1
|
Huang M, Zou Y, Wang W, Li Q, Tian R. The role of baseline 18F-FDG PET/CT for survival prognosis in NSCLC patients undergoing immunotherapy: a systematic review and meta-analysis. Ther Adv Med Oncol 2024; 16:17588359241293364. [PMID: 39502406 PMCID: PMC11536524 DOI: 10.1177/17588359241293364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background The value of pretreatment baseline 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET)/computed tomography (CT) as a prognostic factor for survival of patients with non-small-cell lung cancer (NSCLC) receiving immunotherapy remained uncertain. Objectives To investigate the prognostic ability of baseline 18F-FDG PET/CT in patients with NSCLC receiving immunotherapy. Design A systematic review and meta-analysis. Data sources and methods We searched the PubMed, EMBASE, and Cochrane Central Register of Controlled Trials databases until May 7, 2024, and extracted data related to patient characteristics, semiquantitative parameters of 18F-FDG PET/CT, and survival. We pooled hazard ratios (HRs) to evaluate the prognostic value of the maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) for overall survival (OS) and progression-free survival (PFS). Results A total of 22 studies (1363 patients, average age range 30-88 years) were included. Baseline 18F-FDG PET/CT-derived MTV was significantly associated with both OS (HR: 1.124, 95% confidence interval (CI) 1.058-1.195, I 2 = 81.70%) and PFS (HR: 1.069, 95% CI: 1.016-1.124, I 2 = 71.80%). Other baseline 18F-FDG PET/CT-derived parameters, including SUVmax (OS: HR: 0.930, 95% CI: 0.718-1.230; PFS: HR: 0.979, 95% CI: 0.759-1.262), SUVmean (OS: HR: 0.801, 95% CI: 0.549-1.170; PFS: HR: 0.688, 95% CI: 0.464-1.020), and TLG (OS: HR: 0.999, 95% CI: 0.980-1.018; PFS: HR: 0.995, 95% CI: 0.980-1.010), were not associated with survival. Sensitivity analyses by removing one study at a time did not significantly alter the association between MTV and PFS or between MTV and OS. There was no evidence of publication bias. Conclusion Pretreatment baseline 18F-FDG PET/CT-derived MTV might be a prognostic biomarker in NSCLC patients receiving immunotherapy. Further studies are needed to support routine use.
Collapse
Affiliation(s)
- Mingxing Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuheng Zou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Weichen Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianrui Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan 610041, China
- National Medical Products Administration Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Chinese Evidence-Based Medicine Center, Cochrane China Center and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Feng Y, Cheng B, Zhan S, Liu H, Li J, Chen P, Wang Z, Huang X, Fu X, Ye W, Wang R, Wang Q, Xiang Y, Wang H, Zhu F, Zheng X, Fu W, Hu G, Chen Z, He J, Liang W. The impact of PET/CT and brain MRI for metastasis detection among patients with clinical T1-category lung cancer: Findings from a large-scale cohort study. Eur J Nucl Med Mol Imaging 2024; 51:3400-3416. [PMID: 38722381 PMCID: PMC11369054 DOI: 10.1007/s00259-024-06740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/26/2024] [Indexed: 09/03/2024]
Abstract
PURPOSE [18F]-FDG PET/CT and brain MRI are common approaches to detect metastasis in patients of lung cancer. Current guidelines for the use of PET/CT and MRI in clinical T1-category lung cancer lack risk-based stratification and require optimization. This study stratified patients based on metastatic risk in terms of the lesions' size and morphological characteristics. METHODS The detection rate of metastasis was measured in different sizes and morphological characteristics (solid and sub-solid) of tumors. To confirm the cut-off value for discriminating metastasis and overall survival (OS) prediction, the receiver operating characteristic (ROC) analysis was performed based on PET/CT metabolic parameters (SUVmax/SUVmean/SULpeak/MTV/TLG), followed by Kaplan-Meier analysis for survival in post-operation patients with and without PET/CT plus MRI. RESULTS 2,298 patients were included. No metastasis was observed in patients with solid nodules < 8.0 mm and sub-solid nodules < 10.0 mm. The cut-off of PET/CT metabolic parameters on discriminating metastasis were 1.09 (SUVmax), 0.26 (SUVmean), 0.31 (SULpeak), 0.55 (MTV), and 0.81 (TLG), respectively. Patients undergoing PET/CT plus MRI exhibited longer OS compared to those who did not receive it in solid nodules ≥ 8.0 mm & sub-solid nodules ≥ 10.0 mm (HR, 0.44; p < 0.001); in solid nodules ≥ 8.0 mm (HR, 0.12; p<0.001) and in sub-solid nodules ≥ 10.0 mm (HR; 0.61; p=0.075), respectively. Compared to patients with metabolic parameters lower than cut-off values, patients with higher metabolic parameters displayed shorter OS: SUVmax (HR, 12.94; p < 0.001), SUVmean (HR, 11.33; p <0.001), SULpeak (HR, 9.65; p < 0.001), MTV (HR, 9.16; p = 0.031), and TLG (HR, 12.06; p < 0.001). CONCLUSION The necessity of PET/CT and MRI should be cautiously evaluated in patients with solid nodules < 8.0 mm and sub-solid nodules < 10.0 mm, however, these examinations remained essential and beneficial for patients with solid nodules ≥ 8.0 mm and sub-solid nodules ≥ 10.0 mm.
