1
|
Xue JY, Chen MT, Jian YH, Liang LL, Yang XR, Sun SH, Liu P, Liu QY, Jiang Y, Liu MN. The role of the TREM receptor family in cardiovascular diseases: Functions, mechanisms, and therapeutic target. Life Sci 2025; 369:123555. [PMID: 40068732 DOI: 10.1016/j.lfs.2025.123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025]
Abstract
The Triggering Receptor Expressed in the Myeloid Cells (TREM) family represents an emerging subgroup within the immunoglobulin superfamily, which includes key members such as TREM-1, TREM-2, TREM-3, TREM-like transcript-1 (TLT-1), TLT-2, and TLT-4. TREM-1 serves as a potent amplifier of immune responses, exacerbating atherosclerosis and myocardial injury by enhancing inflammatory reactions. In contrast, TREM-2 exerts protective effects by regulating lipid metabolism, mitigating inflammation, and promoting phagocytic activity, thereby attenuating cardiovascular damage. Both soluble TLT-1 and TLT-4 have been identified as potential biomarkers for cardiovascular risk. In recent years, the roles of the TREM family in the pathogenesis of cardiovascular diseases (CVD) have garnered growing interest within the scientific community. This review aims to illuminate the functional roles, underlying mechanisms, and clinical relevance of TREM family members in the regulation of CVD, while exploring their potential applications in early diagnosis, disease monitoring, and the development of novel therapeutic targets for CVD, ultimately laying a foundation for their clinical translation and advancement in precision medicine.
Collapse
Affiliation(s)
- Jin-Yi Xue
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Ming-Tai Chen
- Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Yu-Hong Jian
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Ling-Ling Liang
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xin-Rui Yang
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shi-Han Sun
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Ping Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Qiu-Yu Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yan Jiang
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Meng-Nan Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Shi Q, Gutierrez RA, Bhat MA. Microglia, Trem2, and Neurodegeneration. Neuroscientist 2025; 31:159-176. [PMID: 38769824 PMCID: PMC11576490 DOI: 10.1177/10738584241254118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Microglia are a specialized type of neuroimmune cells that undergo morphological and molecular changes through multiple signaling pathways in response to pathological protein aggregates, neuronal death, tissue injury, or infections. Microglia express Trem2, which serves as a receptor for a multitude of ligands enhancing their phagocytic activity. Trem2 has emerged as a critical modulator of microglial activity, especially in many neurodegenerative disorders. Human TREM2 mutations are associated with an increased risk of developing Alzheimer disease (AD) and other neurodegenerative diseases. Trem2 plays dual roles in neuroinflammation and more specifically in disease-associated microglia. Most recent developments on the molecular mechanisms of Trem2, emphasizing its role in uptake and clearance of amyloid β (Aβ) aggregates and other tissue debris to help protect and preserve the brain, are encouraging. Although Trem2 normally stimulates defense mechanisms, its dysregulation can intensify inflammation, which poses major therapeutic challenges. Recent therapeutic approaches targeting Trem2 via agonistic antibodies and gene therapy methodologies present possible avenues for reducing the burden of neurodegenerative diseases. This review highlights the promise of Trem2 as a therapeutic target, especially for Aβ-associated AD, and calls for more mechanistic investigations to understand the context-specific role of microglial Trem2 in developing effective therapies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Qian Shi
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Raul A. Gutierrez
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Manzoor A. Bhat
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Xiong M, Xia D, Yu H, Meng L, Zhang X, Chen J, Tian Y, Yuan X, Niu X, Nie S, Zhang Z, Liu C, Chen Q, Ye K, Zhang Z. Microglia Process α-Synuclein Fibrils and Enhance their Pathogenicity in a TREM2-Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413451. [PMID: 39665233 PMCID: PMC11831461 DOI: 10.1002/advs.202413451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Parkinson's disease (PD) is characterized by the deposition of misfolded α-synuclein (α-syn) in the brain. Converging evidence indicates that the intracellular transmission and subsequent templated amplification of α-syn are involved in the onset and progression of PD. However, the molecular mechanisms underlying the cell-to-cell transmission of pathological α-syn remain poorly understood. Microglia is highly activated in the brains of PD patients. Here, it is shown that depletion of microglia slows the spread of pathological α-syn pathology in mice injected with α-syn fibrils. Microglia phagocytose α-syn fibrils and transform them into more toxic species. The phagocytosis of α-syn fibrils by microglia is partially mediated by triggering a receptor expressed on myeloid cells 2 (TREM2), a transmembrane protein expressed on the surface of microglia. The endocytosed α-syn fibrils are then cleaved by the lysosomal proteinase asparagine endopeptidase (AEP) to generate truncated α-syn 1-103 fibrils with enhanced seeding activity. Knockout of TREM2 and AEP impedes the endocytosis and cleavage of α-syn fibrils, respectively. The results demonstrate that TREM2-mediated phagocytosis of α-syn fibrils by microglia and subsequent AEP-mediated cleavage of α-syn fibrils contribute to the spread of α-syn in the brain. Blocking either of these two steps attenuates the progression of α-syn pathology.
