1
|
Häcker G. Chlamydia in pigs: intriguing bacteria associated with sub-clinical carriage and clinical disease, and with zoonotic potential. Front Cell Dev Biol 2024; 12:1301892. [PMID: 39206090 PMCID: PMC11349706 DOI: 10.3389/fcell.2024.1301892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Chlamydiae are bacteria that are intriguing and important at the same time. The genus Chlamydia encompasses many species of obligate intracellular organisms: they can multiply only inside the cells of their host organism. Many, perhaps most animals have their own specifically adapted chlamydial species. In humans, the clinically most relevant species is Chlamydia trachomatis, which has particular importance as an agent of sexually transmitted disease. Pigs are the natural host of Chlamydia suis but may also carry Chlamydia abortus and Chlamydia pecorum. C. abortus and possibly C. suis have anthropozoonotic potential, which makes them interesting to human medicine, but all three species bring a substantial burden of disease to pigs. The recent availability of genomic sequence comparisons suggests adaptation of chlamydial species to their respective hosts. In cell biological terms, many aspects of all the species seem similar but non-identical: the bacteria mostly replicate within epithelial cells; they are taken up by the host cell in an endosome that they customize to generate a cytosolic vacuole; they have to evade cellular defences and have to organize nutrient transport to the vacuole; finally, they have to organize their release to be able to infect the next cell or the next host. What appears to be very difficult and challenging to achieve, is in fact a greatly successful style of parasitism. I will here attempt to cover some of the aspects of the infection biology of Chlamydia, from cell biology to immune defence, epidemiology and possibilities of prevention. I will discuss the pig as a host species and the species known to infect pigs but will in particular draw on the more detailed knowledge that we have on species that infect especially humans.
Collapse
Affiliation(s)
- Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Poston TB. Advances in vaccine development for Chlamydia trachomatis. Pathog Dis 2024; 82:ftae017. [PMID: 39043447 PMCID: PMC11338180 DOI: 10.1093/femspd/ftae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 07/25/2024] Open
Abstract
Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection globally. Antibiotic treatment is highly effective, but infection is often asymptomatic resulting in most individuals going undetected and untreated. This untreated infection can ascend to the upper female genital tract to cause pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. Chlamydia screening and treatment programs have failed to control this epidemic and demonstrate the need for an efficacious vaccine to prevent transmission and disease. Animal models and human epidemiological data reveal that natural immunity can provide partial or short-lived sterilizing immunity. These data further demonstrate the importance of eliciting interferon gamma (IFNγ)-producing cluster of differentiation 4 (CD4) T cells (Th1 and Th1/17 cells) that can likely synergize with antibody-mediated opsonophagocytosis to provide optimal protection. These studies have guided preclinical rational vaccine design for decades and the first Phase 1 clinical trials have recently been completed. Recent advances have led to improvements in vaccine platforms and clinically safe adjuvants that help provide a path forward. This review describes vaccine models, correlates of immunity, antigen and adjuvant selection, and future clinical testing for Chlamydia vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
3
|
Zhao L, Wang X, Li Z. A novel chimeric recombinant FliC-Pgp3 vaccine promotes immunoprotection against Chlamydia muridarum infection in mice. Int J Biol Macromol 2024; 258:128723. [PMID: 38101679 DOI: 10.1016/j.ijbiomac.2023.128723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The Pgp3 subunit vaccine elicits immune protection against Chlamydia trachomatis infection, but additional adjuvants are still required to enhance its immunoprotective efficacy. Flagellin can selectively stimulate immunity and act as an adjuvant. In this research, the FliC-Pgp3 recombinant was successfully expressed and purified. Tri-immunization with the FliC-Pgp3 vaccine in Balb/C mice induced rapid and persistent germinal center B-cell response and Tfh differentiation, promoting a significantly higher IgG antibody titer compared to the Pgp3 group. FliC-Pgp3 immunization primarily induced Th1-type cellular immunity, leading to higher levels of IFN-γ, TNF-α, and IL-2 secreted by CD4+ T cells than in Pgp3-vaccinated mice. Chlamydia muridarum challenge results showed that FliC-Pgp3-vaccinated mice exhibited more rapid clearance of Chlamydia muridarum colonization in the lower genital tract, ensuring a lower hydrosalpinx rate and cumulative score. Histological analysis showed reduced dilation and inflammatory infiltration in the oviduct and uterine horn of FliC-Pgp3-vaccinated mice compared to the PBS and Pgp3 control. Importantly, tri-immunization with FliC-Pgp3 effectively activated CD4+ T cells and dendritic cells, as confirmed by the adoptive transfer, resulting in better immune protection in recipient mice. In summary, the novel FliC-Pgp3 chimeric is hoped to be a novel vaccine with improved immunoprotection against Chlamydia muridarum.
