1
|
Tsujikawa T, Ohno K, Morita KI, Saburi S, Mitsuda J, Yoshimura K, Kimura A, Morimoto H, Ogi H, Shibata S, Akashi T, Kurata M, Imoto I, Shimizu Y, Kano S, Watanabe A, Yamazaki T, Asada Y, Hayashi R, Saito Y, Ozawa H, Tsukahara K, Oridate N, Sano D, Horii A, Ueki Y, Maruo T, Mukoyama N, Hanai N, Fukusumi T, Iwai H, Fujisawa T, Fujii T, Nibu KI, Iwae S, Ueda T, Chikuie N, Yasumatsu R, Matsuo M, Umeno H, Ono T, Masuda M, Toh S, Itoh K, Hirano S, Asakage T. Clinical, genomic and immune microenvironmental determinants of nivolumab response in head and neck squamous cell carcinoma. Front Immunol 2024; 15:1390873. [PMID: 39136017 PMCID: PMC11317249 DOI: 10.3389/fimmu.2024.1390873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Background In view of improving biomarkers predicting the efficacy of immunotherapy for head and neck squamous cell carcinoma (R/M HNSCC), this multicenter retrospective study aimed to identify clinical, tumor microenvironmental, and genomic factors that are related to therapeutic response to the anti- Programmed cell death protein 1 (PD-1) antibody, nivolumab, in patients with R/M HNSCC. Methods The study compared 53 responders and 47 non-responders, analyzing formalin-fixed paraffin-embedded samples using 14-marker multiplex immunohistochemistry and targeted gene sequencing. Results Of 100 patients included, responders had significantly lower smoking and alcohol index, higher incidence of immune related adverse events, and higher PD-1 ligand (PD-L1) expression in immune cells as well as PD-L1 combined positive score (CPS) than non-responders. The frequency of natural killer cells was associated with nivolumab response in patients with prior cetuximab use, but not in cetuximab-naïve status. Age-stratified analysis showed nivolumab response was linked to high CPS and lymphoid-inflamed profiles in patients aged ≥ 65. In contrast, lower NLR in peripheral blood counts was associated with response in patients aged < 65. Notably, TP53 mutation-positive group had lower CPS and T cell densities, suggesting an immune-excluded microenvironment. Patients with altered tumor suppressor gene pathways, including TP53, CDKN2A, and SMAD4 mutations, had lower CPS, higher smoking index, and were associated with poor responses. Conclusion Nivolumab treatment efficacy in HNSCC is influenced by a combination of clinical factors, age, prior treatment, immune environmental characteristics, and gene mutation profiles.
Collapse
Affiliation(s)
- Takahiro Tsujikawa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR, United States
| | - Kazuchika Ohno
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-ichi Morita
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sumiyo Saburi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junichi Mitsuda
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanako Yoshimura
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Alisa Kimura
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Morimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Ogi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- SCREEN Holdings, Kyoto, Japan
| | | | - Takumi Akashi
- Department of Diagnostic Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yasushi Shimizu
- Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Kano
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihito Watanabe
- Department of Otolaryngology- Head and Neck Surgery, Keiyukai Sapporo Hospital, Sapporo, Japan
| | - Tomoko Yamazaki
- Department Head and Neck Oncology Division, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Yukinori Asada
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Japan
| | - Ryuichi Hayashi
- Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuki Saito
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kiyoaki Tsukahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Nobuhiko Oridate
- Department of Otorhinolaryngology, Head and Neck Surgery, Yokohama City University, School of Medicine, Yokohama, Japan
| | - Daisuke Sano
- Department of Otorhinolaryngology, Head and Neck Surgery, Yokohama City University, School of Medicine, Yokohama, Japan
| | - Arata Horii
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yushi Ueki
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Maruo
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuaki Mukoyama
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Takahito Fukusumi
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Iwai
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University Hospital, Osaka, Japan