Collapse
Affiliation(s)
- Yi Feng
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Bo Cheng
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Shuting Zhan
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Haiping Liu
- PET/CT Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianfu Li
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Peiling Chen
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Zixun Wang
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Xiaoyan Huang
- The Radiology Department of the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiuxia Fu
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Wenjun Ye
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Runchen Wang
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Qixia Wang
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Yang Xiang
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Huiting Wang
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Feng Zhu
- Detroit Medical Center Sinai-Grace Hospital, Internal Medicine Department, 6071 Outer Dr W, Detroit, MI, 48235, USA
| | - Xin Zheng
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Wenhai Fu
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Guodong Hu
- Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523108, China
| | - Zhuxing Chen
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- Pulmonary Nodule Surgical Department, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
- Department of Thoracic Surgery, NANFANG Hospital of Southern Medical University, Guangzhou, China.
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
- Department of Oncology Medical Center, The First People's Hospital of Zhaoqing, Zhaoqing City, Guangdong Province, China.
| |
Collapse
|
3
|
Kairemo K, Gouda M, Chuang HH, Macapinlac HA, Subbiah V. Deciphering Tumor Response: The Role of Fluoro-18-d-Glucose Uptake in Evaluating Targeted Therapies with Tyrosine Kinase Inhibitors. J Clin Med 2024; 13:3269. [PMID: 38892979 PMCID: PMC11173296 DOI: 10.3390/jcm13113269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: The inhibitory effects of tyrosine kinase inhibitors (TKIs) on glucose uptake through their binding to human glucose transporter-1 (GLUT-1) have been well documented. Thus, our research aimed to explore the potential impact of various TKIs of GLUT-1 on the standard [18F]FDG-PET monitoring of tumor response in patients. Methods: To achieve this, we conducted an analysis on three patients who were undergoing treatment with different TKIs and harbored actionable alterations. Alongside the assessment of FDG data (including SUVmax, total lesion glycolysis (TLG), and metabolic tumor volume (MTV)), we also examined the changes in tumor sizes through follow-up [18F]FDG-PET/CT imaging. Notably, our patients harbored alterations in BRAFV600, RET, and c-KIT and exhibited positive responses to the targeted treatment. Results: Our analysis revealed that FDG data derived from SUVmax, TLG, and MTV offered quantifiable outcomes that were consistent with the measurements of tumor size. Conclusions: These findings lend support to the notion that the inhibition of GLUT-1, as a consequence of treatment efficacy, could be indirectly gauged through [18F] FDG-PET/CT imaging in cancer patients undergoing TKI therapy.
Collapse
Affiliation(s)
- Kalevi Kairemo
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mohamed Gouda
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hubert H. Chuang
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Homer A. Macapinlac
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Sarah Cannon Research Institute, Nashville, TN 37203, USA
| |
Collapse
|
4
|
Mogavero A, Cantale O, Mollica V, Anpalakhan S, Addeo A, Mountzios G, Friedlaender A, Kanesvaran R, Novello S, Banna GL. First-line immunotherapy in non-small cell lung cancer: how to select and where to go. Expert Rev Respir Med 2023; 17:1191-1206. [PMID: 38294292 DOI: 10.1080/17476348.2024.2302356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Immunotherapy (IO) has established a new milestone in lung cancer treatment. Several registrational studies have approved immune checkpoint inhibitors (ICIs) in different settings, including the metastatic nonsmall cell lung cancer (NSCLC). As well known, responders are just a certain proportion of patients; therefore, their selection by using predictive factors has stood out as a crucial issue to address in tailoring a patient-centered care. AREAS COVERED In our review we propose a detailed yet handy cross section on ICIs as first-line treatment in metastatic NSCLC, regarding indications, histological, clinical, and blood-based biomarkers, other than their mechanisms of resistance and new immunological actionable targets. We performed a literature search through PubMed entering keywords complying with crucial features of immunotherapy. EXPERT OPINION IO represents the backbone of lung cancer treatment. Trials are currently testing novel immune blockade agents assessing combinatorial approaches with standard ICIs, or antibody drug conjugates (ADC), harboring immunological targets. Perfecting patients' selection is an ongoing challenge and a more and more urgent need in order to best predict responders who will consistently benefit from it.
