1
|
Osada Y, Shimizu S, Morita K. Parasitic helminths and protozoa: Treasure boxes of disease modifying anti-rheumatic drugs. Parasitol Int 2025; 105:103000. [PMID: 39592081 DOI: 10.1016/j.parint.2024.103000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Parasites generally survive in their hosts by employing various immunomodulation and immune evasion mechanisms. "helminth therapy" is one strategy that harnesses these parasite-specific beneficial properties for the therapeutic treatment of autoimmune and allergic diseases. Although numerous experimental reports have documented the anti-autoimmune activities of parasitic infections and parasite-derived products, the underlying mechanisms remain insufficiently elucidated due to the significant diversity among parasite species and autoimmune conditions. Rheumatoid arthritis (RA) is one of the most prevalent autoimmune disorders, presenting a substantial opportunity for the therapeutic use of parasites as novel disease-modifying antirheumatic drugs (DMARDs). In this paper, we summarize the immunomodulatory properties of parasites, focusing on their anti-arthritic mechanisms, and discuss the potential of parasite-derived products for the treatment of RA.
Collapse
Affiliation(s)
- Yoshio Osada
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Japan.
| | - Shoichi Shimizu
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Japan
| | - Kentaro Morita
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Japan
| |
Collapse
|
2
|
Hogan NT, Castaneda-Castro FE, Logandha Ramamoorthy Premlal A, Brickner H, Mondal M, Herrera-De La Mata S, Vijayanand P, Crotty Alexander LE, Seumois G, Akuthota P. E-cigarette vapor extract alters human eosinophil gene expression in an effect mediated by propylene glycol, glycerin, and nicotine. J Leukoc Biol 2024; 116:1420-1431. [PMID: 39136235 DOI: 10.1093/jleuko/qiae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/24/2024] [Indexed: 11/28/2024] Open
Abstract
E-cigarette use has become widespread, and its effects on airway inflammation and disease are not fully delineated. E-cigarette vapor extract (EVE) profoundly affects neutrophil function. We hypothesized that EVE also alters eosinophil function and thus could impact allergic airway disease. We employed RNA sequencing to measure the ex vivo effect of EVE components on human eosinophil transcription. Blood eosinophils from 9 nonvaping subjects without asthma were isolated by negative selection. Cells were incubated for 48 h with EVE consisting of glycerin, propylene glycol, and nicotine (EVE+), EVE without nicotine ("EVE-"), air-exposed media termed extract buffer (EB), or untreated media. Bulk RNA sequencing was performed. Transcriptomic analysis revealed that the EB, EVE-, and EVE+ conditions showed highly variable gene expression with respect to no treatment and each other. Differential gene expression analysis comparing a combination of EVE+, EVE-, and EB revealed 3,030 differentially expressed genes (DEGs) with an adjusted P value <0.05 and log2 fold change >0.5 or <0.5. There were 645 DEGs between EB and EVE-, 1,713 between EB and EVE+, and 404 between EVE- and EVE+. Gene set enrichment analysis demonstrated that DEGs between both EVE+ and EVE- and the EB control were positively enriched for heme metabolism and apoptosis and negatively enriched tumor necrosis factor α signaling, interferon γ signaling, and inflammatory response. Thus, EVE significantly alters eosinophil metabolic and inflammatory pathways, mediated by propylene glycol and glycerin, with both enhancing and unique effects of nicotine. This study motivates further research into the pathogenic effects of vaping on airway eosinophils and allergic airways disease.
