1
|
Gan T, Wei X, Xing Y, Hu Z. Construction of Prognostic Prediction Models for Colorectal Cancer Based on Ferroptosis-Related Genes: A Multi-Dataset and Multi-Model Analysis. Biomed Eng Comput Biol 2024; 15:11795972241293516. [PMID: 39494419 PMCID: PMC11531666 DOI: 10.1177/11795972241293516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Background Colorectal cancer (CRC) remains a significant health burden globally, necessitating a deeper understanding of its molecular landscape and prognostic markers. This study characterized ferroptosis-related genes (FRGs) to construct models for predicting overall survival (OS) across various CRC datasets. Methods In TCGA-COAD dataset, differentially expressed genes (DEGs) were identified between tumor and normal tissues using DESeq2 package. Prognostic genes were identified associated with OS, disease-specific survival, and progression-free interval using survival package. Additionally, FRGs were downloaded from FerrDb website, categorized into unclassified, marker, and driver genes. Finally, multiple models (Coxboost, Elastic Net, Gradient Boosting Machine, LASSO Regression, Partial Least Squares Regression for Cox Regression, Ridge Regression, Random Survival Forest [RSF], stepwise Cox Regression, Supervised Principal Components analysis, and Support Vector Machines) were employed to predict OS across multiple datasets (TCGA-COAD, GSE103479, GSE106584, GSE17536, GSE17537, GSE29621, GSE39084, GSE39582, and GSE72970) using intersection genes across DEGs, OS, disease-specific survival, and progression-free interval, and FRG categories. Results Six intersection genes (ASNS, TIMP1, H19, CDKN2A, HOTAIR, and ASMTL-AS1) were identified, upregulated in tumor tissues, and associated with poor survival outcomes. In the TCGA-COAD dataset, the RSF model demonstrated the highest concordance index. Kaplan-Meier analysis revealed significantly lower OS probabilities in high-risk groups identified by the RSF model. The RSF model exhibited high accuracy with AUC values of 0.978, 0.985, and 0.965 for 1-, 3-, and 5-year survival predictions, respectively. Calibration curves demonstrated excellent agreement between predicted and observed survival probabilities. Decision curve analysis confirmed the clinical utility of the RSF model. Additionally, the model's performances were validated in GSE29621 dataset. Conclusions The study underscores the prognostic relevance of 6 intersection genes in CRC, providing insights into potential therapeutic targets and biomarkers for patient stratification. The RSF model demonstrates robust predictive performance, suggesting its utility in clinical risk assessment and personalized treatment strategies.
Collapse
Affiliation(s)
| | | | - Yuanhao Xing
- Department of Gastrointestinal Surgery, Liuzhou People’s Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi Province, China
| | - Zhili Hu
- Department of Gastrointestinal Surgery, Liuzhou People’s Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi Province, China
| |
Collapse
|
2
|
Yu J, Gong Y, Huang X, Bao Y. Prognostic and therapeutic potential of gene profiles related to tertiary lymphoid structures in colorectal cancer. PeerJ 2024; 12:e18401. [PMID: 39494300 PMCID: PMC11531753 DOI: 10.7717/peerj.18401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
The role of tertiary lymphoid structures (TLS) in oncology is gaining interest, particularly in colorectal carcinoma, yet a thorough analysis remains elusive. This study pioneered a novel TLS quantification system for prognostic and therapeutic response prediction in colorectal carcinoma, alongside a comprehensive depiction of the TLS landscape. Utilizing single-cell sequencing, we established a TLS score within the Tumor Immune Microenvironment (TIME). Analysis of tertiary lymphoid structure-related genes (TLSRGs) in 1,184 patients with colon adenocarcinoma/rectum adenocarcinoma (COADREAD) from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases led to the identification of two distinct molecular subtypes. Differentially expressed genes (DEGs) further segregated these patients into gene subtypes. A TLS score was formulated using gene set variation analysis (GSVA) and its efficacy in predicting immunotherapy outcomes was validated in two independent cohorts. High-scoring patients exhibited a 'hot' immune phenotype, correlating with enhanced immunotherapy efficacy. Key genes in our model, including C5AR1, APOE, CYR1P1, and SPP1, were implicated in COADREAD cell proliferation, invasion, and PD-L1 expression. These insights offer a novel approach to colorectal carcinoma treatment, emphasizing TLS targeting as a potential anti-tumor strategy.
