1
|
Gao Z, Han K, Hua X, Liu W, Jia S. hydroSIM: super-resolution speckle illumination microscopy with a hydrogel diffuser. BIOMEDICAL OPTICS EXPRESS 2024; 15:3574-3585. [PMID: 38867780 PMCID: PMC11166422 DOI: 10.1364/boe.521521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Super-resolution microscopy has emerged as an indispensable methodology for probing the intricacies of cellular biology. Structured illumination microscopy (SIM), in particular, offers an advantageous balance of spatial and temporal resolution, allowing for visualizing cellular processes with minimal disruption to biological specimens. However, the broader adoption of SIM remains hampered by the complexity of instrumentation and alignment. Here, we introduce speckle-illumination super-resolution microscopy using hydrogel diffusers (hydroSIM). The study utilizes the high scattering and optical transmissive properties of hydrogel materials and realizes a remarkably simplified approach to plug-in super-resolution imaging via a common epi-fluorescence platform. We demonstrate the hydroSIM system using various phantom and biological samples, and the results exhibited effective 3D resolution doubling, optical sectioning, and high contrast. We foresee hydroSIM, a cost-effective, biocompatible, and user-accessible super-resolution methodology, to significantly advance a wide range of biomedical imaging and applications.
Collapse
Affiliation(s)
- Zijun Gao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Keyi Han
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Xuanwen Hua
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
2
|
Chan WF, Coughlan HD, Ruhle M, Iannarella N, Alvarado C, Groom JR, Keenan CR, Kueh AJ, Wheatley AK, Smyth GK, Allan RS, Johanson TM. Survey of activation-induced genome architecture reveals a novel enhancer of Myc. Immunol Cell Biol 2023; 101:345-357. [PMID: 36710659 PMCID: PMC10952581 DOI: 10.1111/imcb.12626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
The transcription factor Myc is critically important in driving cell proliferation, a function that is frequently dysregulated in cancer. To avoid this dysregulation Myc is tightly controlled by numerous layers of regulation. One such layer is the use of distal regulatory enhancers to drive Myc expression. Here, using chromosome conformation capture to examine B cells of the immune system in the first hours after their activation, we reveal a previously unidentified enhancer of Myc. The interactivity of this enhancer coincides with a dramatic, but discrete, spike in Myc expression 3 h post-activation. However, genetic deletion of this region, has little impact on Myc expression, Myc protein level or in vitro and in vivo cell proliferation. Examination of the enhancer deleted regulatory landscape suggests that enhancer redundancy likely sustains Myc expression. This work highlights not only the importance of temporally examining enhancers, but also the complexity and dynamics of the regulation of critical genes such as Myc.
Collapse
Affiliation(s)
- Wing Fuk Chan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Hannah D Coughlan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Michelle Ruhle
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Nadia Iannarella
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Carolina Alvarado
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Joanna R Groom
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Christine R Keenan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Adam K Wheatley
- Department of Microbiology and ImmunologyUniversity of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- School of Mathematics and StatisticsThe University of MelbourneParkvilleVICAustralia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| |
Collapse
|