1
|
Schiele J, Mazzari G, Struck A, Bailer Y, Langgartner D, Reber SO. Chronic sensory contact with subordinated conspecifics promotes splenic glucocorticoid resistance in experimentally wounded C57BL/6N male mice. Sci Rep 2024; 14:10867. [PMID: 38740863 DOI: 10.1038/s41598-024-61581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Chronic psychosocial stress induced by the chronic subordinate colony housing (CSC, 19 Days) paradigm promotes functional splenic in vitro glucocorticoid (GC) resistance, but only if associated with significant bite wounding or prior abdominal transmitter implantation. Moreover, sensory contact to social defeat of conspecifics represents a social stressor for the observer individual. As the occurence and severity of bite wounding is not adequately controllable, the present study aimed to develop an animal model, allowing a bite wound-independent, more reliable generation of chronically-stressed mice characterized by functional splenic in vitro GC resistance. Therefore, male C57BL/6N mice received a standardized sterile intraperitoneal (i.p.) incision surgery or SHAM treatment one week prior to 19-days of (i) CSC, (ii) witnessing social defeat during CSC exposure in sensory contact (SENS) or (iii) single-housing for control (SHC), before assessing basal and LPS-induced splenic in vitro cell viability and GC resistance. Our results indicate that individually-housed SENS but not CSC mice develop mild signs of splenic in vitro GC resistance, when undergoing prior i.p.-wounding. Taken together and considering that future studies are warranted, our findings support the hypothesis that the combination of repeated standardized i.p.-wounding with chronic sensory stress exposure represents an adequate tool to induce functional splenic in vitro GC resistance independent of the occurrence of uncontrollable bite wounds required in social stress paradigms to induce a comparable phenotype.
Collapse
Affiliation(s)
- Jessica Schiele
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Württemberg, Germany
| | - Giulia Mazzari
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Württemberg, Germany
| | - Antonia Struck
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Württemberg, Germany
| | - Yorick Bailer
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Württemberg, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Württemberg, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Württemberg, Germany.
| |
Collapse
|
2
|
Tschaffon-Müller MEA, Kempter E, Steppe L, Kupfer S, Kuhn MR, Gebhard F, Pankratz C, Kalbitz M, Schütze K, Gündel H, Kaleck N, Strauß G, Vacher J, Ichinose H, Weimer K, Ignatius A, Haffner-Luntzer M, Reber SO. Neutrophil-derived catecholamines mediate negative stress effects on bone. Nat Commun 2023; 14:3262. [PMID: 37277336 DOI: 10.1038/s41467-023-38616-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Mental traumatization is associated with long-bone growth retardation, osteoporosis and increased fracture risk. We revealed earlier that mental trauma disturbs cartilage-to-bone transition during bone growth and repair in mice. Trauma increased tyrosine hydroxylase-expressing neutrophils in bone marrow and fracture callus. Here we show that tyrosine hydroxylase expression in the fracture hematoma of patients correlates positively with acknowledged stress, depression, and pain scores as well as individual ratings of healing-impairment and pain-perception post-fracture. Moreover, mice lacking tyrosine hydroxylase in myeloid cells are protected from chronic psychosocial stress-induced disturbance of bone growth and healing. Chondrocyte-specific β2-adrenoceptor-deficient mice are also protected from stress-induced bone growth retardation. In summary, our preclinical data identify locally secreted catecholamines in concert with β2-adrenoceptor signalling in chondrocytes as mediators of negative stress effects on bone growth and repair. Given our clinical data, these mechanistic insights seem to be of strong translational relevance.
