1
|
Zhang L, Song Z, Zhong S, Cui Z. Cloning of down-regulated genes under cold stress and identification of important genes related to cold tolerance in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2024; 298:111739. [PMID: 39260617 DOI: 10.1016/j.cbpa.2024.111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Low-temperature stress poses a significant risk to the survival of both cultivated and wild fish populations. Existing studies have found that the pre-acclimation of fishes to moderate cold stress can stimulate the activation of acclimation pathways, thereby enhancing their tolerance to cold stress. The fitness of fish relies heavily on appropriately controlled transcriptional reactions to environmental changes. Despite previous characterization of gene expression profiles in various fish species during cold acclimation, the specific genes responsible for essential functions in this process remain largely unknown, particularly the down-regulated genes induced by cold acclimation. To investigate the genes involved in cold acclimation, this study employed real-time quantitative PCR (RT-qPCR), molecular cloning, microinjection techniques, and cold stress experiments to determine the genes that play an essential part in cold acclimation. Consequently, 18 genes were discovered to be down-regulated in larval zebrafish experiencing cold stress. All 18 genes successfully detected overexpression in zebrafish at 96 and 126 hpf (fold change ≥3), which declined with the growth of zebrafish. Following microinjection, it was observed that her8a, cyp51, lss, txnipb, and bhlha9 had an adverse impact on the survival rate of zebrafish larvae under cold stress. These genes have been identified to play significant roles in various biological processes. For instance, bhlha9 has been found to be involved in both limb development and temperature sensing and her8a has been implicated in neural development. Additionally, cyp51 and lss have been identified as participants in the cholesterol synthesis pathway. Txnipb has been reported to induce cell apoptosis, thereby potentially influencing the survival rate of zebrafish larvae under cold stress. These findings offered crucial data for the analysis of molecular processes related to cold tolerance and the development of cold-resistant fish breeding.
Collapse
Affiliation(s)
- Lang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ziwei Song
- Department of Genetics, Wuhan University, Wuhan, Hubei 430071, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Shan Zhong
- Department of Genetics, Wuhan University, Wuhan, Hubei 430071, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China.
| | - Zongbin Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
2
|
Abdollahpour H, Jafari Pastaki N, Karimzadeh M, Zamani H. Buspirone administration: Influence on growth, spawning, immune response, and stress in female goldfish ( Carassius auratus). Heliyon 2024; 10:e39754. [PMID: 39524707 PMCID: PMC11543890 DOI: 10.1016/j.heliyon.2024.e39754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The current study evaluated the impact of buspirone supplementation on the growth, physiology, stress response, spawning, and immunity in female goldfish (Carassius auratus). For this purpose, buspirone was dissolved in absolute methanol and sprayed onto the feed to create four experimental groups: B0 (control), B25 (25 mg kg-1), B50 (50 mg kg-1), and B100 (100 mg kg-1). Fish were fed their respective diets for 56 days and subjected to stress using the air exposure method at the end of the experiment. Growth performance analysis revealed that fish in the B100 group exhibited significantly higher final weight, weight gain, specific growth rate, and average daily gain than the other groups (P < 0.05). Plasma stress response indicated that cortisol levels were significantly lower in the B100 group after stress exposure, accompanied by a simultaneous decrease in glucose levels. The mucus stress response also showed lower cortisol and glucose levels in the B100 group compared to the other groups. Immunological analysis revealed significant increases in total protein, albumin, complement C3 and C4, and immunoglobulin M concentrations in both plasma and mucus of the B100 group (P < 0.05). Reproductive performance showed a notable enhancement in the number of eggs, fertilization rate, hatching rate, and survival rate in the B100 group compared to other groups (P < 0.05). Buspirone at higher concentrations, positively impacted various physiological aspects of goldfish, including growth, stress, immune activity, and reproductive performance. The significant improvements observed in growth parameters, cortisol levels, immunological markers, and reproductive outcomes suggest the potential of buspirone supplementation as a beneficial strategy in aquaculture practices.