Collapse
Affiliation(s)
- Lanhua Zhao
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province, University of South China, Hengyang 421001, Hunan, People's Republic of China
| | - Xinglv Wang
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province, University of South China, Hengyang 421001, Hunan, People's Republic of China
| | - Zhongyu Li
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province, University of South China, Hengyang 421001, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Huang Y, Wu H, Sun Y, Liu Y. Tryptophan residue of plasmid-encoded Pgp3 is important for Chlamydia muridarum to induce hydrosalpinx in mice. Front Microbiol 2023; 14:1216372. [PMID: 37497542 PMCID: PMC10367112 DOI: 10.3389/fmicb.2023.1216372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
The crucial role of plasmid-encoded protein Pgp3 in Chlamydia pathogenesis has been demonstrated in various animal models. Previous studies have revealed that the Pgp3-deficient C. muridarum mutant fails to induce hydrosalpinx after vaginal inoculation in mice. Structural analysis of C. trachomatis Pgp3 trimer has indicated that Trp234 may play a critical role in trimeric crystal packing interactions and that Tyr197 is involved at predominant cation-binding sites. In this study, we constructed C. muridarum transformants harboring Pgp3, Trp234, or Tyr197 point mutations (Pgp3W234A and Pgp3Y197A). C3H/HeJ mice infected with Pgp3W234A mutant failed to induce severe hydrosalpinx in the oviduct tissue, which largely phenocopied the full-length Pgp3-deficient C. muridarum. The Pgp3Y197A variant induced an intermediate severity of pathology. The attenuated pathogenicity caused by the Pgp3W234A mutant may be due to its decreased survival in the lower genital tracts of mice, reduced ascension to the oviduct, and milder induction of inflammatory cell infiltration in the oviduct tissue. Thus, our results point to an important amino acid residue involved in Pgp3 virulence, providing a potential therapeutic target for chlamydial infection.
Collapse
Affiliation(s)
- Yumeng Huang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Haoqing Wu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Yina Sun
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yuanjun Liu
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Wang C, Jin Y, Wang J, Zheng K, Lei A, Lu C, Wang S, Wu Y. Protective Immunity against Chlamydia psittaci Lung Infection Induced by a DNA Plasmid Vaccine Carrying CPSIT_p7 Gene Inhibits Dissemination in BALB/c Mice. Int J Mol Sci 2023; 24:ijms24087013. [PMID: 37108176 PMCID: PMC10138700 DOI: 10.3390/ijms24087013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 04/29/2023] Open
Abstract
Chlamydia psittaci (C. psittaci), a zoonotic pathogen, poses a potential threat to public health security and the development of animal husbandry. Vaccine-based preventative measures for infectious diseases have a promising landscape. DNA vaccines, with many advantages, have become one of the dominant candidate strategies in preventing and controlling the chlamydial infection. Our previous study showed that CPSIT_p7 protein is an effective candidate for a vaccine against C. psittaci. Thus, this study evaluated the protective immunity of pcDNA3.1(+)/CPSIT_p7 against C. psittaci infection in BALB/c mice. We found that pcDNA3.1(+)/CPSIT_p7 can induce strong humoral and cellular immune responses. The IFN-γ and IL-6 levels in the infected lungs of mice immunized with pcDNA3.1(+)/CPSIT_p7 reduced substantially. In addition, the pcDNA3.1(+)/CPSIT_p7 vaccine diminished pulmonary pathological lesions and reduced the C. psittaci load in the lungs of infected mice. It is worth noting that pcDNA3.1(+)/CPSIT_p7 suppressed C. psittaci dissemination in BALB/c mice. In a word, these results demonstrate that the pcDNA3.1(+)/CPSIT_p7 DNA vaccine has good immunogenicity and immunity protection effectiveness against C. psittaci infection in BALB/c mice, especially pulmonary infection, and provides essential practical experience and insights for the development of a DNA vaccine against chlamydial infection.
Collapse
Affiliation(s)
- Chuan Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Yingqi Jin
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Jiewen Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Kang Zheng
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang 421001, China
| | - Aihua Lei
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Shuzhi Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
- Department of Pharmacology, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Yimou Wu
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| |
Collapse
|