1
|
Han W, Xiong W, Sun W, Liu W, Zhang Y, Li C, Gu N, Shen Y, Qiu Z, Li C, Zhao Y, Zhao R. YTHDC1 Mitigates Apoptosis in Bone Marrow Mesenchymal Stem Cells by Inhibiting NfƙBiα and Augmenting Cardiac Function Following Myocardial Infarction. Cell Transplant 2024; 33:9636897241290910. [PMID: 39466658 PMCID: PMC11528794 DOI: 10.1177/09636897241290910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
The therapeutic efficacy of bone marrow mesenchymal stem cells (BMSCs) in myocardial infarction (MI) is hindered by poor cell survival. This study explored the role of N6-methyladenosine (m6A) regulation, specifically YTHDC1, in improving BMSC transplantation for MI. By screening m6A-related regulators in hypoxia and serum deprivation (HSD)-induced BMSC apoptosis, YTHDC1 was found to be downregulated. Overexpression of Ythdc1 in BMSCs reduced apoptosis markers, reactive oxygen species (ROS) release, and improved cell survival under HSD conditions. Conversely, Ythdc1 knockdown enhanced apoptosis. In rat MI models, transplantation of Ythdc1-overexpressing BMSCs improved cardiac function and reduced myocardial fibrosis. Mechanistically, YTHDC1 interacts with nuclear factor kappa B (NF-κB) inhibitor-alpha mRNA, suggesting its involvement in BMSC survival pathways. This study identifies YTHDC1 as a potential target to enhance BMSC efficacy in MI therapy.
Collapse
Affiliation(s)
- Weiyu Han
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Weixing Sun
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Cardiology, People’s Hospital of Honghuagang District, Zunyi, China
| | - Weiwei Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ning Gu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Youcheng Shen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaozhong Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Gilis J, Perin L, Malfait M, Van den Berge K, Takele Assefa A, Verbist B, Risso D, Clement L. Differential detection workflows for multi-sample single-cell RNA-seq data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.17.572043. [PMID: 38187695 PMCID: PMC10769270 DOI: 10.1101/2023.12.17.572043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In single-cell transcriptomics, differential gene expression (DE) analyses typically focus on testing differences in the average expression of genes between cell types or conditions of interest. Single-cell transcriptomics, however, also has the promise to prioritise genes for which the expression differ in other aspects of the distribution. Here we develop a workflow for assessing differential detection (DD), which tests for differences in the average fraction of samples or cells in which a gene is detected. After benchmarking eight different DD data analysis strategies, we provide a unified workflow for jointly assessing DE and DD. Using simulations and two case studies, we show that DE and DD analysis provide complementary information, both in terms of the individual genes they report and in the functional interpretation of those genes.
Collapse
Affiliation(s)
- Jeroen Gilis
- These authors contributed equally
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
- Data Mining and Modeling for Biomedicine, VIB Flemish Institute for Biotechnology, Ghent, 9000, Belgium
| | - Laura Perin
- These authors contributed equally
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Milan Malfait
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
| | - Koen Van den Berge
- Statistics and Decision Sciences, Johnson and Johnson Innovative Medicine, Beerse, Belgium
| | - Alemu Takele Assefa
- Statistics and Decision Sciences, Johnson and Johnson Innovative Medicine, Beerse, Belgium
| | - Bie Verbist
- Statistics and Decision Sciences, Johnson and Johnson Innovative Medicine, Beerse, Belgium
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Padova, Italy
- Padua Center for Network Medicine, University of Padova, Padova, Italy
| | - Lieven Clement
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
3
|
Paris D, Palomba L, Albertini MC, Tramice A, Motta L, Giammattei E, Ambrosino P, Maniscalco M, Motta A. The biomarkers' landscape of post-COVID-19 patients can suggest selective clinical interventions. Sci Rep 2023; 13:22496. [PMID: 38110483 PMCID: PMC10728085 DOI: 10.1038/s41598-023-49601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/10/2023] [Indexed: 12/20/2023] Open
Abstract
In COVID-19 clinical symptoms can persist even after negativization also in individuals who have had mild or moderate disease. We here investigated the biomarkers that define the post-COVID-19 clinical state analyzing the exhaled breath condensate (EBC) of 38 post COVID-19 patients and 38 sex and age-matched healthy controls via nuclear magnetic resonance (NMR)-based metabolomics. Predicted gene-modulated microRNAs (miRNAs) related to COVID-19 were quantified from EBC of 10 patients and 10 controls. Finally, clinical parameters from all post-COVID-19 patients were correlated with metabolomic data. Post-COVID-19 patients and controls showed different metabolic phenotype ("metabotype"). From the metabolites, by using enrichment analysis we identified miRNAs that resulted up-regulated (hsa-miR146a-5p) and down-regulated (hsa-miR-126-3p and hsa-miR-223-3p) in post-COVID-19. Taken together, our multiomics data indicate that post-COVID-19 patients before rehabilitation are characterized by persistent inflammation, dysregulation of liver, endovascular thrombotic and pulmonary processes, and physical impairment, which should be the primary clinical targets to contrast the post-acute sequelae of COVID-19.
