1
|
Sukumar VK, Tai YK, Chan CW, Iversen JN, Wu KY, Fong CHH, Lim JSJ, Franco-Obregón A. Brief Magnetic Field Exposure Stimulates Doxorubicin Uptake into Breast Cancer Cells in Association with TRPC1 Expression: A Precision Oncology Methodology to Enhance Chemotherapeutic Outcome. Cancers (Basel) 2024; 16:3860. [PMID: 39594815 PMCID: PMC11592624 DOI: 10.3390/cancers16223860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Doxorubicin (DOX) is commonly used as a chemotherapeutic agent for the treatment of breast cancer. Nonetheless, its systemic delivery via intravenous injection and toxicity towards healthy tissues commonly result in a broad range of detrimental side effects. Breast cancer severity was previously shown to be correlated with TRPC1 channel expression that conferred upon it enhanced vulnerability to pulsed electromagnetic field (PEMF) therapy. PEMF therapy was also previously shown to enhance breast cancer cell vulnerability to DOX in vitro and in vivo that correlated with TRPC1 expression and mitochondrial respiratory rates. Methods: DOX uptake was assessed by measuring its innate autofluorescence within murine 4T1 or human MCF7 breast cancer cells following magnetic exposure. Cellular vulnerability to doxorubicin uptake was assessed by monitoring mitochondrial activity and cellular DNA content. Results: Here, we demonstrate that 10 min of PEMF exposure could augment DOX uptake into 4T1 and MCF7 breast cancer cells. DOX uptake could be increased by TRPC1 overexpression, whereas inhibiting the activity of TRPC1 channels with SKF-96356 or genetic knockdown, precluded DOX uptake. PEMF exposure enhances DOX-mediated killing of breast cancer cells, reducing the IC50 value of DOX by half, whereas muscle cells, representative of collateral tissues, were less sensitive to PEMF-enhanced DOX-mediated cytotoxicity. Vesicular loading of DOX correlated with TRPC1 expression. Conclusions: This study presents a novel TRPC1-mediated mechanism through which PEMF therapy may enhance DOX cytotoxicity in breast cancer cells, paving the way for the development of localized non-invasive PEMF platforms to improve cancer outcomes with lower systemic levels of DOX.
Collapse
Affiliation(s)
- Viresh Krishnan Sukumar
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Yee Kit Tai
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Ching Wan Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Jan Nikolas Iversen
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Kwan Yu Wu
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Charlene Hui Hua Fong
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Joline Si Jing Lim
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- Experimental Therapeutics Programme, Cancer Science Institute, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore 119228, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119074, Singapore
| | - Alfredo Franco-Obregón
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
2
|
Deng RZ, Zheng X, Lu ZL, Yuan M, Meng QC, Wu T, Tian Y. Effect of colorectal cancer stem cells on the development and metastasis of colorectal cancer. World J Gastrointest Oncol 2024; 16:4354-4368. [PMID: 39554751 PMCID: PMC11551631 DOI: 10.4251/wjgo.v16.i11.4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
The relevant mechanism of tumor-associated macrophages (TAMs) in the treatment of colorectal cancer patients with immune checkpoint inhibitors (ICIs) is discussed, and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies. As a class of drugs widely used in clinical tumor immunotherapy, ICIs can act on regulatory molecules on cells that play an inhibitory role - immune checkpoints - and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system. The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly. The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs. ICIs can regulate the phenotypic function of TAMs, and TAMs can also affect the tolerance of colorectal cancer to ICI therapy. TAMs play an important role in ICI resistance, and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Run-Zhi Deng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
| | - Xin Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
| | - Zhong-Lei Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
| | - Ming Yuan
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Qi-Chang Meng
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Tao Wu
- Department of General Surgery, West China Hospital of Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Yu Tian
- Department of Thoracic Surgery, Yancheng No. 1 People’s Hospital, Affiliated Hospital of Nanjing University Medical School, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu Province, China
| |
Collapse
|
3
|
