1
|
Meng F, Zhou N, Hu G, Liu R, Zhang Y, Jing M, Hou Q. A comprehensive overview of recent advances in generative models for antibodies. Comput Struct Biotechnol J 2024; 23:2648-2660. [PMID: 39027650 PMCID: PMC11254834 DOI: 10.1016/j.csbj.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Therapeutic antibodies are an important class of biopharmaceuticals. With the rapid development of deep learning methods and the increasing amount of antibody data, antibody generative models have made great progress recently. They aim to solve the antibody space searching problems and are widely incorporated into the antibody development process. Therefore, a comprehensive introduction to the development methods in this field is imperative. Here, we collected 34 representative antibody generative models published recently and all generative models can be divided into three categories: sequence-generating models, structure-generating models, and hybrid models, based on their principles and algorithms. We further studied their performance and contributions to antibody sequence prediction, structure optimization, and affinity enhancement. Our manuscript will provide a comprehensive overview of the status of antibody generative models and also offer guidance for selecting different approaches.
Collapse
Affiliation(s)
- Fanxu Meng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Na Zhou
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250100, China
| | - Guangchun Hu
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
| | - Ruotong Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250100, China
| | - Yuanyuan Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ming Jing
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan 250000, China
| | - Qingzhen Hou
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250100, China
| |
Collapse
|
2
|
Ding Y, Peng YY, Li S, Tang C, Gao J, Wang HY, Long ZY, Lu XM, Wang YT. Single-Cell Sequencing Technology and Its Application in the Study of Central Nervous System Diseases. Cell Biochem Biophys 2024; 82:329-342. [PMID: 38133792 DOI: 10.1007/s12013-023-01207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The mammalian central nervous system consists of a large number of cells, which contain not only different types of neurons, but also a large number of glial cells, such as astrocytes, oligodendrocytes, and microglia. These cells are capable of performing highly refined electrophysiological activities and providing the brain with functions such as nutritional support, information transmission and pathogen defense. The diversity of cell types and individual differences between cells have brought inspiration to the study of the mechanism of central nervous system diseases. In order to explore the role of different cells, a new technology, single-cell sequencing technology has emerged to perform specific analysis of high-throughput cell populations, and has been continuously developed. Single-cell sequencing technology can accurately analyze single-cell expression in mixed-cell populations and collect cells from different spatial locations, time stages and types. By using single-cell sequencing technology to compare gene expression profiles of normal and diseased cells, it is possible to discover cell subsets associated with specific diseases and their associated genes. Therefore, scientists can understand the development process, related functions and disease state of the nervous system from an unprecedented depth. In conclusion, single-cell sequencing technology provides a powerful technology for the discovery of novel therapeutic targets for central nervous system diseases.
Collapse
Affiliation(s)
- Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
3
|
Esteban MÁ. A review of soluble factors and receptors involved in fish skin immunity: The tip of the iceberg. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109311. [PMID: 38128682 DOI: 10.1016/j.fsi.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The immune system of fish possesses soluble factors, receptors, pathways and cells very similar to those of the other vertebrates' immune system. Throughout evolutionary history, the exocrine secretions of organisms have accumulated a large reservoir of soluble factors that serve to protect organisms from microbial pathogens that could disrupt mucosal barrier homeostasis. In parallel, a diverse set of recognition molecules have been discovered that alert the organism to the presence of pathogens. The known functions of both the soluble factors and receptors mentioned above encompass critical aspects of host defense, such as pathogen binding and neutralization, opsonization, or modulation of inflammation if present. The molecules and receptors cooperate and are able to initiate the most appropriate immune response in an attempt to eliminate pathogens before host infection can begin. Furthermore, these recognition molecules, working in coordination with soluble defence factors, collaboratively erect a robust and perfectly coordinated defence system with complementary specificity, activity and tissue distribution. This intricate network constitutes an immensely effective defence mechanism for fish. In this context, the present review focuses on some of the main soluble factors and recognition molecules studied in the last decade in the skin mucosa of teleost fish. However, knowledge of these molecules is still very limited in all teleosts. Therefore, further studies are suggested throughout the review that would help to better understand the functions in which the proteins studied are involved.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
4
|
Feng X, Qi F, Wang H, Li W, Gan Y, Qi C, Lin Z, Chen L, Wang P, Hu Z, Miao Y. Sorting Technology for Mesenchymal Stem Cells from a Single Tissue Source. Stem Cell Rev Rep 2024; 20:524-537. [PMID: 38112926 DOI: 10.1007/s12015-023-10635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 12/21/2023]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that can be obtained, enriched and proliferated in vitro. They owned enormous potential in fields like regenerative medicine, tissue engineering and immunomodulation. However, though isolated from the same origin, MSCs are still essentially heterogeneous cell populations with different phenotypes and functions. This heterogeneity of MSCs significantly affects their therapeutic efficacy and brings obstacles to scientific research. Thus, reliable sorting technology which can isolate or purify MSC subpopulations with various potential and differentiation pathways is urgently needed. This review summarized principles, application status and clinical implications for these sorting methods, aiming at improving the understanding of MSC heterogeneity as well as providing fresh perspectives for subsequent clinical applications.
