1
|
de Miranda LHM, Santiago MDA, Frankenfeld J, dos Reis EG, Menezes RC, Pereira SA, Gremião IDF, Hofmann-Lehmann R, Conceição-Silva F. Neutrophil Oxidative Burst Profile Is Related to a Satisfactory Response to Itraconazole and Clinical Cure in Feline Sporotrichosis. J Fungi (Basel) 2024; 10:422. [PMID: 38921408 PMCID: PMC11205038 DOI: 10.3390/jof10060422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Despite the central role of cats in the transmission and amplification of Sporothrix, studies regarding immune response in feline sporotrichosis are scarce. In cats with sporotrichosis, neutrophil-rich lesions are usually associated to good general condition and lower fungal burden. However, the role of neutrophils in anti-Sporothrix immunity has been little explored in cats. Thus, the aim of this study was to evaluate the neutrophil oxidative burst in the blood of cats with sporotrichosis. Cats with sporotrichosis included in the study were treated with itraconazole (ITZ) alone or combined with potassium iodide (KI). The neutrophil oxidative burst was evaluated through a flow-cytometry-based assay using dihydrorhodamine 123 (background) and stimulation with Zymosan and heat-killed Sporothrix yeasts. The cure rate was 50.0% in cats under treatment with ITZ monotherapy and 90.9% in cats treated with ITZ + KI (p = 0.014), endorsing the combination therapy as an excellent alternative for the treatment of feline sporotrichosis. Higher percentages of Sporothrix-stimulated neutrophils were associated with good general condition (p = 0.003). Higher percentages of Sporothrix- (p = 0.05) and Zymosan-activated (p = 0.014) neutrophils before and early in the treatment were related to clinical cure in ITZ-treated cats. The correlation between oxidative burst and successful use of KI could not be properly assessed given the low number of failures (n = 2) in this treatment group. Nasal mucosa involvement, typically linked to treatment failure, was related to lower percentages of activated neutrophils in the background at the treatment outcome (p = 0.02). Our results suggest a beneficial role of neutrophils in feline sporotrichosis and a positive correlation between neutrophil activation and the cure process in ITZ-treated cats.
Collapse
Affiliation(s)
- Luisa Helena Monteiro de Miranda
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (M.d.A.S.); (F.C.-S.)
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Marta de Almeida Santiago
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (M.d.A.S.); (F.C.-S.)
| | - Julia Frankenfeld
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Facility, University of Zurich, 8057 Zurich, Switzerland; (J.F.); (R.H.-L.)
| | - Erica Guerino dos Reis
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Rodrigo Caldas Menezes
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Sandro Antonio Pereira
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Isabella Dib Ferreira Gremião
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Facility, University of Zurich, 8057 Zurich, Switzerland; (J.F.); (R.H.-L.)
| | - Fátima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (M.d.A.S.); (F.C.-S.)
| |
Collapse
|
2
|
López-Ramírez LA, Martínez-Álvarez JA, Martínez-Duncker I, Lozoya-Pérez NE, Mora-Montes HM. Silencing of Sporothrix schenckii GP70 Reveals Its Contribution to Fungal Adhesion, Virulence, and the Host-Fungus Interaction. J Fungi (Basel) 2024; 10:302. [PMID: 38786657 PMCID: PMC11121839 DOI: 10.3390/jof10050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Sporothrix schenckii is one of the etiological agents of sporotrichosis, a cutaneous and subcutaneous infection distributed worldwide. Like other medically relevant fungi, its cell wall is a molecular scaffold to display virulence factors, such as protective pigments, hydrolytic enzymes, and adhesins. Cell wall proteins with adhesive properties have been previously reported, but only a handful of them have been identified and characterized. One of them is Gp70, an abundant cell wall protein mainly found on the surface of yeast-like cells. Since the protein also has a role in the activity of 3-carboxy-cis,cis-muconate cyclase and its abundance is low in highly virulent strains, its role in the Sporothrix-host interaction remains unclear. Here, a set of GP70-silenced strains was generated, and the molecular and phenotypical characterization was performed. The results showed that mutants with high silencing levels showed a significant reduction in the adhesion to laminin and fibrinogen, enzyme activity, and defects in the cell wall composition, which included reduced mannose, rhamnose, and protein content, accompanied by an increment in β-1,3-glucans levels. The cell wall N-linked glycan content was significantly reduced. These strains induced poor TNFα and IL-6 levels when interacting with human peripheral blood mononuclear cells in a dectin-1-, TLR2-, and TLR4-dependent stimulation. The IL-1β and IL-10 levels were significantly higher and were stimulated via dectin-1. Phagocytosis and stimulation of neutrophil extracellular traps by human granulocytes were increased in highly GP70-silenced strains. Furthermore, these mutants showed virulence attenuation in the invertebrate model Galleria mellonella. Our results demonstrate that Gp70 is a versatile protein with adhesin properties, is responsible for the activity of 3-carboxy-cis,cis-muconate cyclase, and is relevant for the S. schenckii-host interaction.
