer patients. Significant differences were found among individuals with differing gastric mucosa, with reduced levels of tRF-33-P4R8YP9LON4VDP significantly related to a poor prognosis. tRF-33-P4R8YP9LON4VDP was found to be an independent predictor of an unfavorable survival outcome. Conclusions In this study, we developed a quantitative detection method for plasma tRF-33-P4R8YP9LON4VDP that exhibited hypersensitivity, convenience, and specificity. Detection of tRF-33-P4R8YP9LON4VDP was found to be a valuable means by which to monitor different gastric mucosa and to predict patient prognosis.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jiaxin Ge
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, China
- Institute of Digestive Diseases of Ningbo University, Ningbo, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, China
- Institute of Digestive Diseases of Ningbo University, Ningbo, China
- *Correspondence: Junming Guo,
| |
Collapse
|
15
|
Liang J, Xie F, Feng J, Huang C, Shen J, Han Z, Luo W, He J, Chen H. Progress in the application of body fluid and tissue level mRNAs-non-coding RNAs for the early diagnosis and prognostic evaluation of systemic lupus erythematosus. Front Immunol 2022; 13:1020891. [PMID: 36325322 PMCID: PMC9618628 DOI: 10.3389/fimmu.2022.1020891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
The diagnosis and differential classification of systemic lupus erythematosus (SLE) is difficult, especially in patients with early-onset SLE who are susceptible to systemic multi-organ damage and serious complications and have difficulties in individualized treatment. At present, diagnosis is based mainly on clinical manifestations and the detection of serological antinuclear antibodies. The pathogenesis of SLE involves multiple factors, is clinically heterogeneous, and lacks specific biomarkers. Therefore, it is necessary to identify new biomarkers for the diagnosis and subtype classification of SLE. Non-coding RNAs (ncRNAs) are composed of microRNAs, long non-coding RNAs, small nucleolar RNAs, circular RNAs, and transfer RNAs. They play an important role in the occurrence and development of diseases and are used widely in the early diagnosis and prognosis of autoimmune diseases. In this review, we focus on the research progress in the diagnosis and prognostic assessment of SLE using humoral to tissue level ncRNAs.
Collapse
Affiliation(s)
- Jiabin Liang
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jie Feng
- Radiology Department of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Huang
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Zeping Han
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jinhua He
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
- *Correspondence: Hanwei Chen, ; Jinhua He,
| | - Hanwei Chen
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
- Radiology Department of Panyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, China
- *Correspondence: Hanwei Chen, ; Jinhua He,
| |
Collapse
|
16
|
Zhou Y, Tao D, Shao Z, Wang X, Xu J, Li Y, Li K. Expression profiles of exosomal tRNA-derived fragments and their biological functions in lipomas. Front Cell Dev Biol 2022; 10:942133. [PMID: 36035989 PMCID: PMC9399354 DOI: 10.3389/fcell.2022.942133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
There is evidence that exosomes derived from the lipoma tissue (Exo-LT) have a stronger capacity to promote the proliferation and migration of adipose-derived stem cells (ADSCs) than those from the adipose tissue (Exo-AT). But the Exo-LT do not have a significant effect on the adipogenic differentiation of the ADSCs. Recently, certain exosomal tRNA-derived fragments (tRFs) have been shown to play a crucial role in the pathogenesis of certain tumors. Therefore, it is necessary to identify the differently expressed tRFs in Exo-LT to further elucidate their molecular functions in lipomas. High-throughput sequencing was performed to examine the tRFs and mRNAs from the all samples belonging to the Exo-LT and Exo-AT groups. Target prediction and bioinformatics analysis were performed to explore their downstream mRNAs and biological functions. In total, 456 differently expressed tRFs and tiRNAs were identified in the Exo-LT group, 12 of which were up-regulated and 12 were down-regulated, respectively. Notably, tRF-1001 was most obviously down-regulated and tRF-3004a was most obviously up-regulated in the Exo-LT group. Moreover, among the target genes of tRF-1001 and tRF-3004a, both JAG2 and VSIG4 were significantly down-regulated in the Exo-LT group, while WNT5A, COL1A1, and PPARGC1A were highly expressed in both the Exo-LT and Exo-AT groups. The significant down-regulation of JAG2 and VSIG4 in the Exo-LT group could be due to the fact that Exo-LT had a stronger capacity to promote the proliferation and migration of ADSCs compared to the Exo-AT. The high expression of WNT5A, COL1A1, and PPARGC1A in both the Exo-LT and Exo-AT groups could be due to the similar ability of Exo-LT and Exo-AT to promote the adipogenic differentiation of ADSCs.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Daixi Tao
- Department of Changsha Traditional Chinese Medicine Hospital, Changsha, Hunan, China
| | - Zifei Shao
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Jinhao Xu