Collapse
Affiliation(s)
- Min Xiong
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Danhao Xia
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Honglu Yu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Lanxia Meng
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Xingyu Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Jiehui Chen
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Ye Tian
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Xin Yuan
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Xuan Niu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Shuke Nie
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Zhaohui Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Chaoyang Liu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Qiang Chen
- Frontier Science Center for Immunology and MetabolismMedical Research InstituteWuhan UniversityWuhan430071China
| | - Keqiang Ye
- Faculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyShenzhen518035China
| | - Zhentao Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhan430060China
- TaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430000China
| |
Collapse
|
4
|
Yin S, Chi X, Wan F, Li Y, Zhou Q, Kou L, Sun Y, Wu J, Zou W, Wang Y, Jin Z, Huang J, Xiong N, Xia Y, Wang T. TREM2 signaling in Parkinson's disease: Regulation of microglial function and α-synuclein pathology. Int Immunopharmacol 2024; 143:113446. [PMID: 39490141 DOI: 10.1016/j.intimp.2024.113446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons, abnormal accumulation of α-synuclein (α-syn), and microglial activation. Triggering receptor expressed on myeloid cells 2 (TREM2) regulates multiple functions of microglia in the brain, and several studies have shown that TREM2 variant R47H is a risk factor for PD. However, the regulation of microglia by TREM2 in PD remains poorly understood. METHODS We constructed PD cell and animal models using α-syn preformed fibrils. siRNA knockdown and lentiviral overexpression were used to perturb TREM2 levels in cells, and TREM2 knockout mice and lentiviral overexpression was used in animal models to investigate the effects of TREM2 on microglial function, α-syn-related pathology, and dopaminergic neuron degeneration. RESULTS Microglia phagocytosed α-syn preformed fibrils in a concentration- and time-dependent manner, with some capacity to degrade α-syn aggregates. TREM2 expression increased in PD. In the context of PD, TREM2 knockout mice exhibited worsened pathological α-syn spread, decreased microglial reactivity, and increased loss of TH-positive neurons in the substantia nigra compared to wild-type mice. TREM2 overexpression enhanced reactive microglial aggregation towards the pathological site. Cellular experiments revealed that reduced TREM2 impaired microglial phagocytosis and proliferation, but enhanced autophagy via the PI3K/AKT/mTOR pathway. CONCLUSION TREM2 signaling in PD maintains microglial phagocytosis, proliferation, and reactivity, stabilizing autophagy and proliferation via the PI3K/AKT/mTOR pathway. Regulating TREM2 levels may be beneficial in PD treatment.
Collapse
Affiliation(s)
- Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yunna Li
- Department of Neurology, The Central Hospital of Wuhan, 26 Shengli Street, Wuhan 430014, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| |
Collapse
|
5
|
Amo-Aparicio J, Dinarello CA, Lopez-Vales R. Metabolic reprogramming of the inflammatory response in the nervous system: the crossover between inflammation and metabolism. Neural Regen Res 2024; 19:2189-2201. [PMID: 38488552 PMCID: PMC11034585 DOI: 10.4103/1673-5374.391330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
Metabolism is a fundamental process by which biochemicals are broken down to produce energy (catabolism) or used to build macromolecules (anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system.
Collapse
Affiliation(s)
| | | | - Ruben Lopez-Vales
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain
| |
Collapse
|
6
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
7
|
Cordeiro A, Gomes C, Bicker J, Fortuna A. Aging and cognitive resilience: Molecular mechanisms as new potential therapeutic targets. Drug Discov Today 2024; 29:104093. [PMID: 38992420 DOI: 10.1016/j.drudis.2024.104093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
As the global population ages, the need to prolong lifespan and healthspan becomes increasingly imperative. Understanding the molecular determinants underlying cognitive resilience, together with changes during aging and the (epi)genetic factors that predispose an individual to decreased cognitive resilience, open avenues for researching novel therapies. This review provides a critical and timely appraisal of the molecular mechanisms underlying cognitive resilience, framed within a critical analysis of emerging therapeutic strategies to mitigate age-related cognitive decline. Significant insights from both animals and human subjects are discussed herein, directed either toward active pharmaceutical ingredients (drug repositioning or macromolecules), or, alternatively, advanced cellular therapies.