Collapse
Affiliation(s)
- Jinglu Yu
- PuDong Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Pudong New Area, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaowei Huang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufang Bao
- PuDong Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Pudong New Area, China
| |
Collapse
|
3
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy FMA, Alsaadi SB, Abosaoda MK. Role of homeobox genes in cancer: immune system interactions, long non-coding RNAs, and tumor progression. Mol Biol Rep 2024; 51:964. [PMID: 39240390 DOI: 10.1007/s11033-024-09857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
The intricate interplay between Homeobox genes, long non-coding RNAs (lncRNAs), and the development of malignancies represents a rapidly expanding area of research. Specific discernible lncRNAs have been discovered to adeptly regulate HOX gene expression in the context of cancer, providing fresh insights into the molecular mechanisms that govern cancer development and progression. An in-depth comprehension of these intricate associations may pave the way for innovative therapeutic strategies in cancer treatment. The HOX gene family is garnering increasing attention due to its involvement in immune system regulation, interaction with long non-coding RNAs, and tumor progression. Although initially recognized for its crucial role in embryonic development, this comprehensive exploration of the world of HOX genes contributes to our understanding of their diverse functions, potentially leading to immunology, developmental biology, and cancer research discoveries. Thus, the primary objective of this review is to delve into these aspects of HOX gene biology in greater detail, shedding light on their complex functions and potential therapeutic applications.
Collapse
Affiliation(s)
| | - Shireen Hamid Farhan
- Biotechnology Department, College of Applied Science, Fallujah University, Al-Fallujah, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
4
|
Yang J, Li J, Li S, Yang Y, Su H, Guo H, Lei J, Wang Y, Wen K, Li X, Zhang S, Wang Z. Effects of HOX family regulator-mediated modification patterns and immunity characteristics on tumor-associated cell type in endometrial cancer. MOLECULAR BIOMEDICINE 2024; 5:32. [PMID: 39138733 PMCID: PMC11322468 DOI: 10.1186/s43556-024-00196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Endometrial cancer (UCEC) is one of three major malignant tumors in women. The HOX gene regulates tumor development. However, the potential roles of HOX in the expression mechanism of multiple cell types and in the development and progression of tumor microenvironment (TME) cell infiltration in UCEC remain unknown. In this study, we utilized both the The Cancer Genome Atlas (TCGA) database and International Cancer Genome Consortium (ICGC) database to analyze transcriptome data of 529 patients with UCEC based on 39 HOX genes, combing clinical information, we discovered HOX gene were a pivotal factor in the development and progression of UCEC and in the formation of TME diversity and complexity. Here, a new scoring system was developed to quantify individual HOX patterns in UCEC. Our study found that patients in the low HOX score group had abundant anti-tumor immune cell infiltration, good tumor differentiation, and better prognoses. In contrast, a high HOX score was associated with blockade of immune checkpoints, which enhances the response to immunotherapy. The Real-Time quantitative PCR (RT-qPCR) and Immunohistochemistry (IHC) exhibited a higher expression of the HOX gene in the tumor patients. We revealed that the significant upregulation of the HOX gene in the epithelial cells can activate signaling pathway associated with tumour invasion and metastasis through single-cell RNA sequencing (scRNA-seq), such as nucleotide metabolic proce and so on. Finally, a risk prognostic model established by the positive relationship between HOX scores and cancer-associated fibroblasts (CAFs) can predict the prognosis of individual patients by scRNA-seq and transcriptome data sets. In sum, HOX gene may serve as a potential biomarker for the diagnosis and prediction of UCEC and to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- JiaoLin Yang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - JinPeng Li
- Shanxi Medical University, Taiyuan, 030001, China
| | - SuFen Li
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - YuTong Yang
- Shanxi Medical University, Taiyuan, 030001, China
| | - HuanCheng Su
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - HongRui Guo
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Lei
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - YaLin Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - KaiTing Wen
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xia Li
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - SanYuan Zhang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhe Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
5
|
