1
|
Wen J, Chen G, Wang T, Yu W, Liu Z, Wang H. High-pressure Hydrodynamic Injection as a Method of Establishing Hepatitis B Virus Infection in Mice. Comp Med 2024; 74:19-24. [PMID: 38365263 PMCID: PMC10938560 DOI: 10.30802/aalas-cm-23-000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
Among several existing mouse models for hepatitis B virus (HBV) infection, the high-pressure hydrodynamic injection (HDI) method is frequently used in HBV research due to its economic advantages and ease of implementation. The use of the HDI method is influenced by factors such as mouse genetic background, age, sex, and the type of HBV plasmid used. This overview provides a multidimensional analysis and comparison of various factors that influence the effectiveness of the HBV mouse model established through HDI. The goal is to provide a summary of information for researchers who create HBV models in mice.
Collapse
Affiliation(s)
- Juan Wen
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoli Chen
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Tianshun Wang
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wan Yu
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhengyun Liu
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huan Wang
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Xie Y, Yao J, Yan M, Lin Y, Wei J, Wang H, Mao Y, Liu P, Li X. Pretreatment of UC-MSCs with IFN-α2 improves treatment of liver fibrosis by recruiting neutrophils. J Transl Med 2023; 21:832. [PMID: 37980535 PMCID: PMC10656886 DOI: 10.1186/s12967-023-04732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND The use of umbilical cord mesenchymal stem cells (UC-MSCs) is a burgeoning method for the treatment of liver cirrhosis. However, the secretory phenotype and regulatory ability of UC-MSCs are easily affected by their microenvironment. Ensuring a specific microenvironment to enhance the UC-MSCs phenotype is a potential strategy for improving their therapeutic efficacy. The aim of this study was to explore therapeutic UC-MSCs phenotypes for improving liver fibrosis. METHODS RNA-sequencing was used to analyze the response pattern of UC-MSCs after exposure to the serum of cirrhotic patients with HBV. Using immunohistochemistry, quantitative polymerase chain reaction, and immunofluorescence techniques, we evaluated the therapeutic effect of UC-MSCs pretreated with interferon alpha 2 (IFN-α2) (pre-MSCs) in an animal model of cirrhosis. Immunoblotting, ELISA, and other techniques were used to analyze the signaling pathways underlying the IFN-induced changes in UC-MSCs. RESULTS UC-MSCs exposed to the serum of patients with hepatitis B-induced cirrhosis showed an enhanced response to type I IFN. The activated type I IFN signal induced the highest secretion of colony-stimulating factor 3 (CSF-3), interleukin (IL)-8, and chemokine (C-C motif) ligand 20 (CCL20) by the UC-MSCs. Pre-MSCs showed a higher therapeutic efficacy than untreated UC-MSCs in an animal model of liver fibrosis. Immunohistochemical analysis revealed that pre-MSCs could recruit neutrophils resulting in an increase in the secretion of matrix metalloprotease 8 that alleviated fibrosis. When neutrophils in animals were depleted, the therapeutic effect of pre-MSCs on fibrosis was inhibited. IFN-α2 altered the secretory phenotype of UC-MSCs by activating phosphorylated signal transducer and activator of transcription 1 and 2 (p-STAT1 and p-STAT2). CONCLUSIONS Pre-MSCs exhibited enhanced secretion of CSF-3, IL-8, and CCL20 and recruited neutrophils to alleviate fibrosis. This new strategy can improve cell therapy for liver cirrhosis.