Collapse
Affiliation(s)
- Ana Cordeiro
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Catarina Gomes
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
8
|
Kim H, Yeo C, Hong JY, Jeon WJ, Kim H, Lee J, Lee YJ, Baek SH, Ha IH. Raphanus sativus Linne Protects Human Nucleus Pulposus Cells against H 2O 2-Induced Damage by Inhibiting TREM2. BIOLOGY 2024; 13:602. [PMID: 39194540 DOI: 10.3390/biology13080602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Intervertebral disc degeneration (IDD) progresses owing to damage and depletion of nucleus pulposus (NP) cells. Cytoprotection mitigates oxidative stress, nutrient deprivation, and mechanical stress, which lead to cell damage and necrosis. We aimed to examine the protective effect of Raphanus sativus Linne (RSL), common radish, against oxidative stress by H2O2 in human NP cells and whether the RSL extracts can inhibit triggering receptor expressed on myeloid cells 2 (TREM2), an inducer of apoptosis and degeneration in NP cells. We administered hydrogen peroxide (H2O2) to cultured human NP cells treated with RSL extracts. We used immunoblotting and quantitative PCR to investigate expression of the apoptosis-associated proteins in cultured cells. RSL significantly enhanced cell survival by suppressing the activation of cleaved caspase-3 and Bax. In contrast, RSL extract increased Bcl2 concentration to downregulate apoptosis. Additionally, RSL treatment notably enhanced the mRNA levels of ACAN and Col2a1 while significantly reducing those of ADAMTS-4, ADAMTS-5, MMP3, and MMP13, key genes involved in NP degeneration. While H2O2 elevated TREM2 expression, causing disc degeneration, RSL downregulated TREM2 expression. Thus, our findings imply that RSL supports human NP cells under oxidative stress and regulates the pathways underlying disc degeneration, particularly TREM2, and that RSL extracts may potentially prevent IDD.
Collapse
Affiliation(s)
- Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| | - Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| |
Collapse
|
9
|
Wang H, Ma J, Li X, Peng Y, Wang M. FDA compound library screening Baicalin upregulates TREM2 for the treatment of cerebral ischemia-reperfusion injury. Eur J Pharmacol 2024; 969:176427. [PMID: 38428662 DOI: 10.1016/j.ejphar.2024.176427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Acute ischemic stroke (AIS) is a leading cause of global incidence and mortality rates. Oxidative stress and inflammation are key factors in the pathogenesis of AIS neuroinjury. Therefore, it is necessary to develop drugs that target neuroinflammation and oxidative stress in AIS. The Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), primarily expressed on microglial cell membranes, plays a critical role in reducing inflammation and oxidative stress in AIS. In this study, we employed a high-throughput screening (HTS) strategy to evaluate 2625 compounds from the (Food and Drug Administration) FDA library in vitro to identify compounds that upregulate the TREM2 receptor on microglia. Through this screening, we identified Baicalin as a potential drug for AIS treatment. Baicalin, a flavonoid compound extracted and isolated from the root of Scutellaria baicalensis, demonstrated promising results. Next, we established an in vivo mouse model of cerebral ischemia-reperfusion injury (MCAO/R) and an in vitro microglia cell of oxygen-glucose deprivation reperfusion (OGD/R) to investigate the role of Baicalin in inflammation injury, oxidative stress, and neuronal apoptosis. Our results showed that baicalin effectively inhibited microglia activation, reactive oxygen species (ROS) production, and inflammatory responses in vitro. Additionally, baicalin suppressed neuronal cell apoptosis. In the in vivo experiments, baicalin not only improved neurological functional deficits and reduced infarct volume but also inhibited microglia activation and inflammatory responses. Overall, our findings demonstrate the efficacy of Baicalin in treating MCAO/R by upregulating TREM2 to reduce inflammatory responses and inhibit neuronal apoptosis.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Jialiang Ma
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yanhui Peng
- Department of Neurology, The Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi 830000, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
10
|
Li L, He YL, Xu N, Wang XF, Song B, Tang BQ, Lee SMY. A natural small molecule aspidosperma-type alkaloid, hecubine, as a new TREM2 activator for alleviating lipopolysaccharide-induced neuroinflammation in vitro and in vivo. Redox Biol 2024; 70:103057. [PMID: 38325196 PMCID: PMC10863309 DOI: 10.1016/j.redox.2024.103057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Neuroinflammation and oxidative stress play a crucial role in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. The triggering receptor expressed on myeloid cells 2 (TREM2), highly expressed by microglia in the central nervous system (CNS), can modulate neuroinflammatory responses. Currently, there are no approved drugs specifically targeting TREM2 for CNS diseases. Aspidosperma alkaloids have shown potential as