Wu CY, Liu Z, Luo WM, Huang H, Jiang N, Du ZP, Wang FM, Han X, Ye GC, Guo Q, Chen JL. Downregulation of DIP2B as a prognostic marker inhibited cancer proliferation and migration and was associated with immune infiltration in lung adenocarcinoma via CCND1 and MMP2. Heliyon 2024; 10:e32025. [PMID: 38952374 PMCID: PMC11215276 DOI: 10.1016/j.heliyon.2024.e32025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Background DIP2B is related to cancer progression. This study investigated the roles and pathways of DIP2B in lung adenocarcinoma (LUAD). Methods DIP2B expression and the relationship between survival time of cancer patients and DIP2B expression were analyzed. The relationship between DIP2B expression and survival time in LUAD patients was evaluated by a meta-analysis. Cox and survival analyses were used to evaluate the prognostic factors and construct a prognostic nomogram. The mechanisms and effects of DIP2B and the relationship between DIP2B expression and the immune microenvironment were investigated using bioinformatics, CCK-8, western blotting, and transwell experiments. Results DIP2B was overexpressed in LUAD tissues. DIP2B overexpression was associated with shorter prognosis and was an unfavorable risk factor for prognosis in LUAD patients. DIP2B co-expressed genes were involved in cell division, DNA repair, cell cycle, and others. Inhibition of DIP2B expression could downregulate the proliferation, migration, and invasion of LUAD A549 and H1299 cells, which was related to the decrease in CCND1 and MMP2 protein expression. BRCA1 overexpression was associated with short prognosis, and the nomogram formed by DIP2B and BRCA1 was associated with a poor prognosis in LUAD patients. DIP2B expression correlated with immune cells (such as CD8 T cells, Tcm, and iDCs) and cell markers. Conclusion DIP2B is a potential biomarker of poor prognosis and the immune microenvironment in LUAD. Inhibition of DIP2B expression downregulated cancer cell proliferation, migration, and invasion, which might be related to the decrease in CCND1 and MMP2 protein expression. DIP2B-related nomograms might be useful tools for predicting the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Min Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Huan Huang
- Department of Thoracic Surgery, People's Hospital of Dongxihu, Wuhan, China
| | - Ni Jiang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Peng Du
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang-Ming Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guan-Chao Ye
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiu-Ling Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Yu J, Gong Y, Xu Z, Chen L, Li S, Cui Y. Prognostic and therapeutic insights into colorectal carcinoma through immunogenic cell death gene profiling. PeerJ 2024; 12:e17629. [PMID: 38938617 PMCID: PMC11210462 DOI: 10.7717/peerj.17629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
While the significance of immunogenic cell death (ICD) in oncology is acknowledged, its specific impact on colorectal carcinoma remains underexplored. In this study, we delved into the role of ICD in colorectal carcinoma, a topic not yet comprehensively explored. A novel ICD quantification system was developed to forecast patient outcomes and the effectiveness of immunotherapy. Utilizing single-cell sequencing, we constructed an ICD score within the tumor immune microenvironment (TIME) and examined immunogenic cell death related genes (ICDRGs). Using data from TCGA and GEO, we discovered two separate molecular subcategories within 1,184 patients diagnosed with colon adenocarcinoma/rectum adenocarcinoma (COADREAD). The ICD score was established by principal component analysis (PCA), which classified patients into groups with low and high ICD scores. Further validation in three independent cohorts confirmed the model's accuracy in predicting immunotherapy success. Patients with higher ICD scores exhibited a "hot" immune phenotype and showed increased responsiveness to immunotherapy. Key genes in the model, such as AKAP12, CALB2, CYR61, and MEIS2, were found to enhance COADREAD cell proliferation, invasion, and PD-L1 expression. These insights offered a new avenue for anti-tumor strategies by targeting ICD, marking advances in colorectal carcinoma treatment.
Collapse
Affiliation(s)
- Jinglu Yu
- PuDong Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China, Shanghai, Pudong, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui District, China
| | - Zhenye Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui District, China
| | - Lei Chen
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui District, China
| | - Shuang Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongkang Cui
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Li C, Mao X, Song L, Sheng J, Yang L, Huang X, Wang L. Unveiling HOXB7 as a novel diagnostic and prognostic biomarker through pan-cancer computer screening. Comput Biol Med 2024; 176:108562. [PMID: 38728993 DOI: 10.1016/j.compbiomed.2024.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
We attempted to investigate the role of HOXB7 in tumor progression and evolution by means of an extensive computer screening analysis of various cancer types. We performed univariate Cox regression and Kaplan-Meier survival analyses to assess the impact of HOXB7 on overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in different types of cancer. Furthermore, we examined the relationship between HOXB7 and several clinical features: tumor microenvironment, immune regulatory genes, immune checkpoints, tumor mutational burden (TMB), and microsatellite instability (MSI). We performed gene set enrichment analysis to gain deeper insights into the potential molecular mechanisms of HOXB7, and validated our findings through functional assays in cells, including methyl thiazolyl tetrazolium cytotoxicity and Transwell invasion assays. HOXB7 expression was associated with different clinical characteristics in numerous malignancies. Higher HOXB7 expression was associated with worse OS, DSS, and PFI in some cancer types. In particular, HOXB7 expression was favorably associated with immune cell infiltration, immune regulatory genes, immunological checkpoints, TMB, and MSI in malignancies. Furthermore, we identified a strong link between copper death-associated gene expression and HOXB7 expression. According to the findings of this study, HOXB7 might serve as an appealing focus for tumor diagnosis and immunotherapy and a prospective indicator of prognosis.