| | - Takuo Fujisawa
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University Hospital, Osaka, Japan
| | - Takashi Fujii
- Department of Head and Neck Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Ken-ichi Nibu
- Department of Otolaryngology–Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shigemichi Iwae
- Department of Head and Neck Surgery, Hyogo Cancer Center, Akashi, Japan
| | - Tsutomu Ueda
- Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuyuki Chikuie
- Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Ryuji Yasumatsu
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Mioko Matsuo
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirohito Umeno
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Takeharu Ono
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Muneyuki Masuda
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Satoshi Toh
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Yang S, Wang M, Hua Y, Li J, Zheng H, Cui M, Huang N, Liu Q, Liao Q. Advanced insights on tumor-associated macrophages revealed by single-cell RNA sequencing: The intratumor heterogeneity, functional phenotypes, and cellular interactions. Cancer Lett 2024; 584:216610. [PMID: 38244910 DOI: 10.1016/j.canlet.2024.216610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) is an emerging technology used for cellular transcriptome analysis. The application of scRNA-seq has led to profoundly advanced oncology research, continuously optimizing novel therapeutic strategies. Intratumor heterogeneity extensively consists of all tumor components, contributing to different tumor behaviors and treatment responses. Tumor-associated macrophages (TAMs), the core immune cells linking innate and adaptive immunity, play significant roles in tumor progression and resistance to therapies. Moreover, dynamic changes occur in TAM phenotypes and functions subject to the regulation of the tumor microenvironment. The heterogeneity of TAMs corresponding to the state of the tumor microenvironment has been comprehensively recognized using scRNA-seq. Herein, we reviewed recent research and summarized variations in TAM phenotypes and functions from a developmental perspective to better understand the significance of TAMs in the tumor microenvironment.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Huaijin Zheng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Nan Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Ji S, Shi Y, Yin B. Macrophage barrier in the tumor microenvironment and potential clinical applications. Cell Commun Signal 2024; 22:74. [PMID: 38279145 PMCID: PMC10811890 DOI: 10.1186/s12964-023-01424-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024] Open
Abstract
The tumor microenvironment (TME) constitutes a complex microenvironment comprising a diverse array of immune cells and stromal components. Within this intricate context, tumor-associated macrophages (TAMs) exhibit notable spatial heterogeneity. This heterogeneity contributes to various facets of tumor behavior, including immune response modulation, angiogenesis, tissue remodeling, and metastatic potential. This review summarizes the spatial distribution of macrophages in both the physiological environment and the TME. Moreover, this paper explores the intricate interactions between TAMs and diverse immune cell populations (T cells, dendritic cells, neutrophils, natural killer cells, and other immune cells) within the TME. These bidirectional exchanges form a complex network of immune interactions that influence tumor immune surveillance and evasion strategies. Investigating TAM heterogeneity and its intricate interactions with different immune cell populations offers potential avenues for therapeutic interventions. Additionally, this paper discusses therapeutic strategies targeting macrophages, aiming to uncover novel approaches for immunotherapy. Video Abstract.
Collapse
Affiliation(s)
- Shuai Ji
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yuqing Shi
- Department of Respiratory Medicine, Shenyang 10th People's Hospital, Shenyang, 110096, China
| | - Bo Yin
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
4
|
Netzer C, von Arps-Aubert V, Mačinković I, von der Grün J, Küffer S, Ströbel P, von Knethen A, Weigert A, Beutner D. Association between spatial distribution of leukocyte subsets and clinical presentation of head and neck squamous cell carcinoma. Front Immunol 2024; 14:1240394. [PMID: 38322012 PMCID: PMC10844964 DOI: 10.3389/fimmu.2023.1240394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024] Open