Collapse
Affiliation(s)
- Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. 62209, Mexico;
| | - Nancy E. Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| |
Collapse
|
3
|
Bombassaro A, Figueiredo JM, Taborda CP, Joosten LAB, Vicente VA, Queiroz-Telles F, Meis JF, Kischkel B. Skin innate immune response against fungal infections and the potential role of trained immunity. Mycoses 2024; 67. [PMID: 38282360 DOI: 10.1111/myc.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024]
Abstract
Fungal skin infections are distributed worldwide and can be associated with economic and social traits. The immune response related to skin cells is complex and its understanding is essential to the comprehension of each cell's role and the discovery of treatment alternatives. The first studies of trained immunity (TI) described the ability of monocytes, macrophages and natural killer (NK) cells to develop a memory-like response. However, the duration of TI does not reflect the shorter lifespan of these cells. These conclusions supported later studies showing that TI can be observed in stem and haematopoietic cells and, more recently, also in non-immune skin cells such as fibroblasts, highlighting the importance of resident cells in response to skin disorders. Besides, the participation of less studied proinflammatory cytokines in the skin immune response, such as IL-36γ, shed light into a new possibility of inflammatory pathway blockade by drugs. In this review, we will discuss the skin immune response associated with fungal infections, the role of TI in skin and clinical evidence supporting opportunities and challenges of TI and other inflammatory responses in the pathogenesis of fungal skin infections.
Collapse
Affiliation(s)
- Amanda Bombassaro
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Julia Marcondes Figueiredo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Dermatology, LIM53, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vania A Vicente
- Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Flavio Queiroz-Telles
- Department of Public Health, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, Cologne, Germany
| | - Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Galván-Hernández AK, Gómez-Gaviria M, Martínez-Duncker I, Martínez-Álvarez JA, Mora-Montes HM. Differential Recognition of Clinically Relevant Sporothrix Species by Human Granulocytes. J Fungi (Basel) 2023; 9:986. [PMID: 37888242 PMCID: PMC10607474 DOI: 10.3390/jof9100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Sporotrichosis is a cutaneous mycosis that affects humans and animals and has a worldwide distribution. This infection is mainly caused by Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. Current research about anti-Sporothrix immunity has been mainly focused on S. schenckii and S. brasiliensis, using different types of human or animal immune cells. Granulocytes are a group of cells relevant for cytokine production, with the capacity for phagocytosis and the generation of neutrophil extracellular traps (NETs). Considering their importance, this study aimed to compare the capacity of human granulocytes to stimulate cytokines, uptake, and form NETs when interacting with different Sporothrix species. We found that conidia, germlings, and yeast-like cells from S. schenckii, S. brasiliensis, and S. globosa play an important role in the interaction with these immune cells, establishing morphology- and species-specific cytokine profiles. S. brasil-iensis tended to stimulate an anti-inflammatory cytokine profile, whilst the other two species had a proinflammatory one. S. globosa cells were the most phagocytosed cells, which occurred through a dectin-1-dependent mechanism, while the uptake of S. brasiliensis mainly occurred via TLR4 and CR3. Cell wall N-linked and O-linked glycans, along with β-1,3-glucan, played a significant role in the interaction of these Sporothrix species with human granulocytes. Finally, this study indicates that conidia and yeast-like cells are capable of inducing NETs, with the latter being a better stimulant. To the best of our knowledge, this is the first study that reports the cytokine profiles produced by human granulocytes interacting with Sporothrix cells.