Collapse
Affiliation(s)
| | - Elena Kempter
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Lena Steppe
- Institute of Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Sandra Kupfer
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Melanie R Kuhn
- Institute of Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Florian Gebhard
- Department of Orthopedic Trauma, Hand-, Plastic- and Reconstructive Surgery, Ulm University Medical Center, Ulm, Germany
| | - Carlos Pankratz
- Department of Orthopedic Trauma, Hand-, Plastic- and Reconstructive Surgery, Ulm University Medical Center, Ulm, Germany
| | - Miriam Kalbitz
- Department of Orthopedic Trauma, Hand-, Plastic- and Reconstructive Surgery, Ulm University Medical Center, Ulm, Germany
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Konrad Schütze
- Department of Orthopedic Trauma, Hand-, Plastic- and Reconstructive Surgery, Ulm University Medical Center, Ulm, Germany
| | - Harald Gündel
- Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Nele Kaleck
- Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Gudrun Strauß
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Jean Vacher
- Department of Medicine, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
- Institut de Recherche Cliniques de Montréal, Department of Medicine, Université de Montréal, H2W 1R7, Montréal, QC, Canada
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Katja Weimer
- Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
3
|
Matsumura Y. Inadequate therapeutic responses to glucocorticoid treatment in bronchial asthma. J Int Med Res 2023; 51:3000605231175746. [PMID: 37296513 DOI: 10.1177/03000605231175746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023] Open
Abstract
Bronchial asthma (BA) is a heterogeneous disease. Some patients benefit greatly from glucocorticoid (GC) treatment, whereas others are non-responders. This could be attributable to differences in pathobiology. Thus, predicting the responses to GC treatment in patients with BA is necessary to increase the success rates of GC therapy and avoid adverse effects. The sustained inflammation in BA decreases glucocorticoid receptor (GR, NR3C1) function. Meanwhile, GRβ overexpression might contribute to GC resistance. Important factors in decreased GR function include p38 mitogen-activated protein kinase-dependent GR phosphorylated at Ser226, reduced expression of histone deacetylase 2 following activation of the phosphatidylinositol 3-kinase-δ signaling pathway, and increased nuclear factor-kappa B activity. MicroRNAs, which are involved in GC sensitivity, are considered biomarkers of the response to inhaled GCs. Some studies revealed that inflammatory phenotypes and disease-related modifiable factors, including infections, the airway microbiome, mental stress, smoking, and obesity, regulate individual sensitivity to GCs. Therefore, future investigations are warranted to improve treatment outcomes.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Department of Internal Medicine, Sasaki Foundation Kyoundo Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Langgartner D, Koenen M, Kupfer S, Glogger L, Kurz L, Perez-Rivas LG, Theodoropoulou M, Noll-Hussong M, Vettorazzi S, Tuckermann J, Reber SO. Intact GR dimerization is critical for restraining plasma ACTH levels during chronic psychosocial stress. Neurobiol Stress 2023; 24:100541. [PMID: 37215522 PMCID: PMC10196852 DOI: 10.1016/j.ynstr.2023.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Male C57BL/6N mice exposed to the chronic subordinate colony housing (CSC; 19 days) paradigm, a preclinically validated model of chronic psychosocial stress, are characterized by unaffected basal morning plasma corticosterone (CORT) concentrations despite adrenal and pituitary hyperplasia and increased adrenocorticotropic hormone (ACTH) plasma concentrations, compared with single-housed control (SHC) mice. However, as CSC mice are still able to show an increased CORT secretion towards novel heterotypic stressors, these effects might reflect an adaptation rather than a functional breakdown of general hypothalamus-pituitary-adrenal (HPA) axis functionality. In the present study we used male mice of a genetically modified mouse line, to investigate whether genetically-driven ACTH overexpression compromises adaptational processes occurring at the level of the adrenals during CSC exposure. Experimental mice carried a point mutation in the DNA binding domain of the glucocorticoid (GC) receptor (GR), attenuating dimerization of GR (GRdim), resulting in a congenially compromised negative feedback inhibition at the level of the pituitary. In line with previous studies, CSC mice in both the wild type (WT; GR+/+) and GRdim group developed adrenal enlargement. Moreover, compared with respective SHC and WT mice, CSC GRdim mice show increased basal morning plasma ACTH and CORT concentrations. Quantitative polymerase chain reaction (qPCR) analysis revealed neither a genotype effect, nor a CSC effect on pituitary mRNA expression of the ACTH precursor proopiomelanocortin (POMC). Finally, CSC increased anxiety-related behavior, active coping and splenocyte in vitro (re)activity in both WT and GRdim mice, while a CSC-induced increase in adrenal lipid vesicles and splenic GC resistance was detectable only in WT mice. Of note, lipopolysaccharide (LPS)-stimulated splenocytes of GRdim mice were resistant to the inhibitory effects of CORT. Together our findings support the hypothesis that pituitary ACTH protein concentration is negatively controlled by GR dimerization under conditions of chronic psychosocial stress, while POMC gene transcription is not dependent on intact GR dimerization under both basal and chronic stress conditions. Finally, our data suggest that adrenal adaptations during chronic psychosocial stress (i.e., ACTH desensitization), aiming at the prevention of prolonged hypercorticism, are protective only to a certain threshold of plasma ACTH levels.