Abstract
Background Interactions between tumor cells and cells in the microenvironment contribute to tumor development and metastasis. The spatial arrangement of individual cells in relation to each other influences the likelihood of whether and how these cells interact with each other. Methods This study investigated the effect of spatial distribution on the function of leukocyte subsets in the microenvironment of human head and neck squamous cell carcinoma (HNSCC) using multiplex immunohistochemistry (IHC). Leukocyte subsets were further classified based on analysis of two previously published HNSCC single-cell RNA datasets and flow cytometry (FC). Results IHC revealed distinct distribution patterns of leukocytes differentiated by CD68 and CD163. While CD68hiCD163lo and CD68hiCD163hi cells accumulated near tumor sites, CD68loCD163hi cells were more evenly distributed in the tumor stroma. PD-L1hi and PD-1hi cells accumulated predominantly around tumor sites. High cell density of PD-L1hi CD68hiCD163hi cells or PD-1hi T cells near the tumor site correlated with improved survival. FC and single cell RNA revealed high variability within the CD68/CD163 subsets. CD68hiCD163lo and CD68hiCD163hi cells were predominantly macrophages (MΦ), whereas CD68loCD163hi cells appeared to be predominantly dendritic cells (DCs). Differentiation based on CD64, CD80, CD163, and CD206 revealed that TAM in HNSCC occupy a broad spectrum within the classical M1/M2 polarization. Notably, the MΦ subsets expressed predominantly CD206 and little CD80. The opposite was observed in the DC subsets. Conclusion The distribution patterns and their distinct interactions via the PD-L1/PD-1 pathway suggest divergent roles of CD68/CD163 subsets in the HNSCC microenvironment. PD-L1/PD-1 interactions appear to occur primarily between specific cell types close to the tumor site. Whether PD-L1/PD-1 interactions have a positive or negative impact on patient survival appears to depend on both the spatial localization and the entity of the interacting cells. Co-expression of other markers, particularly CD80 and CD206, supports the hypothesis that CD68/CD163 IHC subsets have distinct functions. These results highlight the association between spatial leukocyte distribution patterns and the clinical presentation of HNSCC.
Collapse
Affiliation(s)
- Christoph Netzer
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Vanessa von Arps-Aubert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Igor Mačinković
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Jens von der Grün
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Frankfurt, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas von Knethen
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Tabari A, Cox M, D'Amore B, Mansur A, Dabbara H, Boland G, Gee MS, Daye D. Machine Learning Improves the Prediction of Responses to Immune Checkpoint Inhibitors in Metastatic Melanoma. Cancers (Basel) 2023; 15:2700. [PMID: 37345037 DOI: 10.3390/cancers15102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 06/23/2023] Open
Abstract
Pretreatment LDH is a standard prognostic biomarker for advanced melanoma and is associated with response to ICI. We assessed the role of machine learning-based radiomics in predicting responses to ICI and in complementing LDH for prognostication of metastatic melanoma. From 2008-2022, 79 patients with 168 metastatic hepatic lesions were identified. All patients had arterial phase CT images 1-month prior to initiation of ICI. Response to ICI was assessed on follow-up CT at 3 months using RECIST criteria. A machine learning algorithm was developed using radiomics. Maximum relevance minimum redundancy (mRMR) was used to select features. ROC analysis and logistic regression analyses evaluated performance. Shapley additive explanations were used to identify the variables that are the most important in predicting a response. mRMR selection revealed 15 features that are associated with a response to ICI. The machine learning model combining both radiomics features and pretreatment LDH resulted in better performance for response prediction compared to models that included radiomics or LDH alone (AUC of 0.89 (95% CI: [0.76-0.99]) vs. 0.81 (95% CI: [0.65-0.94]) and 0.81 (95% CI: [0.72-0.91]), respectively). Using SHAP analysis, LDH and two GLSZM were the most predictive of the outcome. Pre-treatment CT radiomic features performed equally well to serum LDH in predicting treatment response.