Collapse
Affiliation(s)
- Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, 80078, Pozzuoli (Naples), Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, "Carlo Bo" University, 61029, Urbino, Italy
| | | | - Annabella Tramice
- Institute of Biomolecular Chemistry, National Research Council, 80078, Pozzuoli (Naples), Italy
| | - Lorenzo Motta
- Neuroradiology Unit, Ospedale Santa Maria Della Misericordia, 45100, Rovigo, Italy
- IRCCS Istituto Delle Scienze Neurologiche (Padiglione G), via Altura 3, 40139, Bologna, Italy
| | - Eleonora Giammattei
- Department of Biomolecular Sciences, "Carlo Bo" University, 61029, Urbino, Italy
| | - Pasquale Ambrosino
- Directorate of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, 82037, Telese Terme (Benevento), Italy
| | - Mauro Maniscalco
- Pulmonary Rehabilitation Unit of the Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, 82037, Telese Terme (Benevento), Italy.
- Department of Clinical Medicine and Surgery, Section of Respiratory Disease, University of Naples Federico II, 80131, Naples, Italy.
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078, Pozzuoli (Naples), Italy.
| |
Collapse
|
4
|
Root-Bernstein R. From Co-Infections to Autoimmune Disease via Hyperactivated Innate Immunity: COVID-19 Autoimmune Coagulopathies, Autoimmune Myocarditis and Multisystem Inflammatory Syndrome in Children. Int J Mol Sci 2023; 24:ijms24033001. [PMID: 36769320 PMCID: PMC9917907 DOI: 10.3390/ijms24033001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Neutrophilia and the production of neutrophil extracellular traps (NETs) are two of many measures of increased inflammation in severe COVID-19 that also accompany its autoimmune complications, including coagulopathies, myocarditis and multisystem inflammatory syndrome in children (MIS-C). This paper integrates currently disparate measures of innate hyperactivation in severe COVID-19 and its autoimmune complications, and relates these to SARS-CoV-2 activation of innate immunity. Aggregated data include activation of Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD) receptors, NOD leucine-rich repeat and pyrin-domain-containing receptors (NLRPs), retinoic acid-inducible gene I (RIG-I) and melanoma-differentiation-associated gene 5 (MDA-5). SARS-CoV-2 mainly activates the virus-associated innate receptors TLR3, TLR7, TLR8, NLRP3, RIG-1 and MDA-5. Severe COVID-19, however, is characterized by additional activation of TLR1, TLR2, TLR4, TLR5, TLR6, NOD1 and NOD2, which are primarily responsive to bacterial antigens. The innate activation patterns in autoimmune coagulopathies, myocarditis and Kawasaki disease, or MIS-C, mimic those of severe COVID-19 rather than SARS-CoV-2 alone suggesting that autoimmunity follows combined SARS-CoV-2-bacterial infections. Viral and bacterial receptors are known to synergize to produce the increased inflammation required to support autoimmune disease pathology. Additional studies demonstrate that anti-bacterial antibodies are also required to account for known autoantigen targets in COVID-19 autoimmune complications.