Collapse
Affiliation(s)
- Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Mascha Koenen
- Institute of Comparative Molecular Endocrinology, University Ulm, Ulm, Germany
| | - Sandra Kupfer
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Lisa Glogger
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Lisa Kurz
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Luis Gustavo Perez-Rivas
- Medical Clinic and Polyclinic IV, LMU Clinic, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Marily Theodoropoulou
- Medical Clinic and Polyclinic IV, LMU Clinic, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Michael Noll-Hussong
- Psychosomatic Medicine and Psychotherapy, Saarland University Medical Centre, Homburg, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, University Ulm, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University Ulm, Ulm, Germany
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
5
|
Langgartner D, Amoroso M, Kempter E, Kustermann M, Scheurer J, Lowry CA, Strauß G, Reber SO. Mycobacterium vaccae protects against glucocorticoid resistance resulting from combined physical and psychosocial trauma in mice. Brain Behav Immun 2023; 109:221-234. [PMID: 36736929 DOI: 10.1016/j.bbi.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/09/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Stress-related somatic and psychiatric disorders are often associated with a decline in regulatory T cell (Treg) counts and chronic low-grade inflammation. Recent preclinical evidence suggests that the latter is at least partly mediated by stress-induced upregulation of toll-like receptor (TLR)2 in newly generated neutrophils and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), as well as glucocorticoid (GC) resistance in predominantly PMN-MDSCs following stress-induced upregulation of TLR4 expression. Here we show in mice exposed to the chronic subordinate colony housing (CSC) paradigm that repeated intragastric (i.g.) administrations of a heat-killed preparation of Mycobacterium vaccae NCTC 11659, a saprophytic microorganism with immunoregulatory properties, protected against the stress-induced reduction in systemic Tregs, increase in basal and LPS-induced in vitro splenocyte viability, as well as splenic in vitro GC resistance. Our findings further support the hypothesis that i.g. M. vaccae protects against CSC-associated splenic GC resistance via directly affecting the myeloid compartment, thereby preventing the CSC-induced upregulation of TLR4 in newly generated PMN-MDSCs. In contrast, the protective effects of i.g. M. vaccae on the CSC-induced upregulation of TLR2 in neutrophils and the subsequent increase in basal and LPS-induced in vitro splenocyte viability seems to be indirectly mediated via the Treg compartment. These data highlight the potential for use of oral administration of M. vaccae NCTC 11659 to prevent stress-induced exaggeration of inflammation, a risk factor for development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Elena Kempter
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Monika Kustermann
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Jasmin Scheurer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christopher A Lowry
- Department of Integrative Physiology, Department of Psychology and Neuroscience, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; VIVO Planetary Health, of the Worldwide Universities Network (WUN), West NY, NJ 07093, USA
| | - Gudrun Strauß
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
6
|