Collapse
Affiliation(s)
- Ye Xie
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia Yao
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Mengchao Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiayun Wei
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haiping Wang
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Yongcui Mao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Pinyan Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
3
|
Wang Y, Guo L, Shi J, Li J, Wen Y, Gu G, Cui J, Feng C, Jiang M, Fan Q, Tang J, Chen S, Zhang J, Zheng X, Pan M, Li X, Sun Y, Zhang Z, Li X, Hu F, Zhang L, Tang X, Li F. Interferon stimulated immune profile changes in a humanized mouse model of HBV infection. Nat Commun 2023; 14:7393. [PMID: 37968364 PMCID: PMC10652013 DOI: 10.1038/s41467-023-43078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023] Open
Abstract
The underlying mechanism of chronic hepatitis B virus (HBV) functional cure by interferon (IFN), especially in patients with low HBsAg and/or young ages, is still unresolved due to the lack of surrogate models. Here, we generate a type I interferon receptor humanized mouse (huIFNAR mouse) through a CRISPR/Cas9-based knock-in strategy. Then, we demonstrate that human IFN stimulates gene expression profiles in huIFNAR peripheral blood mononuclear cells (PBMCs) are similar to those in human PBMCs, supporting the representativeness of this mouse model for functionally analyzing human IFN in vivo. Next, we reveal the tissue-specific gene expression atlas across multiple organs in response to human IFN treatment; this pattern has not been reported in healthy humans in vivo. Finally, by using the AAV-HBV model, we test the antiviral effects of human interferon. Fifteen weeks of human PEG-IFNα2 treatment significantly reduces HBsAg and HBeAg and even achieves HBsAg seroconversion. We observe that activation of intrahepatic monocytes and effector memory CD8 T cells by human interferon may be critical for HBsAg suppression. Our huIFNAR mouse can authentically respond to human interferon stimulation, providing a platform to study interferon function in vivo. PEG-IFNα2 treatment successfully suppresses intrahepatic HBV replication and achieves HBsAg seroconversion.
Collapse
Affiliation(s)
- Yaping Wang
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China
| | - Liliangzi Guo
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China
| | - Jingrong Shi
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China
| | - Jingyun Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanling Wen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guoming Gu
- Guangzhou XY Biotechnology Co., Ltd, Room 2048, Building 1, No. 6, Nanjiang Second Road, Pearl River Street, Nansha District, Guangzhou, China
| | - Jianping Cui
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China
| | - Chengqian Feng
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China
| | - Mengling Jiang
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China
| | - Qinghong Fan
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China
| | - Jingyan Tang
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China
| | - Sisi Chen
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China
| | - Jun Zhang
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China
| | - Xiaowen Zheng
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China
| | - Meifang Pan
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China
| | - Xinnian Li
- Guangzhou Forevergen Medical Laboratory, Room 802, No. 8, Luoxuan 3rd Road, Haizhu, Guangzhou, Guangdong, China
| | - Yanxia Sun
- Cytek (Shanghai) Biosciences Co, Ltd, Guangzhou, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xian Li
- Guangzhou XY Biotechnology Co., Ltd, Room 2048, Building 1, No. 6, Nanjiang Second Road, Pearl River Street, Nansha District, Guangzhou, China
| | - Fengyu Hu
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China
| | - Liguo Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoping Tang
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China.
| | - Feng Li
- Institute of infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Moreau TRJ, Bondet V, Rodero MP, Duffy D. Heterogeneity and functions of the 13 IFN-α subtypes - lucky for some? Eur J Immunol 2023; 53:e2250307. [PMID: 37367434 DOI: 10.1002/eji.202250307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Type I IFNs are critical for host responses to viral infection and are also implicated in the pathogenesis of multiple autoimmune diseases. Multiple subtypes exist within the type I IFN family, in particular 13 distinct IFN-α genes, which signal through the same heterodimer receptor that is ubiquitously expressed by mammalian cells. Both evolutionary genetic studies and functional antiviral assays strongly suggest differential functions and activity between the 13 IFN-α subtypes, yet we still lack a clear understanding of these different roles. This review summarizes the evidence from studies describing differential functions of IFN-α subtypes and highlights potential reasons for discrepancies between the reports. We examine both acute and chronic viral infection, as well as autoimmunity, and integrate a more recent awareness of the importance of anti-IFN-α autoantibodies in shaping the type I IFN responses in these different conditions.
Collapse
Affiliation(s)
- Thomas R J Moreau
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mathieu P Rodero
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|