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yiyang Li
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Kun Li
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
- *Correspondence: Kun Li,
| |
Collapse
|
17
|
Deng L, Wang H, Fan T, Chen L, Shi Z, Mi J, Huang W, Wang R, Hu K. Potential Functions of the tRNA-Derived Fragment tRF-Gly-GCC Associated With Oxidative Stress in Radiation-Induced Lung Injury. Dose Response 2022; 20:15593258221128744. [PMID: 36176737 PMCID: PMC9513591 DOI: 10.1177/15593258221128744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Transfer RNA-derived small RNAs (tsRNAs) are a novel type of non-coding RNA with various regulatory functions. They are associated with oxidative stress in various diseases, but their potential functions in radiation-induced lung injury (RILI) remain uncertain. Methods To explore the role of tsRNAs in RILI, we used X-rays to irradiate human bronchial epithelial cells and examined the expression profile of altered tsRNAs by RNA sequencing and bioinformatics analysis. Sequencing results were verified by qRT-PCR. tsRNA functions were explored using several methods, including CCK-8, reactive oxygen species (ROS) assays, cell transfection, and western blotting. Results Eighty-six differentially expressed tRNA-derived fragments (tRFs) were identified: 64 were upregulated, and 22 were downregulated. Among them, the regulation of tRF-Gly-GCC, associated with oxidative stress, may be mediated by the inhibition of cell proliferation, promotion of ROS production, and apoptosis in the occurrence and development of RILI. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that the underlying molecular mechanism may involve the PI3K/AKT and the FOXO1 signaling pathways. Conclusion Our findings provide new insights into the molecular mechanisms underpinning RILI, advancing the clinical prevention and treatment of this disease.
Collapse
Affiliation(s)
- Lin Deng
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Oncology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Housheng Wang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Fan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuyin Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiling Shi
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - JingLin Mi
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - WeiMei Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai Hu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
18
|
Shen J, Zhang M, Peng M. Progress of exosome research in systemic lupus erythematosus. Cytokine X 2022; 4:100066. [PMID: 35656386 PMCID: PMC9151726 DOI: 10.1016/j.cytox.2022.100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/27/2022] [Accepted: 05/14/2022] [Indexed: 02/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a global chronic autoimmune disease that invades most organs of the body, with kidney injury being the most prominent feature. Exosomes are extracellular vesicles that carry a variety of proteins, lipids and genetic material, participate in the exchange of local and intersystem information, and play an important immunoregulatory role in a variety of autoimmune diseases. At the same time, the use of exosomes as disease biomarkers and drug delivery carriers also shows great application prospects. This article reviews current progress in the application of exosomes in the pathogenesis, diagnosis and treatment of SLE.
Collapse
Key Words
- CfDNA, Circulating free DNA
- Diagnostic role
- Exosomes
- HMGB1, High mobility group box 1
- Immunomodulation
- LN, Lupus nephritis
- MSC, Mesenchymal stem cells (MSC)
- MiRNAs, Microribonucleic acids
- Microribonucleic acid
- PAMPs, Pathogen-associated molecular patterns
- PDCs, Plasmacytoid dendritic cells
- SLE, Systemic lupus erythematosus
- Systemic lupus erythematosus
- TLR, Recombinant Toll Like Receptor
- Therapeutic potential
- Treg, Regulatory T cells
Collapse
Affiliation(s)
- Jie Shen
- Weifang Medical University, Weifang 261053, China
| | - Mengyu Zhang
- Weifang Medical University, Weifang 261053, China
| | - Meiyu Peng
- Weifang Medical University, Weifang 261053, China
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
19
|
Kim JW, Jung JY, Lee SW, Baek WY, Kim HA, Suh CH. S100A8 in Serum, Urine, and Saliva as a Potential Biomarker for Systemic Lupus Erythematosus. Front Immunol 2022; 13:886209. [PMID: 35529863 PMCID: PMC9073082 DOI: 10.3389/fimmu.2022.886209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