Collapse
Affiliation(s)
- Ana K. Galván-Hernández
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| | - Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. 62209, Mexico;
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| |
Collapse
|
5
|
Gómez-Gaviria M, Martínez-Duncker I, García-Carnero LC, Mora-Montes HM. Differential Recognition of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa by Human Monocyte-Derived Macrophages and Dendritic Cells. Infect Drug Resist 2023; 16:4817-4834. [PMID: 37520448 PMCID: PMC10386844 DOI: 10.2147/idr.s419629] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Background Sporotrichosis is a mycosis frequently caused by Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. The cell wall is a species-specific fungal structure with a direct role in activating the host's immune response. The current knowledge about anti-Sporothrix immunity comes from studies using S. schenckii or S. brasiliensis and murine cells. Macrophages and dendritic cells detect and eliminate pathogens, and although the function of these cells links innate with adaptive immunity, little is known about their interaction with Sporothrix spp. Methods S. schenckii, S. brasiliensis, and S. globosa conidia or yeast-like cells were co-incubated with human monocyte-derived macrophages or dendritic cells, and the phagocytosis and cytokine stimulation were assessed. These interactions were also performed in the presence of specific blocking agents of immune receptors or fungal cells with altered walls to analyze the contribution of these molecules to the immune cell-fungus interaction. Results Both types of immune cells phagocytosed S. globosa conidia and yeast-like cells to a greater extent, followed by S. brasiliensis and S. schenckii. Furthermore, when the wall internal components were exposed, the phagocytosis level increased for S. schenckii and S. brasiliensis, in contrast to S. globosa. Thus, the cell wall components have different functions during the interaction with macrophages and dendritic cells. S. globosa stimulated an increased proinflammatory response when compared to the other species. In macrophages, this was a dectin-1-, mannose receptor-, and TLR2-dependent response, but dectin-1- and TLR2-dependent stimulation in dendritic cells. For S. schenckii and S. brasiliensis, cytokine production was dependent on the activation of TLR4, CR3, and DC-SIGN. Conclusion The results of this study indicate that these species are recognized by immune cells differently and that this may depend on both the structure and cell wall organization of the different morphologies.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, GuanajuatoMéxico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Laura C García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, GuanajuatoMéxico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, GuanajuatoMéxico
| |
Collapse
|
6
|
García-Carnero LC, Martínez-Duncker I, Gómez-Gaviria M, Mora-Montes HM. Differential Recognition of Clinically Relevant Sporothrix Species by Human Mononuclear Cells. J Fungi (Basel) 2023; 9:448. [PMID: 37108903 PMCID: PMC10146672 DOI: 10.3390/jof9040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Sporotrichosis is a human and animal fungal infection distributed worldwide that is caused by the thermodimorphic species of the Sporothrix pathogenic clade, which includes Sporothrix brasiliensis, Sporothrix schenckii, and Sporothrix globosa. The cell wall composition and the immune response against the Sporothrix species have been studied mainly in S. brasiliensis and S. schenckii, whilst little is known about the S. globosa cell wall and the immune response that its components trigger. Therefore, in this study, we aimed to analyze the cell wall composition of S. globosa in three morphologies (germlings, conidia, and yeast-like cells) and the differences in cytokine production when human peripheral blood mononuclear cells (PBMCs) interact with these morphotypes, using S. schenckii and S. brasiliensis as a comparison. We found that S. globosa conidia and yeast-like cells have a higher cell wall chitin content, while all three morphologies have a higher β-1,3-glucan content, which was found most exposed at the cell surface when compared to S. schenckii and S. brasiliensis. In addition, S. globosa has lower levels of mannose- and rhamnose-based glycoconjugates, as well as of N- and O-linked glycans, indicating that this fungal cell wall has species-specific proportions and organization of its components. When interacting with PBMCs, S. brasiliensis and S. globosa showed a similar cytokine stimulation profile, but with a higher stimulation of IL-10 by S. globosa. Additionally, when the inner cell wall components of S. globosa were exposed at the surface or N- and O-glycans were removed, the cytokine production profile of this species in its three morphotypes did not significantly change, contrasting with the S. schenckii and S. brasiliensis species that showed different cytokine profiles depending on the treatment applied to the walls. In addition, it was found that the anti-inflammatory response stimulated by S. globosa was dependent on the activation of dectin-1, mannose receptor, and TLR2, but not TLR4. All of these results indicate that the cell wall composition and structure of the three Sporothrix species in the three morphologies are different, affecting their interaction with human PBMCs and generating species-specific cytokine profiles.