Collapse
Affiliation(s)
- Nicholas T Hogan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Dr., MC 7381, San Diego, CA 92037, United States
| | | | | | - Howard Brickner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Dr., MC 7381, San Diego, CA 92037, United States
| | - Monalisa Mondal
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Sara Herrera-De La Mata
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Pandurangan Vijayanand
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Laura E Crotty Alexander
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Dr., MC 7381, San Diego, CA 92037, United States
- Pulmonary Critical Care Section, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States
| | - Gregory Seumois
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Praveen Akuthota
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Dr., MC 7381, San Diego, CA 92037, United States
| |
Collapse
|
3
|
Zheng X, Huang J, Meng J, Wang H, Chen L, Yao J. Identification and Experimental Verification of PDK4 as a Potential Biomarker for Diagnosis and Treatment in Rheumatoid Arthritis. Mol Biotechnol 2024:10.1007/s12033-024-01297-1. [PMID: 39466354 DOI: 10.1007/s12033-024-01297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by sustained joint inflammation, with an etiology that remains elusive. Achieving an early and precise diagnosis poses significant challenges. This study aims to elucidate the molecular pathways involved in RA pathogenesis by screening genes associated with its occurrence, analyzing the related molecular activities, and ultimately developing more effective molecular-level treatments for RA. METHODS Microarray expression profiling datasets GSE1919, GSE10500, GSE15573, GSE77298, GSE206848, and GSE236924 were sourced from the Gene Expression Omnibus (GEO) database. Samples were divided into experimental (RA) and control (normal) groups. Differentially expressed genes (DEGs) were identified using R software packages such as limma, glmnet, e1071 as well as randomForest. Cross-validation of DEGs was conducted using lasso regression and the random forest (RF) algorithm in R software to pinpoint intersecting genes that met the criteria. Among these, one gene was selected as the target for correlation analysis to identify DEGs related to the target gene. Enrichment analysis utilized the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases and Gene Ontology (GO) data. Gene Set Enrichment Analysis (GSEA) was performed to compare the expression levels of the target gene (PDK4) across various biological pathways and functions in groups with high and low expression. The relationship between target gene expression levels and cellular immune function was assessed using the immune function score technique. The discrepancy in immune cell distribution between the control and experimental groups, as well as their correlation with target gene expression levels, was elucidated using CIBERSORT. The relationships between mRNA, lncRNA, and miRNA were depicted in the ceRNA regulation network. The expression levels of the target gene were validated using Western blot and qRT-PCR. RESULTS In this study, six intersecting genes meeting the criteria were identified through cross-validation, and PDK4 was chosen as the target gene for further investigation. Functional analysis using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed that PDK4-associated DEGs are primarily enriched in the PPAR signaling pathway, thereby regulating synovial cell proliferation and migration, ultimately influencing the onset and progression of rheumatoid arthritis (RA). Immune infiltration analysis suggested that eosinophil quantity may influence the progression of RA. Experimental results from PCR and Western blot confirmed the downregulation of PDK4 in the RA group. CONCLUSION The significant downregulation of PDK4 expression in patients diagnosed with rheumatoid arthritis (RA) was confirmed. PDK4 may function as a novel regulatory factor in the onset and progression of RA, with potential applications as a diagnostic biomarker for the condition.
Collapse
Affiliation(s)
- Xifan Zheng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junpu Huang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinzhi Meng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hongtao Wang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lingyun Chen
- Spine Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Yao
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Subali D, Kurniawan R, Surya R, Lee IS, Chung S, Ko SJ, Moon M, Choi J, Park MN, Taslim NA, Hardinsyah H, Nurkolis F, Kim B, Kim KI. Revealing the mechanism and efficacy of natural products on treating the asthma: Current insights from traditional medicine to modern drug discovery. Heliyon 2024; 10:e32008. [PMID: 38882318 PMCID: PMC11176852 DOI: 10.1016/j.heliyon.2024.e32008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Asthma remains a significant global health challenge, demanding innovative approaches to treatment. Traditional medicine has a rich history of using natural products to alleviate asthmatic symptoms. However, transitioning from these traditional remedies to modern drug discovery approaches has provided fresh insights into the mechanisms and effectiveness of these natural products. This study provides our comprehensive review, which examines the current state of knowledge in the treatment of asthma. It delves into the mechanisms through which natural products ameliorate asthma symptoms, and it discusses their potential in the development of novel therapeutic interventions. Our analysis reveals that natural products, traditionally employed for asthma relief, exhibit diverse mechanisms of action. These include anti-inflammatory, bronchodilatory, immunomodulatory effects, and reducing gene expression. In the context of modern drug discovery, these natural compounds serve as valuable candidates for the development of novel asthma therapies. The transition from traditional remedies to modern drug discovery represents a promising avenue for asthma treatment. Our review highlights the substantial efficacy of natural products in managing asthma symptoms, underpinned by well-defined mechanisms of action. By bridging the gap between traditional and contemporary approaches, we contribute to the growing body of knowledge in the field, emphasizing the potential of natural products in shaping the future of asthma therapy.