Collapse
Affiliation(s)
| | | | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Shobana Anpalakhan
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Alfredo Addeo
- Oncology Department, HUG-Hopitaux Universitaires de Geneve, Geneva, Switzerland
| | - Giannis Mountzios
- Fourth Oncology Department and Clinical Trials Unit, Henry Dunant Hospital Center, Athens, Greece
| | | | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Silvia Novello
- Department of Oncology, University of Turin, Turin, Italy
| | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
5
|
Zhang X, Guo X, Gao Q, Zhang J, Zheng J, Zhao G, Okuda K, Tartarone A, Jiang M. Association between cigarette smoking history, metabolic phenotypes, and EGFR mutation status in patients with non-small cell lung cancer. J Thorac Dis 2023; 15:5689-5699. [PMID: 37969305 PMCID: PMC10636471 DOI: 10.21037/jtd-23-1371] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Background Cigarette smoking exerts a significant impact on metabolic phenotypes and epidermal growth factor receptor (EGFR) mutation status; however, their correlation remains insufficiently established. Therefore, the aim of this study was to investigate the association between cigarette smoking history, metabolic phenotypes, and EGFR mutation status in patients with non-small cell lung cancer (NSCLC). Methods We retrospectively analyzed 198 consecutive patients with NSCLC who underwent 18F-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) before treatment and were tested for EGFR mutation status between September 2019 and March 2022. Metabolic phenotypes, including the maximum standardized uptake value (SUVmax) of the primary tumors (pSUVmax), metastatic lymph nodes (nSUVmax), and distant metastases (mSUVmax) were assessed. Patients were classified into never-smokers and smokers based on detailed smoking history. The correlations between smoking status, metabolic parameters, and EGFR mutation status were evaluated in patients with NSCLC. Results We observed EGFR mutations in 73 (60.3%) of 121 never-smokers and 18 (23.4%) of 77 smokers (P<0.001). EGFR-mutant NSCLC had a lower pSUVmax than that of EGFR wild-type (WT; 8.9±4.5 vs. 12.7±6.9, P<0.001). Smokers had a higher pSUVmax than never-smokers (12.5±6.4 vs. 9.9±5.9, P=0.004). With the increase of cumulative smoking dose, the pSUVmax increased significantly (r=0.198, P=0.005). There was no significant difference between nSUVmax and mSUVmax in patients with or without EGFR mutation and smoking history. Cumulative smoking dose, pSUVmax, and their combination predicted EGFR mutation status with areas under the receiver operating characteristic (ROC) curves (AUCs) 0.688, 0.673, and 0.753, respectively. Conclusions Our findings indicate that cigarette smoking may be one of the triggers for increased pSUVmax and decreased EGFR mutations, further suggesting that EGFR mutations are associated with low pSUVmax, which may guide clinicians in risk stratification and treatment strategy selection for patients with NSCLC.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, China
| | - Xiuyu Guo
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, China
| | - Qiaoling Gao
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, China
| | - Jingfeng Zhang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, China
| | - Jianjun Zheng
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, China
| | - Guofang Zhao
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo, China
| | - Katsuhiro Okuda
- Department of Thoracic and Pediatric Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Alfredo Tartarone
- Department of Onco-Hematology, Division of Medical Oncology, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture (PZ), Italy
| | - Maoqing Jiang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, China
- Department of Nuclear Medicine, Ningbo No.2 Hospital, Ningbo, China
| |
Collapse
|
6
|
Rizzo A, Cantale O, Mogavero A, Garetto L, Racca M, Venesio T, Anpalakhan S, Novello S, Gregorc V, Banna GL. Assessing the role of colonic and other anatomical sites uptake by [ 18 F]FDG-PET/CT and immune-inflammatory peripheral blood indexes in patients with advanced non-small cell lung cancer treated with first-line immune checkpoint inhibitors. Thorac Cancer 2023; 14:2473-2483. [PMID: 37442801 PMCID: PMC10447168 DOI: 10.1111/1759-7714.15032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Inflammation in non-small cell lung cancer (NSCLC) may impair the response to immune checkpoint inhibitors (ICIs) and can be indicated by peripheral blood inflammatory indexes. 