Collapse
Affiliation(s)
- Cong Li
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Xulong Mao
- Department of Cardiology, First School of Clinical Medicine College, Yangtze University, Jingzhou, 434000, China
| | - Lanlan Song
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Jueqi Sheng
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| | - Liangxing Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
8
|
Weng M, Lai Y, Ge X, Gu W, Zhang X, Li L, Sun M. HOXC6: A promising biomarker linked to an immunoevasive microenvironment in colorectal cancer based on TCGA analysis and cohort validation. Heliyon 2024; 10:e23500. [PMID: 38192826 PMCID: PMC10772581 DOI: 10.1016/j.heliyon.2023.e23500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/22/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
HOXC6 plays an essential part of the carcinogenesis of solid tumors, but its functional relevance within the immune contexture in patients with colorectal cancer (CRC) is still uncertain. We intended to investigate the predictive value of HOXC6 expression for survival outcomes and its correlation with immune contexture in CRC patients by utilizing the Cancer Genome Atlas database (n = 619). Validation was performed in cohorts from Zhongshan Hospital (n = 200) and Shanghai Cancer Center (n = 300). Immunohistochemical (IHC) staining was utilized to compare the levels of immunocytes infiltrating the tumor between the groups with high and low expression of HOXC6. Elevated levels of HOXC6 expression in CRC tissues were linked to malignant progression and poor prognosis. HOXC6 as a risk factor for survival of CRC patients was confirmed. Receiver operating characteristic analysis confirmed its diagnostic value, and a reliable prognostic nomogram was constructed. KEGG analysis and GSEA showed that HOXC6 participated in immune regulation, and its expression was tightly linked to the abundance of infiltrating immunocytes. HOXC6 was upregulated in patients diagnosed with CRC within the two cohorts, and high HOXC6 levels were correlated with a worse prognosis. The high-HOXC6 expression group showed increased infiltration of Treg cells, CD68+ macrophages, CD66b+ neutrophils, and CD8+ T-cells and elevated levels of PD-L1 and PD-1, but decreased levels of granzyme B and perforin. These findings suggest that HOXC6 abundance in patients with CRC determines a poor prognosis, promotes an immunoevasive environment, and directs CD8+ T-cell dysfunction. HOXC6 is expected to become a prospective biomarker for the outcome of CRC.
Collapse
Affiliation(s)
- Meilin Weng
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, 200032, China
| | - Yuling Lai
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, 200032, China
| | - Xiaodong Ge
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, 200032, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Faculty of medicine, Ibaraki, Tsukuba, Japan
| | - Xixue Zhang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No 221, West Yan'an Road, Shanghai 200040, China
| | - Lihong Li
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Minli Sun
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
9
|
Zhao L, Lou W, Zhang Y, Han Y, Zhang W. Comprehensive analysis of HOX family genes in endometrial cancer. Transl Cancer Res 2023; 12:3728-3743. [PMID: 38192984 PMCID: PMC10774039 DOI: 10.21037/tcr-23-2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Background Endometrial cancer (EC) is one of the most prevalent malignancies in the female population. Homeoboxes (HOXs) are a large family of transcription factors that have a variety of functions in biological processes (BPs), including developmental differentiation, and their dysregulated expression has been implicated in tumorigenesis. However, the involvement of HOXs in EC has received little attention. Thus, we aimed to identify the potential role of HOXs in EC from a multi-omics perspective through bioinformatics analysis. Methods We obtained transcriptome, mutation, and methylation data and the corresponding clinical data for normal and tumor tissues from The Cancer Genome Atlas (TCGA) database. Abnormal expression of HOXs in EC was identified via differential analysis, and the diagnostic value of HOXs in EC was assessed with the receiver operating characteristic (ROC) method. Univariate and multivariate Cox regression models were employed to evaluate the predictive efficacy of HOXs in EC. Methylation and mutation analyses revealed epigenetic and genetic sequence alterations in HOXs. Single-sample gene set enrichment analysis (ssGSEA) was used to explore the altered immune microenvironment in EC. Moreover, the gene activity and pathway enrichment of downstream key HOX genes were revealed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis in EC. Results HOXs were found to be linked to the growth of EC and potentially playing a role in establishing the tumor immune microenvironment in patients with EC. HOXB9 was found to be a vital prognostic molecule in patients with EC and is expected to contribute to a novel treatment approach. Conclusions We used bioinformatics techniques to clarify the potential role of HOXs from a multi-omics perspective, and our findings provide a foundation for future investigations into the molecular mechanisms of HOXs in EC.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiming Lou
