1
|
Kaminski HJ, Sikorski P, Coronel SI, Kusner LL. Myasthenia gravis: the future is here. J Clin Invest 2024; 134:e179742. [PMID: 39105625 DOI: 10.1172/jci179742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
Myasthenia gravis (MG) stands as a prototypical antibody-mediated autoimmune disease: it is dependent on T cells and characterized by the presence of autoantibodies targeting proteins located on the postsynaptic surface of skeletal muscle, known as the neuromuscular junction. Patients with MG exhibit a spectrum of weakness, ranging from limited ocular muscle involvement to life-threatening respiratory failure. Recent decades have witnessed substantial progress in understanding the underlying pathophysiology, leading to the delineation of distinct subcategories within MG, including MG linked to AChR or MuSK antibodies as well as age-based distinction, thymoma-associated, and immune checkpoint inhibitor-induced MG. This heightened understanding has paved the way for the development of more precise and targeted therapeutic interventions. Notably, the FDA has recently approved therapeutic inhibitors of complement and the IgG receptor FcRn, a testament to our improved comprehension of autoantibody effector mechanisms in MG. In this Review, we delve into the various subgroups of MG, stratified by age, autoantibody type, and histology of the thymus with neoplasms. Furthermore, we explore both current and potential emerging therapeutic strategies, shedding light on the evolving landscape of MG treatment.
Collapse
Affiliation(s)
| | | | | | - Linda L Kusner
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| |
Collapse
|
2
|
Oeztuerk M, Henes A, Schroeter CB, Nelke C, Quint P, Theissen L, Meuth SG, Ruck T. Current Biomarker Strategies in Autoimmune Neuromuscular Diseases. Cells 2023; 12:2456. [PMID: 37887300 PMCID: PMC10605022 DOI: 10.3390/cells12202456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammatory neuromuscular disorders encompass a diverse group of immune-mediated diseases with varying clinical manifestations and treatment responses. The identification of specific biomarkers has the potential to provide valuable insights into disease pathogenesis, aid in accurate diagnosis, predict disease course, and monitor treatment efficacy. However, the rarity and heterogeneity of these disorders pose significant challenges in the identification and implementation of reliable biomarkers. Here, we aim to provide a comprehensive review of biomarkers currently established in Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating polyneuropathy (CIDP), myasthenia gravis (MG), and idiopathic inflammatory myopathy (IIM). It highlights the existing biomarkers in these disorders, including diagnostic, prognostic, predictive and monitoring biomarkers, while emphasizing the unmet need for additional specific biomarkers. The limitations and challenges associated with the current biomarkers are discussed, and the potential implications for disease management and personalized treatment strategies are explored. Collectively, biomarkers have the potential to improve the management of inflammatory neuromuscular disorders. However, novel strategies and further research are needed to establish clinically meaningful biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.O.); (A.H.); (P.Q.)