2-deoxy-2-[18 F]fluoro-D-glucose positron emission tomography/computed tomography ([18 F] FDG-PET/CT) may be used as a marker of inflammation by measuring glucose metabolism in different colonic sites. METHODS This retrospective analysis aimed to investigate the correlation between [18 F] FDGPET/CT SUVratio in six gastrointestinal districts, the spleen, the pharynx and the larynx alongside the most avid tumor lesion with peripheral blood inflammatory indexes, including the neutrophil-to-lymphocyte ratio (NLR), systemic immune-inflammatory index (SII, i.e., NLR times platelets) and lactate dehydrogenase (LDH), in patients with [18 F] FDG-PET/CT staged IV NSCLC who received first-line immune checkpoint inhibitors (ICIs). The role of SUVratios and peripheral blood inflammatory indexes in predicting overall survival (OS) and progression-free survival (PFS) was then explored. RESULTS A total of 43 patients were treated with first-line ICI alone (58%) or in combination with chemotherapy (42%). A significant correlation was only found between the rectosigmoid SUVratio and NLR (p = 0.0465). NLR >5.5 and LDH > 333.5 were associated with a worse OS (p = 0.033 and p = 0.009, respectively). The SII was associated with a worse PFS in patients treated with ICI alone (p = 0.033). None of the SUVratios were significantly associated with OS or PFS, although a high left colon SUVratio showed a trend toward a worse PFS. CONCLUSION There was no significant correlation between [18 F]FDG PET/CT uptake in different anatomical sites, and in the tumor, and systemic immune-inflammatory indexes. The prognostic role of high left colon SUVratio deserves further investigation.
Collapse
Affiliation(s)
| | - Ornella Cantale
- Department of OncologyUniversity of Turin, San Luigi HospitalTurinItaly
| | - Andrea Mogavero
- Department of OncologyUniversity of Turin, San Luigi HospitalTurinItaly
| | | | | | | | | | - Silvia Novello
- Department of OncologyUniversity of Turin, San Luigi HospitalTurinItaly
| | | | - Giuseppe Luigi Banna
- Candiolo Cancer Institute, FPO‐IRCCSTurinItaly
- Portsmouth Hospitals University NHS TrustPortsmouthUK
- Faculty of Science and HealthSchool of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUK
| |
Collapse
|
7
|
Gates EDH, Hippe DS, Vesselle HJ, Zeng J, Bowen SR. Independent association of metabolic tumor response on FDG-PET with pulmonary toxicity following risk-adaptive chemoradiation for unresectable non-small cell lung cancer: Inherent radiosensitivity or immune response? Radiother Oncol 2023; 185:109720. [PMID: 37244360 PMCID: PMC10525017 DOI: 10.1016/j.radonc.2023.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND In the context of a phase II trial of risk-adaptive chemoradiation, we evaluated whether tumor metabolic response could serve as a correlate of treatment sensitivity and toxicity. METHODS Forty-five patients with AJCCv7 stage IIB-IIIB NSCLC enrolled on the FLARE-RT phase II trial (NCT02773238). [18F]fluorodeoxyglucose (FDG) PET-CT images were acquired prior to treatment and after 24 Gy during week 3. Patients with unfavorable on-treatment tumor response received concomitant boosts to 74 Gy total over 30 fractions rather than standard 60 Gy. Metabolic tumor volume and mean standardized uptake value (SUVmean) were calculated semi-automatically. Risk factors of pulmonary toxicity included concurrent chemotherapy regimen, adjuvant anti-PDL1 immunotherapy, and lung dosimetry. Incidence of CTCAE v4 grade 2+ pneumonitis was analyzed using the Fine-Gray method with competing risks of metastasis or death. Peripheral germline DNA microarray sequencing measured predefined candidate genes from distinct pathways: 96 DNA repair, 53 immunology, 38 oncology, 27 lung biology. RESULTS Twenty-four patients received proton therapy, 23 received ICI, 26 received carboplatin-paclitaxel, and 17 pneumonitis events were observed. Pneumonitis risk was significantly higher for patients with COPD (HR 3.78 [1.48, 9.60], p = 0.005), those treated with immunotherapy (HR 2.82 [1.03, 7.71], p = 0.043) but not with carboplatin-paclitaxel (HR 1.98 [0.71, 5.54], p = 0.19). Pneumonitis rates were similar among selected patients receiving 74 Gy radiation vs 60 Gy (p = 0.33), proton therapy vs photon (p = 0.60), or with higher lung dosimetric V20 (p = 0.30). Patients in the upper quartile decrease in SUVmean (>39.7%) were at greater risk for pneumonitis (HR 4.00 [1.54, 10.44], p = 0.005) and remained significant in multivariable analysis (HR 3.34 [1.23, 9.10], p = 0.018). Germline DNA gene alterations in immunology pathways were most frequently associated with pneumonitis. CONCLUSION Tumor metabolic response as measured by mean SUV is associated with increased pneumonitis risk in a clinical trial cohort of NSCLC patients independent of treatment factors. This may be partially attributed to patient-specific differences in immunogenicity.