Collapse
Affiliation(s)
- Dionysius Subali
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia
| | - Rudy Kurniawan
- Diabetes Connection Care, Eka Hospital Bumi Serpong Damai, Tangerang, 15321, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta, 11480, Indonesia
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Kyung Hee Myungbo Clinic of Korean Medicine, Hwaseong-si, 18466, Republic of Korea
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, 05253, Republic of Korea
| | - Myunghan Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Hardinsyah Hardinsyah
- Division of Applied Nutrition, Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, 16680, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, 55281, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kwan-Il Kim
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Guo XG, Zhang YJ, Lu YX, Lu JM, Zhang J, Li HX, Chen CJ, Yang JJ. Causal association between genetically predicted circulating immune cell counts and frailty: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1336498. [PMID: 38322263 PMCID: PMC10844461 DOI: 10.3389/fimmu.2024.1336498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Background Despite the recognized link between immune responses and frailty, the association between immune cell counts and frailty based on previous observational studies remains disputed, with uncertain causal nexus. This study aimed to elucidate causal association between genetically predicted circulating immune cell counts and frailty. Methods We conducted the two-sample Mendelian randomization (MR) study with independent genetic variants associated with six immune cell subtype counts from genome-wide association studies in 563,946 European individuals. Frailty summary data, assessed via frailty index (FI), was obtained from study comprising 175,226 subjects. Univariate MR, reverse MR and multivariate MR were conducted to comprehensive investigate the association between immune cell counts and FI, with two-step MR analysis for mediation analysis. Results Univariate MR evidence indicated that among six leukocyte subtype counts, only elevated eosinophil count was significantly correlated with higher FI (β = 0.059, 95% confidence interval [CI], 0.042-0.078, P=5.63E-11), with no reverse causal relationship identified in reverse MR. In multivariate MR, the causal effect of eosinophil count retained statistical significance (β = 0.063, 95% CI, 0.021-0.104, P = 0.003). Ultimately, the two-step MR analysis demonstrated two mediators in this causal pathway: asthma (β= 0.019, 95% CI, 0.013-0.025, P = 35.84E-10, mediated proportion, 31.732%) and rheumatoid arthritis (β= 0.004, 95% CI, 0.001-0.006, P=1.75E-03, mediated proportion, 6.411%). Conclusions Within immune cell subtypes, MR evidence indicated only genetically predicted circulating eosinophil count had irreversible and independent causal effect on frailty, with asthma and rheumatoid arthritis possibly serving as partial mediators. The finding stressed the need for further exploring physiological functions of eosinophils in order to develop effective strategies against frailty.
Collapse
Affiliation(s)
- Xiao-Guang Guo
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya-Juan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya-Xin Lu
- Big Data and Artificial Intelligence Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia-Mei Lu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui-Xin Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao-Jin Chen
- Big Data and Artificial Intelligence Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
You JM, Zhang YC, Fan KY, Bai SK, Zhang ZY, Zhang HY, Cheng T, Huo YH, Wang CH, Li XF, Zhang SX. Genetic evidence for causal effects of leukocyte counts on risk for rheumatoid arthritis. Sci Rep 2023; 13:20768. [PMID: 38008752 PMCID: PMC10679084 DOI: 10.1038/s41598-023-46888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by the accumulation of leukocytes and inflammatory mediators within the synovial tissue. Leukocyte counts are proposed to play a role in the pathogenesis of RA. However, the causality remains unclear. To investigate the causal relationship between various leukocytes and RA by implementing two-sample univariable Mendelian Randomization (MR) and multivariable MR. MR analysis was performed using respective genome-wide association study (GWAS) summary statistics for the exposure traits (eosinophil counts, neutrophil counts, lymphocyte counts, monocyte counts, basophil counts, and white blood cell counts) and outcome trait (RA). Summary statistics for leukocytes were extracted from the Blood Cell Consortium meta-analysis and INTERVAL studies. Public GWAS information for RA included 14,361 cases and 43,923 controls. Inverse variance weighted, weighted median, MR-Egger regression, MR pleiotropy residual sum and outlier, and multivariable MR analyses were performed in MR analysis. Univariable MR found elevated eosinophil counts (OR 1.580, 95% CI 1.389-2.681, p = 1.30 × 10-7) significantly increased the risk of RA. Multivariable MR further confirmed that eosinophil counts were a risk factor for RA. Increased eosinophils were associated with higher risk of RA. Further elucidations of the causality and mechanisms underlying are likely to identify feasible interventions to promote RA prevention.