Collapse
|
5
|
Lu Y, Wang L, Zhang M, Chen Z. Mesenchymal Stem Cell-Derived Small Extracellular Vesicles: A Novel Approach for Kidney Disease Treatment. Int J Nanomedicine 2022; 17:3603-3618. [PMID: 35990308 PMCID: PMC9386173 DOI: 10.2147/ijn.s372254] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022] Open
Abstract
Globally, kidney disease has become a serious health challenge, with approximately 10% of adults suffering with the disease, and increasing incidence and mortality rates every year. Small extracellular vesicles (sEVs) are 30 nm-100 nm sized nanovesicles released by cells into the extracellular matrix (ECM), which serve as mediators of intercellular communication. Depending on the cell origin, sEVs have different roles which depend on internal cargoes including, nucleic acids, proteins, and lipids. Mesenchymal stem cell (MSCs) exert anti-inflammatory, anti-aging, and wound healing functions mainly via sEVs in a stable and safe manner. MSC-derived sEVs (MSC-sEVs) exert roles in several kidney diseases by transporting renoprotective cargoes to reduce oxidative stress, inhibit renal cell apoptosis, suppress inflammation, and mediate anti-fibrosis mechanisms. Additionally, because MSC-sEVs efficiently target damaged kidneys, they have the potential to become the next generation cell-free therapies for kidney disease. Herein, we review recent research data on how MSC-sEVs could be used to treat kidney disease.
Collapse
Affiliation(s)
- Yukang Lu
- First Clinical Medical College, Gannan Medical University, Ganzhou, People's Republic of China.,Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Mengting Zhang
- First Clinical Medical College, Gannan Medical University, Ganzhou, People's Republic of China.,Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Zhiping Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| |
Collapse
|
6
|
Khalid Z, Huan M, Sohail Raza M, Abbas M, Naz Z, Kombe Kombe AJ, Zeng W, He H, Jin T. Identification of Novel Therapeutic Candidates Against SARS-CoV-2 Infections: An Application of RNA Sequencing Toward mRNA Based Nanotherapeutics. Front Microbiol 2022; 13:901848. [PMID: 35983322 PMCID: PMC9378778 DOI: 10.3389/fmicb.2022.901848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
Due to fast transmission and various circulating SARS-CoV-2 variants, a significant increase of coronavirus 2019 infection cases with acute respiratory symptoms has prompted worries about the efficiency of current vaccines. The possible evasion from vaccine immunity urged scientists to identify novel therapeutic targets for developing improved vaccines to manage worldwide COVID-19 infections. Our study sequenced pooled peripheral blood mononuclear cells transcriptomes of SARS-CoV-2 patients with moderate and critical clinical outcomes to identify novel potential host receptors and biomarkers that can assist in developing new translational nanomedicines and vaccine therapies. The dysregulated signatures were associated with humoral immune responses in moderate and critical patients, including B-cell activation, cell cycle perturbations, plasmablast antibody processing, adaptive immune responses, cytokinesis, and interleukin signaling pathway. The comparative and longitudinal analysis of moderate and critically infected groups elucidated diversity in regulatory pathways and biological processes. Several immunoglobin genes (IGLV9-49, IGHV7-4, IGHV3-64, IGHV1-24, IGKV1D-12, and IGKV2-29), ribosomal proteins (RPL29, RPL4P2, RPL5, and RPL14), inflammatory response related cytokines including Tumor Necrosis Factor (TNF, TNFRSF17, and TNFRSF13B), C-C motif chemokine ligands (CCL3, CCL25, CCL4L2, CCL22, and CCL4), C-X-C motif chemokine ligands (CXCL2, CXCL10, and CXCL11) and genes related to cell cycle process and DNA proliferation (MYBL2, CDC20, KIFC1, and UHCL1) were significantly upregulated among SARS-CoV-2 infected patients. 60S Ribosomal protein L29 (RPL29) was a highly expressed gene among all COVID-19 infected groups. Our study suggested that identifying differentially expressed genes (DEGs) based on disease severity and onset can be a powerful approach for identifying potential therapeutic targets to develop effective drug delivery systems against SARS-CoV-2 infections. As a result, potential therapeutic targets, such as the RPL29 protein, can be tested in vivo and in vitro to develop future mRNA-based translational nanomedicines and therapies to combat SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Zunera Khalid
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ma Huan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Muhammad Sohail Raza
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Misbah Abbas
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zara Naz
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Arnaud John Kombe Kombe
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weihong Zeng
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang He