Collapse
Affiliation(s)
- Hamed Abdollahpour
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Naghmeh Jafari Pastaki
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Milad Karimzadeh
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
- Fisheries, Shahid Dr. Beheshti Sturgeon Fishes Restoration and Genetic Conservation Complex, Sangar, Guilan, Iran
| | - Hosseinali Zamani
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| |
Collapse
|
3
|
Elahimanesh M, Shokri N, Mohammadi P, Parvaz N, Najafi M. Step by step analysis on gene datasets of growth phases in hematopoietic stem cells. Biochem Biophys Rep 2024; 39:101737. [PMID: 38881758 PMCID: PMC11176649 DOI: 10.1016/j.bbrep.2024.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024] Open
Abstract
Background Umbilical cord blood hematopoietic stem cells (UCB-HSCs) have important roles in the treatment of illnesses based on their self-renewal and potency characteristics. Knowing the gene profiles and signaling pathways involved in each step of the cell cycle could improve the therapeutic approaches of HSCs. The aim of this study was to predict the gene profiles and signaling pathways involved in the G0, G1, and differentiation stages of HSCs. Methods Interventional (n = 8) and non-interventional (n = 3) datasets were obtained from the Gene Expression Omnibus (GEO) database, and were crossed and analyzed to determine the high- and low-express genes related to each of the G0, G1, and differentiation stages of HSCs. Then, the scores of STRING were annotated to the gene data. The gene networks were constructed using Cytoscape software, and enriched with the KEGG and GO databases. Results The high- and low-express genes were determined due to inter and intra intersections of the interventional and non-interventional data. The non-interventional data were applied to construct the gene networks (n = 6) with the nodes improved using the interventional data. Several important signaling pathways were suggested in each of the G0, G1, and differentiation stages. Conclusion The data revealed that the different signaling pathways are activated in each of the G0, G1, and differentiation stages so that their genes may be targeted to improve the HSC therapy.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Mohammadi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Najmeh Parvaz
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Yu X, Hou W, Xiao L. Gamma-Aminobutyric Acid (GABA) Avoids Deterioration of Transport Water Quality, Regulates Plasma Biochemical Indices, Energy Metabolism, and Antioxidant Capacity of Tawny Puffer ( Takifugui flavidus) under Transport Stress. BIOLOGY 2024; 13:474. [PMID: 39056669 PMCID: PMC11273879 DOI: 10.3390/biology13070474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Live fish transportation is crucial for managing aquaculture but can pose health risks to fish due to stressors encountered during transportation. Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter that plays a crucial role in the central nervous system and is considered to exhibit anti-stress effects. This study aims to investigate the effects of GABA on the transport water quality, plasma biochemical indices, energy metabolism, and antioxidant capacity of tawny puffer (Takifugu flavidus) under transport stress. Tawny puffer were pretreated by immersing in aquariums containing GABA (final concentrations at 0, 5, 50, and 150 mg/L) seawater for 3 days; then, simulated transport was conducted using oxygen-filled polyethylene bags containing the same concentration of GABA seawater as the pretreatment period. Water samples, plasma, and liver were collected after 0, 6, and 12 h of transport. The results revealed that with the prolongation of transportation time, the control group's water quality deteriorated, stress-related plasma biochemical indices increased, glycolytic substrate contents decreased, glycolytic enzyme activities and product contents increased, and aerobic metabolic enzyme activities exhibited initial increases followed by declines, ATPase activities decreased, antioxidant enzyme activities decreased, and the lipid peroxidation marker contents increased. It is noteworthy that GABA treatment could avoid water quality deterioration during transportation, inhibit an elevation in stress-related biochemical indicators, regulate energy metabolism, and reduce oxidative damage in tawny puffer, especially at 50 and 150 mg/L concentrations. In summary, GABA treatment can effectively alleviate the transport stress of tawny puffer.