| |
Collapse
|
3
|
Jiang F, Su Y, Chang T. Knowledge mapping of global trends for myasthenia gravis development: A bibliometrics analysis. Front Immunol 2023; 14:1132201. [PMID: 36936960 PMCID: PMC10019893 DOI: 10.3389/fimmu.2023.1132201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Background Myasthenia gravis (MG) is an autoimmune disease with acquired neuromuscular junction transmission disorders. In the last two decades, various pathogenesis, application of immunosuppressive agents, and targeted immunotherapy have been significant events. However, extracting the most critical information from complex events is very difficult to guide clinical work. Therefore, we used bibliometrics to summarize and look forward. Methods Science Citation Index Expanded (SCI-E) from the Web of Science Core Collection (WoSCC) database was identified as a source of material for obtaining MG-related articles. Scimago Graphica, CiteSpace, VOSviewer, and bibliometrix were utilized for bibliometric analysis. Knowledge network graphs were constructed and visualized; countries, institutions, authors, journals, references, and keywords were evaluated. In addition, GraphPad Prism and Microsoft Excel 365 were applied for statistical analysis. Results As of October 25, 2022, 9,970 original MG-related articles were used for the bibliometric analysis; the cumulative number of citations to these articles was 236,987, with an H-index of 201. The United States ranked first in terms of the number of publications (2,877) and H-index (134). Oxford has the highest H-index (67), and Udice French Research University has the highest number of publications (319). The author with the highest average number of citations (66.19), publications (151), and H-index (53) was Vincent A. 28 articles have remained in an explosive period of citations. The final screening yielded predictive keywords related to clinical trials and COVID-19. Conclusion We conducted a bibliometric analysis of 9,970 original MG-related articles published between 1966 and 2022. Ultimately, we found that future MG research hotspots include two major parts: (1) studies directly related to MG disease itself: clinical trials of various targeted biological agents; the relationship between biomarkers and therapeutic decisions, pathogenesis and outcome events, ultimately serving individualized management or precision therapy; (2) studies related to MG and COVID-19: different variants of COVID-19 (e.g., Omicron) on MG adverse outcome events; assessment of the safety of different COVID-19 vaccines for different subtypes of MG.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- The Second Brigade of Cadet, Basic Medical School, Air Force Military Medical University, Xi’an Shaanxi, China
| | - Yue Su
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Ting Chang,
| |
Collapse
|
4
|
He X, Zhou S, Ji Y, Zhang Y, Lv J, Quan S, Zhang J, Zhao X, Cui W, Li W, Liu P, Zhang L, Shen T, Fang H, Yang J, Zhang Y, Cui X, Zhang Q, Gao F. Sorting nexin 17 increases low-density lipoprotein receptor-related protein 4 membrane expression: A novel mechanism of acetylcholine receptor aggregation in myasthenia gravis. Front Immunol 2022; 13:916098. [PMID: 36311763 PMCID: PMC9601310 DOI: 10.3389/fimmu.2022.916098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Myasthenia gravis (MG) is characterized by autoimmune damage to the postsynaptic membrane of the neuromuscular junction (NMJ) with impaired postsynaptic acetylcholine receptor (AChR) aggregation. Low-density lipoprotein receptor-related protein 4 (LRP4) plays an important role in AChR aggregation at endplate membranes via the Agrin–LRP4–muscle-specific receptor tyrosine kinase (MuSK) cascade. Sorting nexin 17 (SNX17) regulates the degradation and recycling of various internalized membrane proteins. However, whether SNX17 regulates LRP4 remains unclear. Therefore, we examined the regulatory effects of SNX17 on LRP4 and its influence on AChR aggregation in MG. We selected C2C12 myotubes and induced LRP4 internalization via stimulation with anti-LRP4 antibody and confirmed intracellular interaction between SNX17 and LRP4. SNX17 knockdown and overexpression confirmed that SNX17 promoted MuSK phosphorylation and AChR aggregation by increasing cell surface LRP4 expression. By establishing experimental autoimmune MG (EAMG) mouse models, we identified that SNX17 upregulation improved fragmentation of the AChR structure at the NMJ and alleviated leg weakness in EAMG mice. Thus, these results reveal that SNX17 may be a novel target for future MG therapy.
Collapse
Affiliation(s)
- Xiaoxiao He
- BGI College, Zhengzhou University, Zhengzhou, China
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuxian Zhou
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Ying Ji
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingna Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jie Lv
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shangkun Quan
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jing Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xue Zhao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Weike Cui
- BGI College, Zhengzhou University, Zhengzhou, China
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenbo Li
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Liu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Linyuan Zhang
- BGI College, Zhengzhou University, Zhengzhou, China
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tong Shen
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hua Fang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junhong Yang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinzheng Cui
- Myasthenia Gravis Comprehensive Diagnosis and Treatment Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qingyong Zhang
- Myasthenia Gravis Comprehensive Diagnosis and Treatment Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Feng Gao,
| |
Collapse
|