Collapse
Affiliation(s)
- Laura C. García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (L.C.G.-C.); (M.G.-G.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mor., Mexico;
| | - Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (L.C.G.-C.); (M.G.-G.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (L.C.G.-C.); (M.G.-G.)
| |
Collapse
|
7
|
Thomson P, González C, Blank O, Ramírez V, del Río C, Santibáñez S, Pena P. Sporotrichosis Outbreak Due to Sporothrix brasiliensis in Domestic Cats in Magallanes, Chile: A One-Health-Approach Study. J Fungi (Basel) 2023; 9:jof9020226. [PMID: 36836340 PMCID: PMC9962391 DOI: 10.3390/jof9020226] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Sporotrichosis is an implantation mycosis with subcutaneo-lymphatic or, more rarely, a viscerally disseminated affection; it can be acquired through traumatic percutaneous inoculation of the fungus present in soil or plant matter, or by feline scratching. Among the causative agents, Sporothrix brasiliensis is considered the most virulent species with a high prevalence in Brazil and recently in Argentina. OBJECTIVE To describe a S. brasiliensis outbreak in domestic and feral cats detected in the Magallanes region of southern Chile. MATERIALS AND METHODS Between the months of July and September 2022, three cats presented with suppurative subcutaneous lesions located mainly on the head and thoracic limbs. The cytology revealed the presence of yeasts with morphological characteristics suggestive of Sporothrix spp. The histopathology confirmed pyogranulomatous subcutaneous lesions associated with the presence of the same yeasts. The fungal culture followed by the partial gene sequence and analysis of the ITS region confirmed the diagnosis of the S. brasiliensis as the causative agent. The cats were treated with itraconazole associated in one case with potassium iodide. The evolution of the patients was favorable in all cases. CONCLUSIONS An outbreak caused by S. brasiliensis was detected in domestic and feral cats in austral Chile. The correct identification of this fungus and antifungigram is essential for treatment decisions and for designing dissemination control and prevention programs under a one health approach that consider the health of people, animals, and the environment.
Collapse
Affiliation(s)
- Pamela Thomson
- Laboratorio de Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile
- Correspondence: ; Tel.: +56-227-703-688
| | - Carlos González
- Laboratorio de Anatomía e Histopatología, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile
- Laboratorio de Histopatología, CITOVET, Ñuñoa, Santiago 7750538, Chile
| | - Olivia Blank
- Clínica Veterinaria Timaukel, Punta Arenas 6210648, Chile
| | | | - Camila del Río
- Laboratorio de Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile
| | - Sebastián Santibáñez
- Laboratorio de Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile
| | - Pamela Pena
- Clínica Veterinaria Timaukel, Punta Arenas 6210648, Chile
| |
Collapse
|
8
|
López-Ramírez LA, Martínez-Duncker I, Márquez-Márquez A, Vargas-Macías AP, Mora-Montes HM. Silencing of ROT2, the Encoding Gene of the Endoplasmic Reticulum Glucosidase II, Affects the Cell Wall and the Sporothrix schenckii-Host Interaction. J Fungi (Basel) 2022; 8:1220. [PMID: 36422041 PMCID: PMC9692468 DOI: 10.3390/jof8111220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 08/01/2023] Open
Abstract
Sporothrix schenckii is a member of the Sporothrix pathogenic clade and one of the most common etiological agents of sporotrichosis, a subcutaneous fungal infection that affects both animal and human beings. Like other fungal pathogens, the Sporothrix cell wall is composed of structural polysaccharides and glycoproteins that are covalently modified with both N-linked and O-linked glycans. Thus far, little is known about the N-linked glycosylation pathway in this organism or its contribution to cell wall composition and interaction with the host. Here, we silenced ROT2, which encodes the catalytic subunit of the endoplasmic reticulum α-glucosidase II, a processing enzyme key for the N-linked glycan core processing. Silencing of ROT2 led to the accumulation of the Glc2Man9GlcNAC2 glycan core at the cell wall and a reduction in the total content of N-linked glycans found in the wall. However, the highly silenced mutants showed a compensatory mechanism with increased content of cell wall O-linked glycans. The phenotype of mutants with intermediate levels of ROT2 silencing was more informative, as they showed changes in the cell wall composition and exposure of β-1.3-glucans and chitin at the cell surface. Furthermore, the ability to stimulate cytokine production by human mononuclear cells was affected, along with the phagocytosis by human monocyte-derived macrophages, in a mannose receptor-, complement receptor 3-, and TLR4-dependent stimulation. In an insect model of experimental sporotrichosis, these mutant cells showed virulence attenuation. In conclusion, S. schenckii ROT2 is required for proper N-linked glycosylation, cell wall organization and composition, and interaction with the host.