Collapse
Affiliation(s)
- Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | | | - Brian D'Amore
- Harvard Medical School, Boston, MA 02215, USA
- Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | - Harika Dabbara
- Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Genevieve Boland
- Harvard Medical School, Boston, MA 02215, USA
- Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
6
|
Xie Y, Wang M, Xia H, Sun H, Yuan Y, Jia J, Chen L. Development and validation of a CECT-based radiomics model for predicting IL1B expression and prognosis of head and neck squamous cell carcinoma. Front Oncol 2023; 13:1121485. [PMID: 36969073 PMCID: PMC10036854 DOI: 10.3389/fonc.2023.1121485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionIt is necessary to explore a noninvasive method to stratify head and neck squamous cell carcinoma (HNSCC)’s prognosis and to seek new indicators for individualized precision treatment. As a vital inflammatory cytokine, IL1B might drive a new tumor subtype that could be reflected in overall survival (OS) and predicted using the radiomics method.MethodsA total of 139 patients with RNA-Seq data from The Cancer Genome Atlas (TCGA) and matched CECT data from The Cancer Image Archive (TCIA) were included in the analysis. The prognostic value of IL1B expression in patients with HNSCC was analyzed using Kaplan-Meier analysis, Cox regression analysis and subgroup analysis. Furthermore, the molecular function of IL1B on HNSCC was explored using function enrichment and immunocytes infiltration analyses. Radiomic features were extracted with PyRadiomics and processed using max-relevance minredundancy, recursive feature elimination, and gradient boosting machine algorithm to construct aradiomics model for predicting IL1B expression. The area under the receiver operating characteristic curve (AUC), calibration curve, precision recall (PR) curve, and decision curve analysis (DCA) curve were used to examine the performance of the model.ResultsIncreased IL1B expression in patients with HNSCC indicated a poor prognosis (hazard ratio [HR] = 1.56, P = 0.003) and was harmful in patients who underwent radiotherapy (HR = 1.87, P = 0.007) or chemotherapy (HR = 2.514, P < 0.001). Shape_Sphericity, glszm_SmallAreaEmphasis, and firstorder_Kurtosis were included in the radiomics model (AUC: training cohort, 0.861; validation cohort, 0.703). The calibration curves, PR curves and DCA showed good diagnostic effect of the model. The rad-score was close related to IL1B (P = 4.490*10-9), and shared the same corelated trend to EMT-related genes with IL1B. A higher rad-score was associated with worse overall survival (P = 0.041).DiscussionThe CECT-based radiomics model provides preoperative IL1B expression predictionand offers non-invasive instructions for the prognosis and individualized treatment of patients withHNSCC.
Collapse
Affiliation(s)
- Yang Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine (Hubei-MOST and KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Min Wang
- Hubei-MOST and KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haibin Xia
- Hubei-MOST and KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huifang Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine (Hubei-MOST and KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Yuan
- Department of Oral Radiology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jun Jia
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liangwen Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine (Hubei-MOST and KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Liangwen Chen,
| |
Collapse
|
7
|
Isomoto K, Haratani K, Tsujikawa T, Makutani Y, Kawakami H, Takeda M, Yonesaka K, Tanaka K, Iwasa T, Hayashi H, Ito A, Nishio K, Nakagawa K. Mechanisms of primary and acquired resistance to immune checkpoint inhibitors in advanced non-small cell lung cancer: A multiplex immunohistochemistry-based single-cell analysis. Lung Cancer 2022; 174:71-82. [PMID: 36347190 DOI: 10.1016/j.lungcan.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Immune checkpoint inhibitors (ICIs) have become a key therapeutic modality for advanced non-small cell lung cancer (NSCLC), but most patients experience primary or acquired resistance to these drugs. We here explored the mechanisms underlying both types of ICI resistance by analysis of the tumor immune microenvironment (TME). MATERIALS AND METHODS Four patients who experienced a long-term response to ICI treatment (progression-free survival [PFS] of ≥12 months) followed by disease progression, after which a rebiopsy was immediately performed (cohort-A), as well as four patients who experienced early tumor progression during ICI treatment (PFS of <9 weeks, cohort-B) were enrolled in this retrospective study. The pretreatment TME was evaluated by 16- or 17-color multiplex immunohistochemistry (mIHC)-based spatial profiling at the single-cell level for both cohorts. In cohort-A, changes in the TME after disease progression during ICI treatment were also investigated by mIHC analysis and transcriptomic analysis. RESULTS Pretreatment tumor tissue from cohort-B manifested poor infiltration of tumor-reactive CD8+ T cells characterized by CD39 and CD103 expression or by programmed cell death-1 expression, implicating insufficient recognition of tumor cells by CD8+ T cells as a mechanism of primary ICI resistance. Analysis of the paired tumor specimens from cohort-A revealed various changes in the TME associated with acquired ICI resistance, including substantial infiltration of myeloid-derived suppressor cells and M2-type tumor-associated macrophages without a marked decline in the number of tumor-reactive CD8+ T cells; a decrease in the number of tumor-reactive CD8+ T cells; and an apparent decrease in neoantigen presentation by tumor cells. CONCLUSION The presence of intratumoral tumor-reactive CD8+ T cells may be a prerequisite for a long-term response to ICI treatment in advanced NSCLC, but it is not sufficient for cancer cell eradication. Various TME profiles are associated with acquired ICI resistance, suggesting that patient-specific strategies to overcome such resistance may be necessary.