Collapse
Affiliation(s)
- Xiaowen Yu
- Shanghai Fisheries Research Institute, Shanghai 200433, China;
| | - Wenjie Hou
- Shanghai Fisheries Research Institute, Shanghai 200433, China;
| | - Lixia Xiao
- Qidong Fishery Technology Promotion Station, Qidong 226299, China;
| |
Collapse
|
5
|
Wang Q, Ye W, Tao Y, Li Y, Lu S, Xu P, Qiang J. Transport Stress Induces Oxidative Stress and Immune Response in Juvenile Largemouth Bass ( Micropterus salmoides): Analysis of Oxidative and Immunological Parameters and the Gut Microbiome. Antioxidants (Basel) 2023; 12:antiox12010157. [PMID: 36671019 PMCID: PMC9854791 DOI: 10.3390/antiox12010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Transport is essential in cross-regional culturing of juvenile fish. Largemouth bass (Micropterus salmoides) often exhibit decreased vitality and are susceptible to disease after transportation. To study the effects of transport stress on juvenile largemouth bass, juveniles (average length: 8.42 ± 0.44 cm, average weight 10.26 ± 0.32 g) were subjected to a 12 h simulated transport, then subsequently, allowed to recover for 5 d. Liver and intestinal tissues were collected at 0, 6 and 12 h after transport stress and after 5 d of recovery. Oxidative and immunological parameters and the gut microbiome were analyzed. Hepatocytic vacuolization and shortened intestinal villi in the bass indicated liver and intestinal damage due to transport stress. Superoxide dismutase, lysozyme and complement C3 activities were significantly increased during transport stress (p < 0.05), indicating that transport stress resulted in oxidative stress and altered innate immune responses in the bass. With the transport stress, the malondialdehyde content first increased, then significantly decreased (p < 0.05) and showed an increasing trend in the recovery group. 16S rDNA analysis revealed that transport stress strongly affected the gut microbial compositions, mainly among Proteobacteria, Firmicutes, Cyanobacteria and Spirochaetes. The Proteobacteria abundance increased significantly after transport. The Kyoto Encyclopedia of Genes and Genomes functional analysis revealed that most gut microbes played roles in membrane transport, cell replication and repair. Correlation analyses demonstrated that the dominant genera varied significantly and participated in the measured physiological parameter changes. With 5 days of recovery after 12 h of transport stress, the physiological parameters and gut microbiome differed significantly between the experimental and control groups. These results provide a reference and basis for studying transport-stress-induced oxidative and immune mechanisms in juvenile largemouth bass to help optimize juvenile largemouth bass transportation.
Collapse
Affiliation(s)
- Qingchun Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wei Ye
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Correspondence: (Y.L.); (J.Q.)
| | - Siqi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Correspondence: (Y.L.); (J.Q.)
| |
Collapse
|
6
|
Transcriptome and 16S rRNA Analyses Reveal That Hypoxic Stress Affects the Antioxidant Capacity of Largemouth Bass ( Micropterus salmoides), Resulting in Intestinal Tissue Damage and Structural Changes in Microflora. Antioxidants (Basel) 2022; 12:antiox12010001. [PMID: 36670863 PMCID: PMC9854696 DOI: 10.3390/antiox12010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Dissolved oxygen (DO) is a key factor affecting the health of aquatic organisms in an intensive aquaculture environment. In this study, largemouth bass (Micropterus salmoides) were subjected to acute hypoxic stress for 96 h (DO: 1.00 mg/L) followed by recovery under sufficient DO conditions (DO: 7.50 mg/L) for 96 h. Serum biochemical indices, intestinal histomorphology, the transcriptome, and intestinal microbiota were compared between hypoxia-treated fish and those in a control group. The results showed that hypoxia caused oxidative stress, exfoliation of the intestinal villus epithelium and villus rupture, and increased cell apoptosis. Transcriptome analyses revealed that antioxidant-, inflammation-, and apoptosis-related pathways were activated, and that the MAPK signaling pathway played an important role under hypoxic stress. In addition, 16S rRNA sequencing analyses revealed that hypoxic stress significantly decreased bacterial richness and identified the dominant phyla (Proteobacteria, Firmicutes) and genera (Mycoplasma, unclassified Enterobacterales, Cetobacterium) involved in the intestinal inflammatory response of largemouth bass. Pearson's correlation analyses showed that differentially expressed genes in the MAPK signaling pathway were significantly correlated with some microflora. The results of this study will help to develop strategies to reduce damage caused by hypoxic stress in aquacultured fish.