Collapse
Affiliation(s)
- Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Anayeli Márquez-Márquez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Ana P. Vargas-Macías
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| |
Collapse
|
9
|
Lin P, Zhang J, Xie G, Li J, Guo C, Lin H, Zhang Y. Innate Immune Responses to Sporothrix schenckii: Recognition and Elimination. Mycopathologia 2022; 188:71-86. [PMID: 36329281 DOI: 10.1007/s11046-022-00683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
Sporothrix schenckii (S. schenckii), a ubiquitous thermally dimorphic fungus, is the etiological agent of sporotrichosis, affecting immunocompromised and immunocompetent individuals. Despite current antifungal regimens, sporotrichosis results in prolonged treatment and significant mortality rates in the immunosuppressed population. The innate immune system forms the host's first and primary line of defense against S. schenckii, which has a bi-layered cell wall structure. Many components act as pathogen-associated molecular patterns (PAMPs) in pathogen-host interactions. PAMPs are recognized by pattern recognition receptors (PRRs) such as toll-like receptors, C-type lectin receptors, and complement receptors, triggering innate immune cells such as neutrophils, macrophages, and dendritic cells to phagocytize or produce mediators, contributing to S. schenckii elimination. The ultrastructure of S. schenckii and pathogen-host interactions, including PRRs and innate immune cells, are summarized in this review, promoting a better understanding of the innate immune response to S. schenckii and aiding in the development of protective and therapeutic strategies to combat sporotrichosis.
Collapse
Affiliation(s)
- Peng Lin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianfeng Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guinan Xie
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junchen Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenqi Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyue Lin
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Yu Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| |
Collapse
|
10
|
Ma YJ, Doni A, Garlanda C. Editorial: Interactions of Pentraxins and Complement in Infection, Inflammation, and Cancer. Front Immunol 2022; 13:861359. [PMID: 35251053 PMCID: PMC8892381 DOI: 10.3389/fimmu.2022.861359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ying Jie Ma
- Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Doni
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Cecilia Garlanda
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
11
|
Vargas-Macías AP, Gómez-Gaviria M, García-Carnero LC, Mora-Montes HM. Current Models to Study the Sporothrix-Host Interaction. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:833111. [PMID: 37746241 PMCID: PMC10512367 DOI: 10.3389/ffunb.2022.833111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 09/26/2023]
Abstract
Sporotrichosis is a worldwide distributed subcutaneous mycosis that affects mammals, including human beings. The infection is caused by members of the Sporothrix pathogenic clade, which includes Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. The fungus can be acquired through traumatic inoculation of conidia growing in vegetal debris or by zoonotic transmission from sick animals. Although is not considered a life-threatening disease, it is an emergent health problem that affects mostly immunocompromised patients. The sporotrichosis causative agents differ in their virulence, host range, and sensitivity to antifungal drugs; therefore, it is relevant to understand the molecular bases of their pathogenesis, interaction with immune effectors, and mechanisms to acquired resistance to antifungal compounds. Murine models are considered the gold standard to address these questions; however, some alternative hosts offer numerous advantages over mammalian models, such as invertebrates like Galleria mellonella and Tenebrio molitor, or ex vivo models, which are useful tools to approach questions beyond virulence, without the ethical or budgetary features associated with the use of animal models. In this review, we analyze the different models currently used to study the host-Sporothrix interaction.
Collapse
Affiliation(s)
| | | | | | - Héctor M. Mora-Montes
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|