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yize Zhang
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yalan Han
- Library of Nanchang University, Nanchang University, Nanchang, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Zhang C, Zhou Z, Guo T, Huang X, Peng C, Lin Z, Chen M, Liu W. CFHTF2 Is Needed for Vegetative Growth, Conidial Morphogenesis and the Osmotic Stress Response in the Tea Plant Anthracnose ( Colletotrichum fructicola). Genes (Basel) 2023; 14:2235. [PMID: 38137057 PMCID: PMC10743015 DOI: 10.3390/genes14122235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Tea is an important cash crop worldwide, and its nutritional value has led to its high economic benefits. Tea anthracnose is a common disease of tea plants that seriously affects food safety and yield and has a far-reaching impact on the sustainable development of the tea industry. In this study, phenotypic analysis and pathogenicity analysis were performed on knockout and complement strains of HTF2-the transcriptional regulator of tea anthracnose homeobox-and the pathogenic mechanism of these strains was explored via RNA-seq. The MoHox1 gene sequence of the rice blast fungus was indexed, and the anthracnose genome was searched for CfHTF2. Evolutionary analysis recently reported the affinity of HTF2 for C. fructicola and C. higginsianum. The loss of CfHTF2 slowed the vegetative growth and spore-producing capacity of C. fructicola and weakened its resistance and pathogenesis to adverse conditions. The transcriptome sequencing of wild-type N425 and CfHTF2 deletion mutants was performed, and a total of 3144 differentially expressed genes (DEGs) were obtained, 1594 of which were upregulated and 1550 of which were downregulated. GO and KEGG enrichment analyses of DEGs mainly focused on signaling pathways such as the biosynthesis of secondary metabolites. In conclusion, this study lays a foundation for further study of the pathogenic mechanism of tea anthracnose and provides a molecular basis for the analysis of the pathogenic molecular mechanism of CfHTF2.
Collapse
Affiliation(s)
- Chengkang Zhang
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- Key Laboratory of Bio-Pesticide and Chemistry Biology, Fujian Agricultural and Forestry University, Ministry of Education, Fuzhou 350002, China
| | - Ziwen Zhou
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianlong Guo
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- Key Laboratory of Bio-Pesticide and Chemistry Biology, Fujian Agricultural and Forestry University, Ministry of Education, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Huang
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- Key Laboratory of Bio-Pesticide and Chemistry Biology, Fujian Agricultural and Forestry University, Ministry of Education, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengbin Peng
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| | - Zhideng Lin
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| | - Meixia Chen
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| | - Wei Liu
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| |
Collapse
|
11
|
Cao Y, Jiang J, Song X, Wang X, Huang F, Li Y, Tang L, Li M, Chen Z, Chen F, Wan H. Engrailed 2 triggers the activation of multiple phosphorylation-induced signaling pathways in both transcription-dependent and -independent manners. Biochem Biophys Res Commun 2023; 680:127-134. [PMID: 37738902 DOI: 10.1016/j.bbrc.2023.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Homeodomain (HD)-containing proteins are typically recognized as transcription factors. Engrailed 2 (EN2) is an HD-containing protein that is highly expressed in various types of cancers, however, the mechanism underlying the biological function of EN2 is not fully understood. Here, we report a transcription-independent function of EN2 in addition to its role as a transcription factor. EN2 expression leads to the activation of multiple signaling pathways mediated by phosphorylation cascades. A phosphoproteomic analysis revealed that the phosphorylation status of numerous protein sites was altered after EN2 is expressed. Notably, EN2 was shown to interact with a myriad of proteins implicated in phosphorylation signaling cascades, as determined by immunoprecipitation-mass spectrometry (IP-MS). We validated the interaction between EN2 and B55α, the regulatory subunit of the PP2A-B55α complex, and confirmed that the phosphatase activity of the complex was suppressed by EN2 binding. To target EN2-induced malignancy, two kinds of small molecules were utilized to inhibit the EN2-activated NF-κB and AKT signaling pathways. A clear synergistic effect was observed when the activation of the two pathways was simultaneously blocked. Collectively, the data show that EN2 functions in a transcription-independent manner in addition to its role as a transcription factor. This finding may have therapeutic implications in treating esophageal squamous cell carcinoma (ESCC).