Collapse
Affiliation(s)
- Evan D H Gates
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Daniel S Hippe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Hubert J Vesselle
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Stephen R Bowen
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States; Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
8
|
Kudura K, Ritz N, Templeton AJ, Kutzker T, Foerster R, Antwi K, Kreissl MC, Hoffmann MHK. Predictive Value of Total Metabolic Tumor Burden Prior to Treatment in NSCLC Patients Treated with Immune Checkpoint Inhibition. J Clin Med 2023; 12:jcm12113725. [PMID: 37297920 DOI: 10.3390/jcm12113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVES We aimed to assess the predictive value of the total metabolic tumor burden prior to treatment in patients with advanced non-small-cell lung cancer (NSCLC) receiving immune checkpoint inhibitors (ICIs). METHODS Pre-treatment 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (PET/CT) scans performed in two consecutive years for staging in adult patients with confirmed NSCLC were considered. Volume, maximum/mean standardized uptake value (SUVmax/SUVmean), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were assessed per delineated malignant lesion (including primary tumor, regional lymph nodes and distant metastases) in addition to the morphology of the primary tumor and clinical data. Total metabolic tumor burden was captured by totalMTV and totalTLG. Overall survival (OS), progression-free survival (PFS) and clinical benefit (CB) were used as endpoints for response to treatment. RESULTS A total of 125 NSCLC patients were included. Osseous metastases were the most frequent distant metastases (n = 17), followed by thoracal distant metastases (pulmonal = 14 and pleural = 13). Total metabolic tumor burden prior to treatment was significantly higher in patients treated with ICIs (mean totalMTV ± standard deviation (SD) 72.2 ± 78.7; mean totalTLG ± SD 462.2 ± 538.9) compared to those without ICI treatment (mean totalMTV ± SD 58.1 ± 233.8; mean totalTLG ± SD 290.0 ± 784.2). Among the patients who received ICIs, a solid morphology of the primary tumor on imaging prior to treatment was the strongest outcome predictor for OS (Hazard ratio HR 28.04, p < 0.01), PFS (HR 30.89, p < 0.01) and CB (parameter estimation PE 3.46, p < 0.01), followed by the metabolic features of the primary tumor. Interestingly, total metabolic tumor burden prior to immunotherapy showed a negligible impact on OS (p = 0.04) and PFS (p = 0.01) after treatment given the hazard ratios of 1.00, but also on CB (p = 0.01) given the PE < 0.01. Overall, biomarkers on pre-treatment PET/CT scans showed greater predictive power in patients receiving ICIs, compared to patients without ICI treatment. CONCLUSIONS Morphological and metabolic properties of the primary tumors prior to treatment in advanced NSCLC patients treated with ICI showed great outcome prediction performances, as opposed to the pre-treatment total metabolic tumor burdens, captured by totalMTV and totalTLG, both with negligible impact on OS, PFS and CB. However, the outcome prediction performance of the total metabolic tumor burden might be influenced by the value itself (e.g., poorer prediction performance at very high or very low values of total metabolic tumor burden). Further studies including subgroup analysis with regards to different values of total metabolic tumor burden and their respective outcome prediction performances might be needed.
Collapse
Affiliation(s)
- Ken Kudura
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
- Department of Radiology, Sankt Clara Hospital, 4058 Basel, Switzerland
- Sankt Clara Research, 4002 Basel, Switzerland
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Nando Ritz
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Arnoud J Templeton
- Sankt Clara Research, 4002 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Tim Kutzker
- Faculty of Applied Statistics, Humboldt University, 10117 Berlin, Germany
| | - Robert Foerster
- Department of Radiooncology, Cantonal Hospital Winterthur, 8400 Winterthur, Switzerland
| | - Kwadwo Antwi
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
- Department of Radiology, Sankt Clara Hospital, 4058 Basel, Switzerland
| | - Michael C Kreissl
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Martin H K Hoffmann
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
- Department of Radiology, Sankt Clara Hospital, 4058 Basel, Switzerland
| |
Collapse
|