Collapse
Affiliation(s)
- Jin-Mei You
- Department of Clinicallaboratory, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yao-Chen Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ke-Yi Fan
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Shang-Kai Bai
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Zi-Yu Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - He-Yi Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ting Cheng
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Yue-Hong Huo
- Department of Rheumatology, The Fifth People's Hospital of Datong, Datong, Shanxi Province, China
| | - Cai-Hong Wang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Xiao-Feng Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Sheng-Xiao Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| |
Collapse
|
7
|
Ahmed BM, Mansour NO, Sallam RA, Soliman MM. Efficacy of montelukast as an adjuvant therapy in rheumatoid arthritis patients: A randomized controlled study. Int Immunopharmacol 2023; 124:110959. [PMID: 37725847 DOI: 10.1016/j.intimp.2023.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE This study aimed to evaluate the efficacy of montelukast in conjunction with non-biologic disease modifying anti-rheumatic drugs (nDMARDs) in rheumatoid arthritis (RA) patients. METHODS This study was a single-center randomized double-blinded placebo-controlled study. Adult RA patients were included if they had moderate to severe disease activity and were receiving monotherapy or combination of nDMARDs. Eligible patients were randomized, in 1:1 ratio, to receive either 10 mg montelukast or placebo, once daily for 16 weeks. The primary endpoint was the change in the 28-joints disease activity score (DAS28) 16 weeks after treatment. The patients' quality of life (QoL) was assessed by the Arabic version of the Health Assessment Questionnaire-Disability Index. Moreover, serum levels of vascular adhesion molecule-1 (VCAM-1) were measured. RESULTS A total of 87 patients completed the study; 44 in the montelukast arm and 43 in the control arm. After 16 weeks of treatment, disease activity decreased significantly in the montelukast arm with mean change in DAS28 (95% CIs) of -1.5 (-1.7, -1.2) while the control arm showed no improvement (0.2 (0.0, 0.4), p < 0.01). The QoL of the patients improved significantly from baseline in the montelukast arm (p < 0.01) but not in the control arm (p = 0.08). The median (IQR) serum levels of VCAM-1 were significantly lower in the montelukast arm (22.8 (15.0-32.7)) than in the control arm (28.9 (15.4-42.8), p = 0.004). CONCLUSION The co-administration of montelukast with nDMARDs in RA patients enhanced the anti-rheumatic effect which was reflected clinically by decreased disease activity.
Collapse
Affiliation(s)
- Basma M Ahmed
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Noha O Mansour
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Rehab A Sallam
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Moetaza M Soliman
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
8
|
Boneva B, Ralchev N, Ganova P, Tchorbanov A, Mihaylova N. Collagenase-Induced Mouse Model of Osteoarthritis-A Thorough Flow Cytometry Analysis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111938. [PMID: 36431073 PMCID: PMC9694943 DOI: 10.3390/life12111938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Osteoarthritis (OA) is a chronic degenerative disorder of the joint characterized by cartilage breakdown and synovial inflammation. A number of different cells of innate and adaptive immunity contribute to joint pathology during OA inflammation. The interaction between the local synovial and systemic inflammatory cellular response and the structural changes in the joint is still unknown. The objective of this study was to investigate the role of the different types of immune cells in the development of OA. METHODS Collagenase-induced osteoarthritis was induced in Balb/c mice; flow cytometry analysis; and histopathological damages were assessed in histological sections stained with H&E, Toluidine blue, and Safranin O. RESULTS Flow cytometry analysis showed B lymphocyte infiltration in the active phase of inflammation and an increase in the effector T cell population into the synovium. An increased activation state of cytotoxic T cells and of NK cell populations in the spleen and synovium was also found. The differentiation of NK cells from a cytotoxic phenotype in early OA to cells with an effector phenotype in the chronic phase of the disease followed. CONCLUSIONS A number of different cells contribute to inflammatory processes in OA. The correlation between their phenotype and the inflammatory pathophysiology could result in the development of novel approaches to suppress destructive changes in the joint.