Collapse
Affiliation(s)
- Yong Cao
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Jie Jiang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xueqin Song
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Xiaoyan Wang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Fang Huang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Yan Li
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Li Tang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Mingying Li
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Zhuang Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Haisu Wan
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
12
|
Li Z, Wang Y, Hou X, Guo L, Li Y, Ma Y, Ma Y. High expression of HOXC6 predicts a poor prognosis and induces proliferation and inflammation in multiple myeloma cells. Genes Genomics 2023; 45:945-955. [PMID: 37202556 DOI: 10.1007/s13258-023-01397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Multiple myeloma (MM) is a common blood system malignance accompanied by monoclonal plasma cell hyperplasia. Homeobox C6 (HOXC6) acts as an oncogene in various cancers, but its function on MM is elusive. OBJECTIVE The role of HOXC6 on MM development was clarified in this study. METHODS HOXC6 expression and its clinical significance were determined in the peripheral blood samples collected from forty MM patients and thirty healthy adult volunteers. The overall survival was evaluated by Kaplan-Meier analysis with the log-rank test. Cell viability, proliferation and apoptosis were measured by CCK-8, EdU assay and Flow cytometry in U266 and MM.1R cells. Tumor growth was estimated by a xenograft assay. The apoptosis of tumor tissues was evaluated using TUNEL staining. The protein level in tissues was tested by immunohistochemistry. RESULTS The HOXC6 expression was elevated in MM and high HOXC6 level was associated with the poor overall survival of MM. Besides, the HOXC6 expression was associated with hemoglobin level and ISS stage. Furthermore, silencing HOXC6 suppressed cell proliferation, induced cell apoptosis, and restrained the secretion of inflammatory factors (TNF-α, IL-6, and IL-8) in MM cells through inactivating the NF-κB pathway. Moreover, silencing HOXC6 suppressed the tumor growth of MM, the inflammatory factors levels, and the activation of NF-κB pathway but enhanced apoptosis in vivo. CONCLUSION HOXC6 was elevated in MM and associated with poor survival. Knockdown of HOXC6 suppressed proliferation, inflammation and tumorigenicity of MM cells via inactivating the NF-κB pathway. HOXC6 may be a meaningful target for MM therapy.
Collapse
Affiliation(s)
- Zhihua Li
- Department of hematology, Second Hospital of Shanxi Medical University, 0300001, NO382,Wuyi Road, Taiyuan, shanxi, province, Taiyuan, 0300001, shanxi, province, China
| | - Yaru Wang
- Department of hematology, Second Hospital of Shanxi Medical University, 0300001, NO382,Wuyi Road, Taiyuan, shanxi, province, Taiyuan, 0300001, shanxi, province, China
| | - Xiaoxu Hou
- Department of hematology, Second Hospital of Shanxi Medical University, 0300001, NO382,Wuyi Road, Taiyuan, shanxi, province, Taiyuan, 0300001, shanxi, province, China
| | - Luyao Guo
- Department of hematology, Second Hospital of Shanxi Medical University, 0300001, NO382,Wuyi Road, Taiyuan, shanxi, province, Taiyuan, 0300001, shanxi, province, China
| | - Yanling Li
- Department of hematology, Second Hospital of Shanxi Medical University, 0300001, NO382,Wuyi Road, Taiyuan, shanxi, province, Taiyuan, 0300001, shanxi, province, China
| | - Yanping Ma
- Department of hematology, Second Hospital of Shanxi Medical University, 0300001, NO382,Wuyi Road, Taiyuan, shanxi, province, Taiyuan, 0300001, shanxi, province, China
| | - Yanping Ma
- Department of hematology, Second Hospital of Shanxi Medical University, 0300001, NO382,Wuyi Road, Taiyuan, shanxi, province, Taiyuan, 0300001, shanxi, province, China.