anti-inflammatory and neuroprotective agents. This study aimed to elucidate the potential therapeutic effect of Hecubine, a natural aspidosperma-type alkaloid, as a TREM2 activator in lipopolysaccharide (LPS)-stimulated neuroinflammation in in vitro and in vivo models. In this study, molecular docking and cellular thermal shift assay (CTSA) were employed to investigate the interaction between Hecubine and TREM2. Enzyme-linked immunosorbent assay (ELISA), quantitative PCR, immunofluorescence, Western blotting, and shRNA gene knockdown were used to assess the anti-neuroinflammatory and antioxidant effects of Hecubine in microglial cells and zebrafish. Our results revealed that Hecubine directly interacted with TREM2, leading to its activation. Knockdown of TREM2 mRNA expression significantly abolished the anti-inflammatory and antioxidant effects of Hecubine on LPS-stimulated proinflammatory mediators (NO, TNF-α, IL-6, and IL-1β) and oxidative stress in microglia cells. Furthermore, Hecubine upregulated Nrf2 expression levels while downregulating TLR4 signaling expression levels both in vivo and in vitro. Silencing TREM2 upregulated TLR4 and downregulated Nrf2 signaling pathways, mimicking the effect of Hecubine, further supporting TREM2 as the drug target by which Hecubine inhibits neuroinflammation. In conclusion, this is the first study to identify a small molecule, namely Hecubine directly targeting TREM2 to mediate anti-neuroinflammation and anti-oxidative effects, which serves as a potential therapeutic agent for the treatment of neural inflammation-associated CNS diseases.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yu-Lin He
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiu-Fen Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Medical Science, Shunde Polytechnic, Foshan, 528333, China
| | - Bing Song
- Department of Dermatology, The First Hospital of China Medical University, 110001, Shenyang, China; School of Dentistry, Cardiff University, Heath Park, Cardiff, CF14 4XY, UK; Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ben-Qin Tang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Department of Medical Science, Shunde Polytechnic, Foshan, 528333, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
11
|
Liang H, Liu P, Wang Z, Xiong H, Yin C, Zhao D, Wu C, Chen L. TREM2 gene induces differentiation of induced pluripotent stem cells into dopaminergic neurons and promotes neuronal repair via TGF-β activation in 6-OHDA-lesioned mouse model of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14630. [PMID: 38348765 PMCID: PMC10862187 DOI: 10.1111/cns.14630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE Induced pluripotent stem cells (iPSCs) hold a promising potential for rescuing dopaminergic neurons in therapy for Parkinson's disease (PD). This study clarifies a TREM2-dependent mechanism explaining the function of iPSC differentiation in neuronal repair of PD. METHODS PD-related differentially expressed genes were screened by bioinformatics analyses and their expression was verified using RT-qPCR in nigral tissues of 6-OHDA-lesioned mice. Following ectopic expression and depletion experiments in iPSCs, cell differentiation into dopaminergic neurons as well as the expression of dopaminergic neuronal markers TH and DAT was measured. Stereotaxic injection of 6-OHDA was used to develop a mouse model of PD, which was injected with iPSC suspension overexpressing TREM2 to verify the effect of TREM2 on neuronal repair. RESULTS TREM2 was poorly expressed in the nigral tissues of 6-OHDA-lesioned mice. In the presence of TREM2 overexpression, the iPSCs showed increased expression of dopaminergic neuronal markers TH and DAT, which facilitated the differentiation of iPSCs into dopaminergic neurons. Mechanistic investigations indicated that TREM2 activated the TGF-β pathway and induced iPSC differentiation into dopaminergic neurons. In vivo data showed that iPSCs overexpressing TREM2 enhanced neuronal repair in 6-OHDA-lesioned mice. CONCLUSION This work identifies a mechanistic insight for TREM2-mediated TGF-β activation in the regulation of neuronal repair in PD and suggests novel strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Hanbai Liang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ping Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zijing Wang
- Department of Gastroenterology and Hepatology, West China HospitalSichuan UniversityChengduChina
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cheng Yin
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Dongdong Zhao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Chunhui Wu
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Longyi Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
12
|
Miao Y, Meng H. The involvement of α-synucleinopathy in the disruption of microglial homeostasis contributes to the pathogenesis of Parkinson's disease. Cell Commun Signal 2024; 22:31. [PMID: 38216911 PMCID: PMC10785555 DOI: 10.1186/s12964-023-01402-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/18/2023] [Indexed: 01/14/2024] Open
Abstract