Zhong Y, Chen X, Wu S, Fang H, Hong L, Shao L, Wang L, Wu J. Deciphering colorectal cancer radioresistance and immune microrenvironment: unraveling the role of EIF5A through single-cell RNA sequencing and machine learning. Front Immunol 2024; 15:1466226. [PMID: 39290702 PMCID: PMC11405197 DOI: 10.3389/fimmu.2024.1466226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Background Radiotherapy (RT) is a critical component of treatment for locally advanced rectal cancer (LARC), though patient response varies significantly. The variability in treatment outcomes is partly due to the resistance conferred by cancer stem cells (CSCs) and tumor immune microenvironment (TiME). This study investigates the role of EIF5A in radiotherapy response and its impact on the CSCs and TiME. Methods Predictive models for preoperative radiotherapy (preRT) response were developed using machine learning, identifying EIF5A as a key gene associated with radioresistance. EIF5A expression was analyzed via bulk RNA-seq and single-cell RNA-seq (scRNA-seq). Functional assays and in vivo experiments validated EIF5A's role in radioresistance and TiME modulation. Results EIF5A was significantly upregulated in radioresistant colorectal cancer (CRC) tissues. EIF5A knockdown in CRC cell lines reduced cell viability, migration, and invasion after radiation, and increased radiation-induced apoptosis. Mechanistically, EIF5A promoted cancer stem cell (CSC) characteristics through the Hedgehog signaling pathway. Analysis of the TiME revealed that the radiation-resistant group had an immune-desert phenotype, characterized by low immune cell infiltration. In vivo experiments showed that EIF5A knockdown led to increased infiltration of CD8+ T cells and M1 macrophages, and decreased M2 macrophages and Tregs following radiation therapy, thereby enhancing the radiotherapy response. Conclusion EIF5A contributes to CRC radioresistance by promoting CSC traits via the Hedgehog pathway and modulating the TiME to an immune-suppressive state. Targeting EIF5A could enhance radiation sensitivity and improve immune responses, offering a potential therapeutic strategy to optimize radiotherapy outcomes in CRC patients.
Collapse
Affiliation(s)
- Yaqi Zhong
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University Fujian Cancer Hospital, (Fujian Branch of Fudan University Shanghai Cancer Center), Fujian Cancer Hospital, Fuzhou, China
| | - Xingte Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University Fujian Cancer Hospital, (Fujian Branch of Fudan University Shanghai Cancer Center), Fujian Cancer Hospital, Fuzhou, China
| | - Shiji Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University Fujian Cancer Hospital, (Fujian Branch of Fudan University Shanghai Cancer Center), Fujian Cancer Hospital, Fuzhou, China
| | - Huipeng Fang
- Department of Hepatopancreatobiliary Surgery, Clinical Oncology School of Fujian Medical University, (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Liang Hong
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University Fujian Cancer Hospital, (Fujian Branch of Fudan University Shanghai Cancer Center), Fujian Cancer Hospital, Fuzhou, China
| | - Lingdong Shao
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University Fujian Cancer Hospital, (Fujian Branch of Fudan University Shanghai Cancer Center), Fujian Cancer Hospital, Fuzhou, China
| | - Lei Wang
- Department of Radiation Oncology, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Junxin Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University Fujian Cancer Hospital, (Fujian Branch of Fudan University Shanghai Cancer Center), Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
4
|
Liu Y, Yao X, Zhao W, Xu J, Zhang H, Huang T, Wu C, Yang J, Tang C, Ye Q, Hu W, Wang Q. A comprehensive analysis of TRP-related gene signature, and immune infiltration in patients with colorectal cancer. Discov Oncol 2024; 15:357. [PMID: 39154317 PMCID: PMC11330954 DOI: 10.1007/s12672-024-01227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Transient receptor potential (TRP) channels are involved in the development and progression of tumors. However, their role in colorectal cancer (CRC) remains unclear, and this study aims to investigate the role of TRP-related genes in CRC. METHODS Data was obtained from The Cancer Genome Atlas (TCGA) database, and analyses were conducted on the GSE14333 and GSE38832 datasets to assess the prognosis and mark TRP-related genes (TRGs). Subsequently, clustering analysis and immune infiltration analysis were performed to explore the relevant TRGs. In vitro validation of key TRGs' gene and protein expression was conducted using human colon cancer cells. RESULTS Compared to normal tissues, 8 TRGs were significantly upregulated in CRC, while 11 were downregulated. TRPA1 was identified as a protective prognostic factor, whereas TRPM5 (HR = 1.349), TRPV4 (HR = 1.289), and TRPV3 (HR = 1.442) were identified as prognostic risk factors. Receiver operating characteristic (ROC) curves and Kaplan-Meier (KM) analyses yielded similar results. Additionally, lower expression of TRPA1 and higher expression of TRPV4 and TRPM5 were negatively correlated with patient prognosis, and experimental validation confirmed the underexpression of TRPA1 and overexpression of TRPV4 and TRPM5 in CRC cell lines. CONCLUSION This study identifies a TRP channel-related prognosis in CRC, providing a novel approach to stratifying CRC prognosis.