| |
Collapse
|
13
|
Wang X, Zuo X, Hu X, Liu Y, Wang Z, Chan S, Sun R, Han Q, Yu Z, Wang M, Zhang H, Chen W. Identification of cuproptosis-based molecular subtypes, construction of prognostic signature and characterization of immune landscape in colon cancer. Front Oncol 2023; 13:927608. [PMID: 37007145 PMCID: PMC10064275 DOI: 10.3389/fonc.2023.927608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundCuproptosis is a newly discovered form of cell death induced by targeting lipoacylated proteins involved in the tricarboxylic acid cycle. However, the roles of cuproptosis-related genes (CRGs) in the clinical outcomes and immune landscape of colon cancer remain unknown.MethodsWe performed bioinformatics analysis of the expression data of 13 CRGs identified from a previous study and clinical information of patients with colon cancer obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. Colon cancer cases were divided into two CRG clusters and prognosis-related differentially expressed genes. Patient data were separated into three corresponding distinct gene clusters, and the relationships between the risk score, patient prognosis, and immune landscape were analyzed. The identified molecular subtypes correlated with patient survival, immune cells, and immune functions. A prognostic signature based on five genes was identified, and the patients were divided into high- and low-risk groups based on the calculated risk score. A nomogram model for predicting patient survival was developed based on the risk score and other clinical features.ResultsThe high-risk group showed a worse prognosis, and the risk score was related to immune cell abundance, microsatellite instability, cancer stem cell index, checkpoint expression, immune escape, and response to chemotherapeutic drugs and immunotherapy. Findings related to the risk score were validated in the imvigor210 cohort of patients with metastatic urothelial cancer treated with anti-programmed cell death ligand 1.ConclusionWe demonstrated the potential of cuproptosis-based molecular subtypes and prognostic signatures for predicting patient survival and the tumor microenvironment in colon cancer. Our findings may improve the understanding of the role of cuproptosis in colon cancer and lead to the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaomin Zuo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xianyu Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuyao Liu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhenglin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Rui Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qijun Han
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ming Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Huabing Zhang
- The First Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, Anhui, China
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Huabing Zhang, ; Wei Chen,
| | - Wei Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Huabing Zhang, ; Wei Chen,
| |
Collapse
|
14
|
Sun M, Ji X, Xie M, Chen X, Zhang B, Luo X, Feng Y, Liu D, Wang Y, Li Y, Liu B, Xia L, Huang W. Identification of necroptosis-related subtypes, development of a novel signature, and characterization of immune infiltration in colorectal cancer. Front Immunol 2022; 13:999084. [PMID: 36544770 PMCID: PMC9762424 DOI: 10.3389/fimmu.2022.999084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Necroptosis, a type of programmed cell death, has recently been extensively studied as an important pathway regulating tumor development, metastasis, and immunity. However, the expression patterns of necroptosis-related genes (NRGs) in colorectal cancer (CRC) and their potential roles in the tumor microenvironment (TME) have not been elucidated. Methods We explored the expression patterns of NRGs in 1247 colorectal cancer samples from genetics and transcriptional perspective. Based on a consensus clustering algorithm, we identified NRG molecular subtypes and gene subtypes, respectively. Furthermore, we constructed a necroptosis-related signature for predicting overall survival time and verified the predictive ability of the model. Using the ESTIMATE, CIBERSORT, and ssGSEA algorithms, we assessed the association between the above subtypes, scores and immune infiltration. Results Most NRGs were differentially expressed between CRC tissues and normal tissues. We found that distinct subtypes exhibited different NRGs expression, patients' prognosis, immune checkpoint gene expression, and immune infiltration characteristics. The scores calculated from the necroptosis-related signature can be used to classify patients into high-risk and low-risk groups, with the high-risk group corresponding to reduced immune cell infiltration and immune function, and a greater risk of immune dysfunction and immune escape. Discussion Our comprehensive analysis of NRGs in CRC demonstrated their potential role in clinicopathological features, prognosis, and immune infiltration in the TME. These findings help us deepen our understanding of NRGs and the tumor microenvironment landscape, and lay a foundation for effectively assessing patient outcomes and promoting more effective immunotherapy.