Collapse
Affiliation(s)
- Kohsuke Isomoto
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.
| | - Takahiro Tsujikawa
- Department of Otolaryngology-Head & Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Makutani
- Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Hisato Kawakami
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kimio Yonesaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kaoru Tanaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tsutomu Iwasa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
8
|
Makutani Y, Kawakami H, Tsujikawa T, Yoshimura K, Chiba Y, Ito A, Kawamura J, Haratani K, Nakagawa K. Contribution of MMP14-expressing cancer-associated fibroblasts in the tumor immune microenvironment to progression of colorectal cancer. Front Oncol 2022; 12:956270. [PMID: 36052235 PMCID: PMC9424903 DOI: 10.3389/fonc.2022.956270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinase 14 (MMP14) expression is implicated in progression of colorectal cancer, but its role in the tumor microenvironment (TME) has been unclear. The relevance of MMP14 to colorectal cancer progression was explored by analysis of transcriptomic data for colorectal adenocarcinoma patients (n = 592) in The Cancer Genome Atlas. The role of MMP14 in the TME was investigated in a retrospective analysis of tumor samples from 86 individuals with stage III colorectal cancer by single cell–based spatial profiling of MMP14 expression as performed by 12-color multiplex immunohistochemistry (mIHC). Analysis of gene expression data revealed that high MMP14 expression was associated with tumor progression and implicated both cancer-associated fibroblasts (CAFs) and tumor-associated macrophages in such progression. Spatial profiling by mIHC revealed that a higher percentage of MMP14+ cells among intratumoral CAFs (MMP14+ CAF/CAF ratio) was associated with poorer relapse-free survival. Multivariable analysis including key clinical factors identified the MMP14+ CAF/CAF ratio as an independent poor prognostic factor. Moreover, the patient subset with both a high MMP14+ CAF/CAF ratio and a low tumor-infiltrating lymphocyte density showed the worst prognosis. Our results suggest that MMP14+ CAFs play an important role in progression of stage III colorectal cancer and may therefore be a promising therapeutic target.
Collapse
Affiliation(s)
- Yusuke Makutani
- Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Hisato Kawakami
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- *Correspondence: Hisato Kawakami, ; Koji Haratani,
| | - Takahiro Tsujikawa
- Department of Otolaryngology–Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanako Yoshimura
- Department of Otolaryngology–Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Junichiro Kawamura
- Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- *Correspondence: Hisato Kawakami, ; Koji Haratani,
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
9
|
Kuczkiewicz-Siemion O, Sokół K, Puton B, Borkowska A, Szumera-Ciećkiewicz A. The Role of Pathology-Based Methods in Qualitative and Quantitative Approaches to Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14153833. [PMID: 35954496 PMCID: PMC9367614 DOI: 10.3390/cancers14153833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Immunotherapy has become the filar of modern oncological treatment, and programmed death-ligand 1 expression is one of the primary immune markers assessed by pathologists. However, there are still some issues concerning the evaluation of the marker and limited information about the interaction between the tumour and associated immune cells. Recent studies have focused on cancer immunology to try to understand the complex tumour microenvironment, and multiplex imaging methods are more widely used for this purpose. The presented article aims to provide an overall review of a different multiplex in situ method using spectral imaging, supported by automated image-acquisition and software-assisted marker visualisation and interpretation. Multiplex imaging methods could improve the current understanding of complex tumour-microenvironment immunology and could probably help to better match patients to appropriate treatment regimens. Abstract Immune checkpoint inhibitors, including those concerning programmed cell death 1 (PD-1) and its ligand (PD-L1), have revolutionised the cancer therapy approach in the past decade. However, not all patients benefit from immunotherapy equally. The prediction of patient response to this type of therapy is mainly based on conventional immunohistochemistry, which is limited by intraobserver variability, semiquantitative assessment, or single-marker-per-slide evaluation. Multiplex imaging techniques and digital image analysis are powerful tools that could overcome some issues concerning tumour-microenvironment studies. This novel approach to biomarker assessment offers a better understanding of the complicated interactions between tumour cells and their environment. Multiplex labelling enables the detection of multiple markers simultaneously and the exploration of their spatial organisation. Evaluating a variety of immune cell phenotypes and differentiating their subpopulations is possible while preserving tissue histology in most cases. Multiplexing supported by digital pathology could allow pathologists to visualise and understand every cell in a single tissue slide and provide meaning in a complex tumour-microenvironment contexture. This review aims to provide an overview of the different multiplex imaging methods and their application in PD-L1 biomarker assessment. Moreover, we discuss digital imaging techniques, with a focus on slide scanners and software.