- Department of Infectious Diseases, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai, China
- *Correspondence: Tengchuan Jin,
| |
Collapse
|
7
|
Attia MH. A cautionary note on altered pace of aging in the COVID-19 era. Forensic Sci Int Genet 2022; 59:102724. [PMID: 35598567 PMCID: PMC9112667 DOI: 10.1016/j.fsigen.2022.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is highly age-dependent due to hi-jacking the molecular control of the immune cells by the severe acute respiratory syndrome-corona virus 2 (SARS-CoV-2) leading to aberrant DNA methylation (DNAm) pattern of blood in comparison to normal individuals. These epigenetic modifications have been linked to perturbations to the epigenetic clock, development of long COVID-19 syndrome, and all-cause mortality risk. I reviewed the effects of COVID-19 on different molecular age markers such as the DNAm, telomere length (TL), and signal joint T-cell receptor excision circle (sjTREC). Integrating the accumulated clinical research data, COVID-19 and novel medical management may alter the pace of aging in adult individuals (<60 years). As such, COVID-19 might be a confounder in epigenetic age estimation similar to life style diversities, pathogens and pathologies which may influence the interpretation of DNAm data. Similarly, the SARS-CoV-2 affects T-lymphocyte function with possible influence on sjTREC levels. In contrast, TL measurements performed years before the SARS-CoV-2 pandemic proved that short TL predisposes to severe COVID- 19 independently from chronological age. However, the persistence of COVID-19 epigenetic scars and the durability of the immune response after vaccination and their effect on the ongoing pace of aging are still unknown. In the light of these data, the heterogeneous nature of the samples in these studies mandates a systematic evaluation of the currrent methods. SARS-CoV-2 may modify the reliability of the age estimation models in real casework because blood is the most common biological sample encountered in forensic contexts.
Collapse
|
8
|
Liu P, Fang M, Luo Y, Zheng F, Jin Y, Cheng F, Zhu H, Jin X. Rare Variants in Inborn Errors of Immunity Genes Associated With Covid-19 Severity. Front Cell Infect Microbiol 2022; 12:888582. [PMID: 35694544 PMCID: PMC9184678 DOI: 10.3389/fcimb.2022.888582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023] Open
Abstract
Host genetic factors have been shown to play an important role in SARS-CoV-2 infection and the course of Covid-19 disease. The genetic contributions of common variants influencing Covid-19 susceptibility and severity have been extensively studied in diverse populations. However, the studies of rare genetic defects arising from inborn errors of immunity (IEI) are relatively few, especially in the Chinese population. To fill this gap, we used a deeply sequenced dataset of nearly 500 patients, all of Chinese descent, to investigate putative functional rare variants. Specifically, we annotated rare variants in our call set and selected likely deleterious missense (LDM) and high-confidence predicted loss-of-function (HC-pLoF) variants. Further, we analyzed LDM and HC-pLoF variants between non-severe and severe Covid-19 patients by (a) performing gene- and pathway-level association analyses, (b) testing the number of mutations in previously reported genes mapped from LDM and HC-pLoF variants, and (c) uncovering candidate genes via protein-protein interaction (PPI) network analysis of Covid-19-related genes and genes defined from LDM and HC-pLoF variants. From our analyses, we found that (a) pathways Tuberculosis (hsa:05152), Primary Immunodeficiency (hsa:05340), and Influenza A (hsa:05164) showed significant enrichment in severe patients compared to the non-severe ones, (b) HC-pLoF mutations were enriched in Covid-19-related genes in severe patients, and (c) several candidate genes, such as IL12RB1, TBK1, TLR3, and IFNGR2, are uncovered by PPI network analysis and worth further investigation. These regions generally play an essential role in regulating antiviral innate immunity responses to foreign pathogens and in responding to many inflammatory diseases. We believe that our identified candidate genes/pathways can be potentially used as Covid-19 diagnostic markers and help distinguish patients at higher risk.
Collapse
Affiliation(s)
- Panhong Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Mingyan Fang
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
- Beijing Genomeics Institute In Singapore, BGI-Singapore, Singapore, Singapore
| | - Yuxue Luo
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanjun Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanhuan Zhu
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
- *Correspondence: Xin Jin, ; Huanhuan Zhu,
| | - Xin Jin
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
- Beijing Genomeics Institute In Singapore, BGI-Singapore, Singapore, Singapore
- School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Xin Jin, ; Huanhuan Zhu,
| |
Collapse
|