ObjectivesThis study aimed to elucidate the potential of serum, urine, and saliva S100 calcium-binding protein A8 protein (S100A8) levels as biomarkers for systemic lupus erythematosus (SLE).MethodsSerum, urine, and saliva samples were obtained from 249 patients with SLE from the Ajou lupus cohort and 52 age- and sex-matched healthy controls (HCs). The concentrations of S100A8 were quantified using an ELISA, and a receiver operating characteristic curve was used to analyze whether they may be used as biomarkers for diagnosing SLE.ResultsAmong 249 SLE patients included in our study, the mean SLE disease activity index (SLEDAI)-2K was 7.16 ± 5.61, and the number of patients with lupus flare was 11. Patients with SLE showed a 2.7-fold increase in serum S100A8 levels compared with that in HCs (1,890.6 vs. 709 pg/ml, p < 0.001). In urine and saliva, the average S100A8 levels were significantly higher in patients with SLE compared with those in HCs (urine, 2,029.4 vs. 1,096.7 pg/ml, p = 0.001; saliva, 290,496.3 vs. 47,742 pg/ml, p < 0.001). For SLE diagnosis, the area under the receiver operating characteristic curve was 0.831 for serum S100A8 (95% CI, 0.765–0.897), 0.751 for urine S100A8 (95% CI, 0.648–0.854), and 0.729 for salivary S100A8 (95% CI, 0.646–0.812). Pearson’s correlation analysis showed that S100A8 in serum, urine, and saliva was significantly associated with the SLEDAI (r = 0.267, p < 0.001; r = 0.274, p < 0.001; and r = 0.629, p < 0.001, respectively). Among the clinical manifestations, nephritis was the most influential factor related to SLE in the concentration of S100A8 in serum, urine, and saliva.ConclusionThis is the first study to show that the expression of S100A8 in serum, urine, and saliva is significantly higher in patients with SLE than in HCs and is associated with disease activity markers. Therefore, we suggest that S100A8 protein could be a potential biomarker for SLE.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
| | - Sang-Won Lee
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
| | - Wook-Young Baek
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- *Correspondence: Chang-Hee Suh,
| |
Collapse
|
20
|
Liu DSK, Yang QZC, Asim M, Krell J, Frampton AE. The Clinical Significance of Transfer RNAs Present in Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms23073692. [PMID: 35409051 PMCID: PMC8998272 DOI: 10.3390/ijms23073692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are important for intercellular signalling in multi-cellular organisms. However, the role of mature transfer RNAs (tRNAs) and tRNA fragments in EVs has yet to be characterised. This systematic review aimed to identify up-to-date literature on tRNAs present within human EVs and explores their potential clinical significance in health and disease. A comprehensive and systematic literature search was performed, and the study was conducted in accordance with PRISMA guidelines. Electronic databases MEDLINE and EMBASE were searched up until 1 January 2022. From 685 papers, 60 studies were identified for analysis. The majority of papers reviewed focussed on the role of EV tRNAs in cancers (31.7%), with numerous other conditions represented. Blood and cell lines were the most common EV sources, representing 85.9% of protocols used. EV isolation methods included most known methods, precipitation being the most common (49.3%). The proportion of EV tRNAs was highly variable, ranging between 0.04% to >95% depending on tissue source. EV tRNAs are present in a multitude of sources and show promise as disease markers in breast cancer, gastrointestinal cancers, and other diseases. EV tRNA research is an emerging field, with increasing numbers of papers highlighting novel methodologies for tRNA and tRNA fragment discovery.
Collapse
Affiliation(s)
- Daniel S. K. Liu
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0HS, UK; (D.S.K.L.); (Q.Z.C.Y.); (J.K.)
| | - Qi Zhi Clayton Yang
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0HS, UK; (D.S.K.L.); (Q.Z.C.Y.); (J.K.)
| | - Mohammad Asim
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7WG, UK;
| | - Jonathan Krell
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0HS, UK; (D.S.K.L.); (Q.Z.C.Y.); (J.K.)
| | - Adam E. Frampton
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0HS, UK; (D.S.K.L.); (Q.Z.C.Y.); (J.K.)
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7WG, UK;
- HPB Surgical Unit, Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey GU2 7XX, UK
- Correspondence: or
| |
Collapse
|
21
|
Zheng C, Xie L, Qin H, Liu X, Chen X, Lv F, Wang L, Zhu X, Xu J. The Role of Extracellular Vesicles in Systemic Lupus Erythematosus. Front Cell Dev Biol 2022; 10:835566. [PMID: 35309937 PMCID: PMC8924487 DOI: 10.3389/fcell.2022.835566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Extracellular Vesicles (EVs) are small vesicles that can be actively secreted by most cell types into the extracellular environment. Evidence indicates that EVs can carry microRNAs (miRNAs), long non-coding RNAs (lncRNAs), tRNA-derived small RNAs (tsRNAs), proteins, and lipids to target cells or tissue organizations. Latest studies show that EVs play a vital role in the immune modulation and may contribute to the pathogenesis of autoimmune diseases. Systemic lupus erythematosus (SLE) is a common autoimmune disease characterized by abnormal T cell activation and sustained production of autoantibodies against self-antigens, resulting in inflammation and damage to multiple systems. Pathogenic mechanisms of SLE, however, are still not well understood. In this review, we summarize the latest research advances on the functions and mechanisms of EVs, and its role in the pathogenesis, diagnosis, and treatment of SLE.
Collapse
Affiliation(s)
| | - Lin Xie
- *Correspondence: Lin Xie, ; Xiaohua Zhu, ; Jinhua Xu,
| | | | | | | | | | | | - Xiaohua Zhu
- *Correspondence: Lin Xie, ; Xiaohua Zhu, ; Jinhua Xu,
| | - Jinhua Xu
- *Correspondence: Lin Xie, ; Xiaohua Zhu, ; Jinhua Xu,
| |
Collapse
|