Collapse
Affiliation(s)
- Olga Kuczkiewicz-Siemion
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
- Correspondence: (O.K.-S.); (A.S.-C.)
| | - Kamil Sokół
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Beata Puton
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Aneta Borkowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
- Correspondence: (O.K.-S.); (A.S.-C.)
| |
Collapse
|
10
|
Sundaram S, Kim EN, Jones GM, Sivagnanam S, Tripathi M, Miremadi A, Di Pietro M, Coussens LM, Fitzgerald RC, Chang YH, Zhuang L. Deciphering the Immune Complexity in Esophageal Adenocarcinoma and Pre-Cancerous Lesions With Sequential Multiplex Immunohistochemistry and Sparse Subspace Clustering Approach. Front Immunol 2022; 13:874255. [PMID: 35663986 PMCID: PMC9161782 DOI: 10.3389/fimmu.2022.874255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) develops from a chronic inflammatory environment across four stages: intestinal metaplasia, known as Barrett's esophagus, low- and high-grade dysplasia, and adenocarcinoma. Although the genomic characteristics of this progression have been well defined via large-scale DNA sequencing, the dynamics of various immune cell subsets and their spatial interactions in their tumor microenvironment remain unclear. Here, we applied a sequential multiplex immunohistochemistry (mIHC) platform with computational image analysis pipelines that allow for the detection of 10 biomarkers in one formalin-fixed paraffin-embedded (FFPE) tissue section. Using this platform and quantitative image analytics, we studied changes in the immune landscape during disease progression based on 40 normal and diseased areas from endoscopic mucosal resection specimens of chemotherapy treatment- naïve patients, including normal esophagus, metaplasia, low- and high-grade dysplasia, and adenocarcinoma. The results revealed a steady increase of FOXP3+ T regulatory cells and a CD163+ myelomonocytic cell subset. In parallel to the manual gating strategy applied for cell phenotyping, we also adopted a sparse subspace clustering (SSC) algorithm allowing the automated cell phenotyping of mIHC-based single-cell data. The algorithm successfully identified comparable cell types, along with significantly enriched FOXP3 T regulatory cells and CD163+ myelomonocytic cells as found in manual gating. In addition, SCC identified a new CSF1R+CD1C+ myeloid lineage, which not only was previously unknown in this disease but also increases with advancing disease stages. This study revealed immune dynamics in EAC progression and highlighted the potential application of a new multiplex imaging platform, combined with computational image analysis on routine clinical FFPE sections, to investigate complex immune populations in tumor ecosystems.
Collapse
Affiliation(s)
- Srinand Sundaram
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Eun Na Kim
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| | - Georgina M. Jones
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Shamilene Sivagnanam
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Monika Tripathi
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ahmad Miremadi
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Massimiliano Di Pietro
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Lisa M. Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Rebecca C. Fitzgerald
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Lizhe Zhuang
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
den bossche VV, Zaryouh H, Vara-Messler M, Vignau J, Machiels JP, Wouters A, Schmitz S, Corbet C. Microenvironment-driven intratumoral heterogeneity in head and neck cancers: clinical challenges and opportunities for precision medicine. Drug Resist Updat 2022; 60:100806. [DOI: 10.1016/j.drup.2022.100806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|