Collapse
|
7
|
Integrated Transcriptome and 16S rDNA Analyses Reveal That Transport Stress Induces Oxidative Stress and Immune and Metabolic Disorders in the Intestine of Hybrid Yellow Catfish (Tachysurus fulvidraco♀ × Pseudobagrus vachellii♂). Antioxidants (Basel) 2022; 11:antiox11091737. [PMID: 36139809 PMCID: PMC9496016 DOI: 10.3390/antiox11091737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Live fish are often transported in aquaculture. To explore the effects of transport stress, hybrid yellow catfish (Tachysurus fulvidraco♀ × Pseudobagrus vachellii♂) were subjected to simulated transport treatments (0–16 h) with 96 h of recovery after the 16-h transport treatment, and intestinal biochemical parameters, the transcriptome, and gut microbiota were analyzed. Transportation affected the number of mucus cells and led to oxidative stress in the intestine, which activated immune responses. Changes in lipid metabolism reflected metabolic adaptation to oxidative stress. Toll-like receptor signaling, peroxisome proliferator-activated receptor signaling, and steroid biosynthesis pathways were involved in the transport stress response. Gene expression analyses indicated that transport-induced local immune damage was reversible, whereas disordered metabolism recovered more slowly. A 16S rDNA analysis revealed that transport stress decreased the alpha diversity of the gut microbiota and disrupted its homeostasis. The dominant phyla (Fusobacteria, Bacteroidetes) and genera (Cetobacterium, Barnesiellaceae) were involved in the antioxidant, immune, and metabolic responses of the host to transportation stress. Correlation analyses suggested that gut microbes participate in the transport stress response and the host–microbiota interaction may trigger multiple events in antioxidant, immune, and metabolic pathways. Our results will be useful for optimizing transport processes.
Collapse
|
8
|
Zheng T, Song Z, Tao Y, Qiang J, Ma J, Lu S, Xu P. Transport stress induces innate immunity responses through TLR and NLR signaling pathways and increases mucus cell number in gills of hybrid yellow catfish (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂). FISH & SHELLFISH IMMUNOLOGY 2022; 127:166-175. [PMID: 35716971 DOI: 10.1016/j.fsi.2022.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Transport stress poses a threat to most teleost fish in production, causing mass losses to the aquaculture industry. Fish gills are a mucosa-associated lymphoid tissue in direct contact with water, and they represent an ideal tissue type to study mechanisms of transport stress. In this study, hybrid yellow catfish (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂) were exposed to simulated transport stress for 16 h and then allowed to recover for 96 h. Gill tissues and blood samples were collected at 0 h, 2 h, 4 h, 8 h, and 16 h of transport stress and after 96 h of recovery, as well as from fish in a control group at the same sampling times. The activities of alkaline phosphatase, acid phosphatase, and superoxide dismutase and the total antioxidant capacity first increased and then decreased during the 16 h transport treatment. Exposure to 16 h of transport stress resulted in decreased serum triglyceride and total cholesterol contents, increased serum glucose content, increased activities of alanine aminotransferase and aspartate transaminase, and more mucus cells, compared with the control group. Transcriptome analysis revealed differential expression of 1525 genes (803 down-regulated and 722 up-regulated) between the control and 16 h transportation groups. Functional analyses revealed that the differentially expressed genes were enriched in immune response, signal transduction, and energy metabolism pathways. We found that tlr5, tnfɑ, hsp90ɑ, il-1ß, map2k4, il12ba were clearly up-regulated and arrdc2, syngr1a were clearly down-regulated following 8 h and/or 16 h simulated transport after qRT-PCR validation. These findings suggested that Toll- and NOD-like receptor signaling pathways potentially mediate transport stress. Transport stress altered innate immunity responses and energy use in the gill tissues of hybrid yellow catfish. After 96 h of recovery, only alanine aminotransferase and alkaline phosphatase activities and the number of mucus cells had returned to control levels. We speculate that for juvenile yellow catfish to recover to a normal state, a recovery period of more than 96 h is required after 16 h of transportation. These results provide new perspectives on the immune response of yellow catfish under transport stress and theoretical support for future optimization of their transportation.
Collapse
Affiliation(s)
- Tao Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Zhuo Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Junlein Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Siqi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|