Collapse
Affiliation(s)
- Blagovesta Boneva
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nikola Ralchev
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petya Ganova
- Laboratory of Immunohistochemistry and Immunopathology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Andrey Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nikolina Mihaylova
- Laboratory of Immunohistochemistry and Immunopathology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-979-3140; Fax: +359-2-870-0109
| |
Collapse
|
9
|
Th2 Cytokines (Interleukin-5 and -9) Polymorphism Affects the Response to Anti-TNF Treatment in Polish Patients with Ankylosing Spondylitis. Int J Mol Sci 2022; 23:ijms232113177. [PMID: 36361964 PMCID: PMC9657232 DOI: 10.3390/ijms232113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is an inflammatory disease that belongs to the spondyloarthritis family. IL-5 and IL-9 belong to the group of Th2 cytokines of anti-inflammatory nature. Polymorphisms in their coding genes have been so far associated with various inflammatory diseases, but there are no reports regarding their involvement in AS pathogenesis to date. The purpose of the study was to investigate relationships between IL5 and IL9 genetic variants with AS susceptibility, clinical parameters as well as response to therapy with TNF inhibitors. In total 170 patients receiving anti-TNF therapy and 218 healthy controls were enrolled in the study. The genotyping of IL5 rs2069812 (A > G) and IL9 rs2069885 (G > A) single nucleotide polymorphisms was performed using the Real-Time PCR method based on LightSNiP kits assays. The present study demonstrated significant relationships between IL5 rs2069812 and IL9 rs2069885 polymorphisms and response to anti-TNF therapy. Presence of the IL5 rs2069812 A allele in patients positively correlated with better response to treatment (p = 0.022). With regard to IL9 rs2069885, patients carrying the A allele displayed better outcomes in anti-TNF therapy (p = 0.046). In addition, IL5 rs2069812 A and IL9 rs2069885 A alleles were associated with lower CRP and VAS values. The obtained results may indicate a significant role for IL-5 and IL-9 in the course of AS and response to anti-TNF therapy.
Collapse
|
10
|
Nedunchezhiyan U, Varughese I, Sun AR, Wu X, Crawford R, Prasadam I. Obesity, Inflammation, and Immune System in Osteoarthritis. Front Immunol 2022; 13:907750. [PMID: 35860250 PMCID: PMC9289681 DOI: 10.3389/fimmu.2022.907750] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity remains the most important risk factor for the incidence and progression of osteoarthritis (OA). The leading cause of OA was believed to be overloading the joints due to excess weight which in turn leads to the destruction of articular cartilage. However, recent studies have proved otherwise, various other factors like adipose deposition, insulin resistance, and especially the improper coordination of innate and adaptive immune responses may lead to the initiation and progression of obesity-associated OA. It is becoming increasingly evident that multiple inflammatory cells are recruited into the synovial joint that serves an important role in pathological changes in the synovial joint. Polarization of macrophages and macrophage-produced mediators are extensively studied and linked to the inflammatory and destructive responses in the OA synovium and cartilage. However, the role of other major innate immune cells such as neutrophils, eosinophils, and dendritic cells in the pathogenesis of OA has not been fully evaluated. Although cells of the adaptive immune system contribute to the pathogenesis of obesity-induced OA is still under exploration, a quantity of literature indicates OA synovium has an enriched population of T cells and B cells compared with healthy control. The interplay between a variety of immune cells and other cells that reside in the articular joints may constitute a vicious cycle, leading to pathological changes of the articular joint in obese individuals. This review addresses obesity and the role of all the immune cells that are involved in OA and summarised animal studies and human trials and knowledge gaps between the studies have been highlighted. The review also touches base on the interventions currently in clinical trials, different stages of the testing, and their shortcomings are also discussed to understand the future direction which could help in understanding the multifactorial aspects of OA where inflammation has a significant function.
Collapse
Affiliation(s)
- Udhaya Nedunchezhiyan
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ibin Varughese
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Antonia RuJia Sun
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xiaoxin Wu
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Orthopedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ross Crawford
- Orthopedic Department, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Indira Prasadam,
| |
Collapse
|
11
|
Bozzalla-Cassione E, Grignaschi S, Xoxi B, Luvaro T, Greco MI, Mazzucchelli I, Bugatti S, Montecucco C, Manzo A. Insights Into the Concept of Rheumatoid Arthritis Flare. Front Med (Lausanne) 2022; 9:852220. [PMID: 35372374 PMCID: PMC8968115 DOI: 10.3389/fmed.2022.852220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 01/10/2023] Open
Abstract
Identification of a pathological change in the course of systemic chronic immune-inflammatory diseases is key to delivering effective treatment strategies. In this context, one of the most compelling issues is the concept of flare. The multifaceted expression of disease activity in rheumatoid arthritis (RA) makes it challenging to provide an omni-comprehensive definition of flare, encompassing the pathology's different objective and subjective domains. Our incomplete understanding of the pathophysiological mechanisms underlying this process contributes to the partial comprehension of its potential clinical expression. This review focuses on the proposed pathophysiological processes underlying disease recrudescence in RA and the variable definitions adopted to capture flare in clinical practice through its objective, subjective, and temporal domains. Overall, what emerges is a complex landscape far from being unraveled.
Collapse
|