Kempter E, Amoroso M, Kupfer S, Lupu L, Kustermann M, Scheurer J, Baumann B, Wirth T, Gündel H, Straub RH, Strauß G, Huber-Lang M, Langgartner D, Reber SO. The PMN-MDSC - A key player in glucocorticoid resistance following combined physical and psychosocial trauma. Brain Behav Immun 2023; 108:148-161. [PMID: 36427809 DOI: 10.1016/j.bbi.2022.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/21/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Stress-associated somatic and psychiatric disorders are often linked to non-resolving low-grade inflammation, which is promoted at least in part by glucocorticoid (GC) resistance of distinct immune cell subpopulations. While the monocyte/macrophage compartment was in the focus of many clinical and preclinical studies, the role of myeloid-derived suppressor cells (MDSCs) in stress-associated pathologies and GC resistance is less understood. As GC resistance is a clear risk factor for posttraumatic complications in patients on intensive care, the exact interplay of physical and psychosocial traumatization in the development of GC resistance needs to be further clarified. In the current study we employ the chronic subordinate colony housing (CSC) paradigm, a well-characterized mouse model of chronic psychosocial stress, to study the role of myeloid cells, in particular of MDSCs, in innate immune activation and GC resistance following combined psychosocial and physical (e.g., bite wounds) trauma. Our findings support the hypothesis that stress-induced neutrophils, polymorphonuclear (PMN)-MDSCs and monocytes/monocyte-like (MO)-MDSCs get primed and activated locally in the bone marrow as determined by toll-like receptor (TLR)2 upregulation and increased basal and lipopolysaccharide (LPS)-induced in vitro cell viability. These primed and activated myeloid cells emigrate into the peripheral circulation and subsequently, if CSC is accompanied by significant bite wounding, accumulate in the spleen. Here, PMN-MDSCs and monocytes/MO-MDSCs upregulate TLR4 expression, which exclusively in PMN-MDSCs promotes NF-κB hyperactivation upon LPS-stimulation, thereby exceeding the anti-inflammatory capacities of GCs and resulting in GC resistance.
Collapse
Affiliation(s)
- Elena Kempter
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Sandra Kupfer
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Ludmila Lupu
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Monika Kustermann
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Jasmin Scheurer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Harald Gündel
- Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Division of Rheumatology, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Gudrun Strauß
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
7
|
Blocking Metabotropic Glutamate Receptor Subtype 7 via the Venus Flytrap Domain Promotes a Chronic Stress-Resilient Phenotype in Mice. Cells 2022; 11:cells11111817. [PMID: 35681512 PMCID: PMC9180111 DOI: 10.3390/cells11111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022] Open
Abstract
Chronic psychosocial stress participates prominently in the etiology of various psychiatric conditions and comorbid somatic pathologies; however, suitable pharmacotherapy of these disorders is still of high medical need. During the last few decades, research on mGlu receptors advanced remarkably and much attention was given to the mGlu7 subtype. Here, genetic mGlu7 ablation, short-term pharmacological mGlu7 blockade, as well as siRNA-mediated knockdown of mGlu7 were shown to result in an acute anti-stress, antidepressant- and anxiolytic-like phenotype in mice. Moreover, we recently revealed a prominent stress-protective effect of genetic mGlu7 ablation also with respect to chronic psychosocial stress. In addition, we are able to demonstrate in the present study that the chronic pharmacological blockade of mGlu7 interferes with various chronic stress-induced alterations. For this, we used the chronic subordinate colony housing (CSC), a mouse model of chronic male subordination, in combination with chronic treatment with the mGlu7-selective orthosteric-like antagonist XAP044 (7-hydroxy-3-(4-iodophenoxy)-4H-chromen-4-one). Interestingly, XAP044 dose-dependently ameliorates hypothalamic–pituitary–adrenal axis dysfunctions, thymus atrophy, as well as the CSC-induced increase in innate anxiety. Taken together, our findings provide further evidence for the role of mGlu7 in chronic psychosocial stress-induced alterations and suggests the pharmacological blockade of mGlu7 as a promising therapeutic approach for the treatment of chronic stress-related pathologies in men.
Collapse
|