The intracellular deposition and intercellular transmission of α-synuclein (α-syn) are shared pathological characteristics among neurodegenerative disorders collectively known as α-synucleinopathies, including Parkinson's disease (PD). Although the precise triggers of α-synucleinopathies remain unclear, recent findings indicate that disruption of microglial homeostasis contributes to the pathogenesis of PD. Microglia play a crucial role in maintaining optimal neuronal function by ensuring a homeostatic environment, but this function is disrupted during the progression of α-syn pathology. The involvement of microglia in the accumulation, uptake, and clearance of aggregated proteins is critical for managing disease spread and progression caused by α-syn pathology. This review summarizes current knowledge on the interrelationships between microglia and α-synucleinopathies, focusing on the remarkable ability of microglia to recognize and internalize extracellular α-syn through diverse pathways. Microglia process α-syn intracellularly and intercellularly to facilitate the α-syn neuronal aggregation and cell-to-cell propagation. The conformational state of α-synuclein distinctly influences microglial inflammation, which can affect peripheral immune cells such as macrophages and lymphocytes and may regulate the pathogenesis of α-synucleinopathies. We also discuss ongoing research efforts to identify potential therapeutic approaches targeting both α-syn accumulation and inflammation in PD. Video Abstract.
Collapse
Affiliation(s)
- Yongzhen Miao
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Hongrui Meng
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
13
|
Awogbindin I, Wanklin M, Verkhratsky A, Tremblay MÈ. Microglia in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:497-512. [PMID: 39207709 DOI: 10.1007/978-3-031-55529-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are manifested by a progressive death of neural cells, resulting in the deterioration of central nervous system (CNS) functions, ultimately leading to specific behavioural and cognitive symptoms associated with affected brain regions. Several neurodegenerative disorders are caused by genetic variants or mutations, although the majority of cases are sporadic and linked to various environmental risk factors, with yet an unknown aetiology. Neuroglial changes are fundamental and often lead to the pathophysiology of neurodegenerative diseases. In particular, microglial cells, which are essential for maintaining CNS health, become compromised in their physiological functions with the exposure to environmental risk factors, genetic variants or mutations, as well as disease pathology. In this chapter, we cover the contribution of neuroglia, especially microglia, to several neurodegenerative diseases, including Nasu-Hakola disease, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, infectious disease-associated neurodegeneration, and metal-precipitated neurodegeneration. Future research perspectives for the field pertaining to the therapeutic targeting of microglia across these disease conditions are also discussed.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Department of Biochemistry, Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Michael Wanklin
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
15
|
Amo-Aparicio J, Daly J, Højen JF, Dinarello CA. Pharmacologic inhibition of NLRP3 reduces the levels of α-synuclein and protects dopaminergic neurons in a model of Parkinson's disease. J Neuroinflammation 2023; 20:147. [PMID: 37349821 PMCID: PMC10286423 DOI: 10.1186/s12974-023-02830-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by a progressive degeneration of dopaminergic neurons, which leads to irreversible loss of peripheral motor functions. Death of dopaminergic neurons induces an inflammatory response in microglial cells, which further exacerbates neuronal loss. Reducing inflammation is expected to ameliorate neuronal loss and arrest motor dysfunctions. Because of the contribution of the NLRP3 inflammasome to the inflammatory response in PD, we targeted NLRP3 using the specific inhibitor OLT1177®. METHODS We evaluated the effectiveness of OLT1177® in reducing the inflammatory response in an MPTP neurotoxic model of PD. Using a combination of in vitro and in vivo studies, we analyzed the effects of NLRP3 inhibition on pro-inflammatory markers in the brain, α-synuclein aggregation, and dopaminergic neuron survival. We also determined the effects of OLT1177® on locomotor deficits associated with MPTP and brain penetrance. RESULTS Treatment with OLT1177® prevented the loss of motor function, reduced the levels of α-synuclein, modulated pro-inflammatory markers in the nigrostriatal areas of the brain, and protected dopaminergic neurons from degeneration in the MPTP model of PD. We also demonstrated that OLT1177® crosses the blood-brain barrier and reaches therapeutic concentrations in the brain. CONCLUSIONS These data suggest that targeting the NLRP3 inflammasome by OLT1177® may be a safe and novel therapeutic approach to arrest neuroinflammation and protect against neurological deficits of Parkinson's disease in humans.