Collapse
Affiliation(s)
- Yicheng Liu
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Xiaobing Yao
- Gastrointestinal surgery, Yueyang hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhao
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Jin Xu
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Haiyan Zhang
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Ting Huang
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Chuang Wu
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Jiajia Yang
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Cheng Tang
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Qianqian Ye
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiye Hu
- Department of Liver, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingming Wang
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China.
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Zhang L, Ren C, Liu J, Huang S, Wu C, Zhang J. Development and therapeutic implications of small molecular inhibitors that target calcium-related channels in tumor treatment. Drug Discov Today 2024; 29:103995. [PMID: 38670255 DOI: 10.1016/j.drudis.2024.103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Calcium ion dysregulation exerts profound effects on various physiological activities such as tumor proliferation, migration, and drug resistance. Calcium-related channels play a regulatory role in maintaining calcium ion homeostasis, with most channels being highly expressed in tumor cells. Additionally, these channels serve as potential drug targets for the development of antitumor medications. In this review, we first discuss the current research status of these pathways, examining how they modulate various tumor functions such as epithelial-mesenchymal transition (EMT), metabolism, and drug resistance. Simultaneously, we summarize the recent progress in the study of novel small-molecule drugs over the past 5 years and their current status.
Collapse
Affiliation(s)
- Linxi Zhang
- China Medical University-Queen's University of Belfast Joint College, China Medical University, Shenyang 110000, Liaoning, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, China
| | - Jiao Liu
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
Li Q, Chu Y, Yao Y, Song Q. A Treg-related riskscore model may improve the prognosis evaluation of colorectal cancer. J Gene Med 2024; 26:e3668. [PMID: 38342959 DOI: 10.1002/jgm.3668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) poses a significant health challenge. This study aims to investigate the prognostic value of a regulatory T cell (Treg)-related gene signature in CRC. METHODS We extracted the gene expression and clinical data on CRC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The gene module related to Treg was identified by weighted gene co-expression network analysis (WGCNA). The genes in the significant module were filtered by univariate Cox, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis. A riskscore model was established in terms of the key Treg-related genes. The reliability of this riskscore model was validated using the external GEO dataset. The association of riskscore with clinical features, mutation patterns and signaling pathways was explored. RESULTS Genes in the blue module showed the strongest association with Tregs. After a series of filtering cycles, seven Treg-related key genes, GDE1, GSR, HSPB1, AOC2, TBX19, TAMM41 and TIGD6, were selected to construct a riskscore model. This model performed well in evaluating the patients' survival in TCGA cohort, and was further affirmed by the GSE17536 validation cohort. For precise evaluation of the patients' survival, we established a nomogram in light of riskscore and clinical factors. Patients in different risk groups had distinct clinical features, mutation patterns and signaling pathway activities. The expression of five key genes was significantly associated with Treg infiltration in the CRC samples. CONCLUSION We established a useful riskscore model in light of seven Treg-related genes. This model may contribute to the prognosis evaluation, direct tailored treatment, and hopefully improve clinical outcomes of the CRC patients.