Collapse
Affiliation(s)
- Xinyi Feng
- The First Clinical School of Southern Medical University, Guangzhou, China
| | - Fangfang Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Hailin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenzhen Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Caiyu Qi
- The First Clinical School of Southern Medical University, Guangzhou, China
| | - Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Piao Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Lange MD, Churchman EM, Wise AL, Bruce TJ. A recombinant 9E1 monoclonal antibody binds membrane and soluble channel catfish immunoglobulin M. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100086. [PMID: 36895760 PMCID: PMC9988478 DOI: 10.1016/j.fsirep.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
The development and validation of the recombinant 9E1 monoclonal antibody against channel catfish IgM is described. The variable heavy and light chain domains of the 9E1 hybridoma were cloned into murine IgG1 and IgK expression vectors. These expression plasmids were co-transfected into 293F cells and mature IgG was purified from culture supernatant. It is demonstrated that the recombinant 9E1 monoclonal antibody binds to soluble IgM in ELISA and ELISPOT assays and to membrane-bound IgM by immunofluorescence with different B-cell types. The recombinant 9E1 monoclonal antibody will be a valuable tool in the continued examination of the channel catfish adaptive immune system.
Collapse
Affiliation(s)
- Miles D Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Emily M Churchman
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Allison L Wise
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Timothy J Bruce
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
6
|
Daniels RR, Taylor RS, Robledo D, Macqueen DJ. Single cell genomics as a transformative approach for aquaculture research and innovation. REVIEWS IN AQUACULTURE 2023; 15:1618-1637. [PMID: 38505116 PMCID: PMC10946576 DOI: 10.1111/raq.12806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/21/2024]
Abstract
Single cell genomics encompasses a suite of rapidly maturing technologies that measure the molecular profiles of individual cells within target samples. These approaches provide a large up-step in biological information compared to long-established 'bulk' methods that profile the average molecular profiles of all cells in a sample, and have led to transformative advances in understanding of cellular biology, particularly in humans and model organisms. The application of single cell genomics is fast expanding to non-model taxa, including aquaculture species, where numerous research applications are underway with many more envisaged. In this review, we highlight the potential transformative applications of single cell genomics in aquaculture research, considering barriers and potential solutions to the broad uptake of these technologies. Focusing on single cell transcriptomics, we outline considerations for experimental design, including the essential requirement to obtain high quality cells/nuclei for sequencing in ectothermic aquatic species. We further outline data analysis and bioinformatics considerations, tailored to studies with the under-characterized genomes of aquaculture species, where our knowledge of cellular heterogeneity and cell marker genes is immature. Overall, this review offers a useful source of knowledge for researchers aiming to apply single cell genomics to address biological challenges faced by the global aquaculture sector though an improved understanding of cell biology.
Collapse
Affiliation(s)
- Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Richard S. Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| |
Collapse
|
7
|
Jiang J, Yang G, Ma F. Fluorescence coupling strategies in fluorescence-activated droplet sorting (FADS) for ultrahigh-throughput screening of enzymes, metabolites, and antibodies. Biotechnol Adv 2023; 66:108173. [PMID: 37169102 DOI: 10.1016/j.biotechadv.2023.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Fluorescence-activated droplet sorting (FADS) has emerged as a powerful tool for ultrahigh-throughput screening of enzymes, metabolites, and antibodies. Fluorescence coupling strategies (FCSs) are key to the development of new FADS methods through their coupling of analyte properties such as concentration, activities, and affinity with fluorescence signals. Over the last decade, a series of FCSs have been developed, greatly expanding applications of FADS. Here, we review recent advances in FCS for different analyte types, providing a critical comparison of the available FCSs and further classification into four categories according to their principles. We also summarize successful FADS applications employing FCSs in enzymes, metabolites, and antibodies. Further, we outline possible future developments in this area.
Collapse
Affiliation(s)
- Jingjie Jiang
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Guangyu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fuqiang Ma
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| |
Collapse
|
8
|
Hu Y, Zhang Y, Liu Y, Gao Y, San T, Li X, Song S, Yan B, Zhao Z. Advances in application of single-cell RNA sequencing in cardiovascular research. Front Cardiovasc Med 2022; 9:905151. [PMID: 35958408 PMCID: PMC9360414 DOI: 10.3389/fcvm.2022.905151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) provides high-resolution information on transcriptomic changes at the single-cell level, which is of great significance for distinguishing cell subtypes, identifying stem cell differentiation processes, and identifying targets for disease treatment. In recent years, emerging single-cell RNA sequencing technologies have been used to make breakthroughs regarding decoding developmental trajectories, phenotypic transitions, and cellular interactions in the cardiovascular system, providing new insights into cardiovascular disease. This paper reviews the technical processes of single-cell RNA sequencing and the latest progress based on single-cell RNA sequencing in the field of cardiovascular system research, compares single-cell RNA sequencing with other single-cell technologies, and summarizes the extended applications and advantages and disadvantages of single-cell RNA sequencing. Finally, the prospects for applying single-cell RNA sequencing in the field of cardiovascular research are discussed.
Collapse
Affiliation(s)
- Yue Hu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Ying Zhang
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Yutong Liu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yan Gao
- Department of Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Tiantian San
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Xiaoying Li
- Department of Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan, China
- Department of Emergency, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Sensen Song
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Binglong Yan
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Zhuo Zhao
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
- *Correspondence: Zhuo Zhao
| |
Collapse
|