Collapse
Affiliation(s)
- Jesus Amo-Aparicio
- Department of Medicine, University of Colorado, 12700 E 19th Ave, Aurora, CO, 80045, USA.
| | - Jonathan Daly
- Department of Medicine, University of Colorado, 12700 E 19th Ave, Aurora, CO, 80045, USA
| | - Jesper Falkesgaard Højen
- Department of Medicine, University of Colorado, 12700 E 19th Ave, Aurora, CO, 80045, USA
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus, Denmark
| | - Charles A Dinarello
- Department of Medicine, University of Colorado, 12700 E 19th Ave, Aurora, CO, 80045, USA
| |
Collapse
|
16
|
Ossola B, Rifat A, Rowland A, Hunter H, Drinkall S, Bender C, Hamlischer M, Teall M, Burley R, Barker DF, Cadwalladr D, Dickson L, Lawrence JMK, Harvey JRM, Lizio M, Xu X, Kavanagh E, Cheung T, Sheardown S, Lawrence CB, Harte M, Brough D, Madry C, Matthews K, Doyle K, Page K, Powell J, Brice NL, Bürli RW, Carlton MB, Dawson LA. Characterisation of C101248: A novel selective THIK-1 channel inhibitor for the modulation of microglial NLRP3-inflammasome. Neuropharmacology 2023; 224:109330. [PMID: 36375694 PMCID: PMC9841576 DOI: 10.1016/j.neuropharm.2022.109330] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Neuroinflammation, specifically the NLRP3 inflammasome cascade, is a common underlying pathological feature of many neurodegenerative diseases. Evidence suggests that NLRP3 activation involves changes in intracellular K+. Nuclear Enriched Transcript Sort Sequencing (NETSseq), which allows for deep sequencing of purified cell types from human post-mortem brain tissue, demonstrated a highly specific expression of the tandem pore domain halothane-inhibited K+ channel 1 (THIK-1) in microglia compared to other glial and neuronal cell types in the human brain. NETSseq also showed a significant increase of THIK-1 in microglia isolated from cortical regions of brains with Alzheimer's disease (AD) relative to control donors. Herein, we report the discovery and pharmacological characterisation of C101248, the first selective small-molecule inhibitor of THIK-1. C101248 showed a concentration-dependent inhibition of both mouse and human THIK-1 (IC50: ∼50 nM) and was inactive against K2P family members TREK-1 and TWIK-2, and Kv2.1. Whole-cell patch-clamp recordings of microglia from mouse hippocampal slices showed that C101248 potently blocked both tonic and ATP-evoked THIK-1 K+ currents. Notably, C101248 had no effect on other constitutively active resting conductance in slices from THIK-1-depleted mice. In isolated microglia, C101248 prevented NLRP3-dependent release of IL-1β, an effect not seen in THIK-1-depleted microglia. In conclusion, we demonstrated that inhibiting THIK-1 (a microglia specific gene that is upregulated in brains from donors with AD) using a novel selective modulator attenuates the NLRP3-dependent release of IL-1β from microglia, which suggests that this channel may be a potential therapeutic target for the modulation of neuroinflammation in AD.
Collapse
Affiliation(s)
- Bernardino Ossola
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK.
| | - Ali Rifat
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anna Rowland
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Helen Hunter
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Samuel Drinkall
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Clare Bender
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Mayida Hamlischer
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Martin Teall
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Russell Burley
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Daneil F Barker
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - David Cadwalladr
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Louise Dickson
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Jason M K Lawrence
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Jenna R M Harvey
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Marina Lizio
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Xiao Xu
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Edel Kavanagh
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Toni Cheung
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Steve Sheardown
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Catherine B Lawrence
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Michael Harte
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Christian Madry
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Kim Matthews
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Kevin Doyle
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Keith Page
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Justin Powell
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Nicola L Brice
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Roland W Bürli
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Mark B Carlton
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Lee A Dawson
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| |
Collapse
|
17
|
Sengupta U, Kayed R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog Neurobiol 2022; 214:102270. [DOI: 10.1016/j.pneurobio.2022.102270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022]
|