Collapse
Affiliation(s)
- Qingqing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuxin Chu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Ning XL, Shao M. Analysis of prognostic factors in patients with emergency sepsis. World J Clin Cases 2023; 11:5903-5909. [PMID: 37727482 PMCID: PMC10506019 DOI: 10.12998/wjcc.v11.i25.5903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Emergency sepsis is a common and serious infectious disease, and its prognosis is influenced by a number of factors. AIM To analyse the factors influencing the prognosis of patients with emergency sepsis in order to provide a basis for individualised patient treatment and care. By retrospectively analysing the clinical data collected, we conducted a comprehensive analysis of factors such as age, gender, underlying disease, etiology and site of infection, inflammatory indicators, multi-organ failure, cardiovascular function, therapeutic measures, immune status and severity of infection. METHODS Data collection: Clinical data were collected from patients diagnosed with acute sepsis, including basic information, laboratory findings, medical history and treatment options. Variable selection: Variables associated with prognosis were selected, including age, gender, underlying disease, etiology and site of infection, inflammatory indicators, multi-organ failure, cardiovascular function, treatment measures, immune status and severity of infection. Data analysis: The data collected are analysed using appropriate statistical methods such as multiple regression analysis and survival analysis. The impact of each factor on prognosis was assessed according to prognostic indicators, such as survival, length of stay and complication rates. RESULTS Descriptive statistics: Descriptive statistics were performed on the data collected from the patients, including their basic characteristics and clinical presentation. CONCLUSION Type 2 diabetes mellitus were independent factors affecting the prognosis of patients with sepsis.
Collapse
Affiliation(s)
- Xian-Li Ning
- Department of Emergency, Anqing Municipal Hospital, Anqing 246000, Anhui Province, China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
| |
Collapse
|
8
|
Tanaka MD, Geubels BM, Grotenhuis BA, Marijnen CAM, Peters FP, van der Mierden S, Maas M, Couwenberg AM. Validated Pretreatment Prediction Models for Response to Neoadjuvant Therapy in Patients with Rectal Cancer: A Systematic Review and Critical Appraisal. Cancers (Basel) 2023; 15:3945. [PMID: 37568760 PMCID: PMC10417363 DOI: 10.3390/cancers15153945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Pretreatment response prediction is crucial to select those patients with rectal cancer who will benefit from organ preservation strategies following (intensified) neoadjuvant therapy and to avoid unnecessary toxicity in those who will not. The combination of individual predictors in multivariable prediction models might improve predictive accuracy. The aim of this systematic review was to summarize and critically appraise validated pretreatment prediction models (other than radiomics-based models or image-based deep learning models) for response to neoadjuvant therapy in patients with rectal cancer and provide evidence-based recommendations for future research. MEDLINE via Ovid, Embase.com, and Scopus were searched for eligible studies published up to November 2022. A total of 5006 studies were screened and 16 were included for data extraction and risk of bias assessment using Prediction model Risk Of Bias Assessment Tool (PROBAST). All selected models were unique and grouped into five predictor categories: clinical, combined, genetics, metabolites, and pathology. Studies generally included patients with intermediate or advanced tumor stages who were treated with neoadjuvant chemoradiotherapy. Evaluated outcomes were pathological complete response and pathological tumor response. All studies were considered to have a high risk of bias and none of the models were externally validated in an independent study. Discriminative performances, estimated with the area under the curve (AUC), ranged per predictor category from 0.60 to 0.70 (clinical), 0.78 to 0.81 (combined), 0.66 to 0.91 (genetics), 0.54 to 0.80 (metabolites), and 0.71 to 0.91 (pathology). Model calibration outcomes were reported in five studies. Two collagen feature-based models showed the best predictive performance (AUCs 0.83-0.91 and good calibration). In conclusion, some pretreatment models for response prediction in rectal cancer show encouraging predictive potential but, given the high risk of bias in these studies, their value should be evaluated in future, well-designed studies.
Collapse
Affiliation(s)
- Max D. Tanaka
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Barbara M. Geubels
- Department of Surgery, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Surgery, Catharina Hospital, 5602 ZA Eindhoven, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Brechtje A. Grotenhuis
- Department of Surgery, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Corrie A. M. Marijnen
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Radiation Oncology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Femke P. Peters
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Stevie van der Mierden
- Scientific Information Service, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Monique Maas
- GROW School for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Alice M. Couwenberg
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|