Collapse
Affiliation(s)
- Mengyu Sun
- Department of Gastroenterology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Xie
- Department of Gastroenterology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangyang Feng
- Department of Gastroenterology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Danfei Liu
- Department of Gastroenterology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yijun Wang
- Department of Gastroenterology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Xia
- Department of Gastroenterology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, China
| |
Collapse
|
15
|
HOXA5: A crucial transcriptional factor in cancer and a potential therapeutic target. Biomed Pharmacother 2022; 155:113800. [PMID: 36271576 DOI: 10.1016/j.biopha.2022.113800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/20/2022] Open
|
16
|
Ye C, Lu Y, Yuan Z, Mi M, Qi L, Yuan Y, Weng S. Ferroptosis regulator FANCD2 is associated with immune infiltration and predicts worse prognosis in lung adenocarcinoma. Front Genet 2022; 13:922914. [PMID: 36267413 PMCID: PMC9576926 DOI: 10.3389/fgene.2022.922914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Lung adenocarcinoma (LUAD) remains one of the leading causes of cancer-related death. Although immunotherapy has been shown to improve survival in LUAD patients, only a select group of LUAD patients could benefit from it. The correlation between ferroptosis and the tumor immune environment requires further investigation in the setting of LUAD. An analysis using The Cancer Genome Atlas (TCGA)-LUAD cohort systematically evaluated the expression levels of ferroptosis regulators between LUAD and normal tissues and demonstrated the correlation of ferroptosis regulators with the immune checkpoint B7-H3 expression. Based on consensus clustering analysis, we divided LUAD patients into two subtypes according to the expression pattern of ferroptosis regulators. Cluster 2 patients showed more favorable overall survival (OS) (p < 0.001) and disease-free survival (DFS) (p < 0.001) than Cluster 1 patients. CIBERSORT analysis indicated that Cluster 1 patients harbored higher infiltrated levels of uncharacterized cells, CD4+ T cells (nonregulatory), and myeloid dendritic cells, while Cluster 2 patients were more correlated with B cells, M1 macrophages, natural killer cells (NK cells) and regulatory T cells (Tregs). More importantly, we identified FANCD2 as a potentially unfavorable prognostic factor that was overexpressed in LUAD and positively associated with the checkpoint molecule B7-H3 expression. In addition, higher FANCD2 expression was related to a higher tumor immune dysfunction and exclusion (TIDE) score, indicating lower responder rates to cancer immunotherapeutics. In summary, our study suggested a relationship between immune infiltration and ferroptosis and that FANCD2 is a potential biomarker for clinical outcomes and a therapeutic target for LUAD therapy concerning ferroptotic regulation. Our findings may help to advance personalized treatment and improve the prognosis of LUAD.
Collapse
Affiliation(s)
- Chenyang Ye
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yier Lu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhijun Yuan
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mi Mi
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lina Qi
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Ying Yuan, ; Shanshan Weng,
| | - Shanshan Weng
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Ying Yuan, ; Shanshan Weng,
| |
Collapse
|
17
|
Mahesworo B, Budiarto A, Hidayat AA, Pardamean B. Cancer Risk Score Prediction Based on a Single-Nucleotide Polymorphism Network. Healthc Inform Res 2022; 28:247-255. [PMID: 35982599 PMCID: PMC9388919 DOI: 10.4258/hir.2022.28.3.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 06/22/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives Genome-wide association studies (GWAS) are performed to study the associations between genetic variants with respect to certain phenotypic traits such as cancer. However, the method that is commonly used in GWAS assumes that certain traits are solely affected by a single mutation. We propose a network analysis method, in which we generate association networks of single-nucleotide polymorphisms (SNPs) that can differentiate case and control groups. We hypothesize that certain phenotypic traits are attributable to mutations in groups of associated SNPs. Methods We propose a method based on a network analysis framework to study SNP-SNP interactions related to cancer incidence. We employed logistic regression to measure the significance of all SNP pairs from GWAS for the incidence of colorectal cancer and computed a cancer risk score based on the generated SNP networks. Results We demonstrated our method in a dataset from a case-control study of colorectal cancer in the South Sulawesi population. From the GWAS results, 20,094 pairs of 200 SNPs were created. We obtained one cluster containing four pairs of five SNPs that passed the filtering threshold based on their p-values. A locus on chromosome 12 (12:54410007) was found to be strongly connected to the four variants on chromosome 1. A polygenic risk score was computed from the five SNPs, and a significant difference in colorectal cancer risk was obtained between the case and control groups. Conclusions Our results demonstrate the applicability of our method to understand SNP-SNP interactions and compute risk scores for various types of cancer.
Collapse
Affiliation(s)
- Bharuno Mahesworo
- Department of Statistics, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia.,Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia.,Department of Computer Science, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Alam Ahmad Hidayat
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia.,Department of Computer Science, BINUS Graduate Program-Master of Computer Science Program, Bina Nusantara University, Jakarta, Indonesia
| |
Collapse
|