1
|
Lu M, Xia H, Xu J, Liao Z, Li Y, Peng H. Overexpression of TPD52L2 in HNSCC: prognostic significance and correlation with immune infiltrates. BMC Oral Health 2024; 24:1191. [PMID: 39375696 PMCID: PMC11460091 DOI: 10.1186/s12903-024-04977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Evidence has been presented that the tumor protein D52 (TPD52) family plays a critical role in tumor development and progression. As a member of the TPD52 family, the changes in TPD52L2 gene status are instrumental in kinds of cancer development. However, its effects on patient prognosis and immune infiltration in Head and Neck Squamous Carcinoma (HNSCC) are still poorly understood. METHODS The Tumor Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and c-BioPortal database was used to explore the expression pattern, prognostic value, and variation of gene status in HNSCC. The LinkedOmics database was used to obtain the co-expression genes of TPD52L2 and identify the diagnostic value of TPD52L2 in HNSCC. The correlations between TPD52L2 expression and six main types of immune cell infiltrations and immune signatures were explored using Tumor Immune Estimation Resource (TIMER). The correlation between TPD52L2 expression and immune checkpoint genes (ICGs) was analyzed by TCGA database. Immunohistochemistry (IHC) was performed to validate the expression of three ICGs (PDL1, PDL2, EGFR) and TPD52L2 using 5 paired HNSCC and normal head and neck tissues. Polymerase Chain Reaction (PCR) and Western Blot (WB) of HNSCC and normal head and neck cell lines were performed to verify the high level of TPD52L2 mRNA and protein expression. protein expression of TPD52L2 in pan-cancer was also validated using UALCAN. RESULTS TPD52L2 was overexpressed in tumor tissues, and it predicted worse survival status in HNSCC. ROC analysis suggested that TPD52L2 had a diagnostic value. Multivariate Cox analysis identified TPD52L2 as an independent negative prognostic marker of overall survival. Functional network analysis suggested that TPD52L2 was associated with immune-related signaling pathways, cell migration pathways, and cancer-related pathways. High expression of TPD52L2 was associated with a more mutant frequency of TP53. Notably, we found that the expression of TPD52L2 was closely negatively correlated with the infiltration levels of 15 types of immune cells and positively correlated with several immune markers. PCR, WB experiments, and UALCAN database verified the high level of TPD52L2 mRNA and protein expression. CONCLUSION TPD52L2 is upregulated in HNSCC, which is an independent factor for adverse prognosis prediction. It probably plays a role in the negative regulation of immune cell infiltration. TPD52L2 might be a promising prognostic biomarker and therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Min Lu
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Haoyu Xia
- The Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Jing Xu
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Zijun Liao
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yuwen Li
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Hanwei Peng
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
2
|
Li MP, Long SP, Liu WC, Long K, Gao XH. EMT-related gene classifications predict the prognosis, immune infiltration, and therapeutic response of osteosarcoma. Front Pharmacol 2024; 15:1419040. [PMID: 39170698 PMCID: PMC11335561 DOI: 10.3389/fphar.2024.1419040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Osteosarcoma (OS), a bone tumor with high ability of invasion and metastasis, has seriously affected the health of children and adolescents. Many studies have suggested a connection between OS and the epithelial-mesenchymal transition (EMT). We aimed to integrate EMT-Related genes (EMT-RGs) to predict the prognosis, immune infiltration, and therapeutic response of patients with OS. Methods We used consensus clustering to identify potential EMT-Related OS molecular subtypes. Somatic mutation, tumor immune microenvironment, and functional enrichment analyses were performed for each subtype. We next constructed an EMT-Related risk signature and evaluated it by Kaplan-Meier (K-M) analysis survival and receiver operating characteristic (ROC) curves. Moreover, we constructed a nomogram to more accurately predict OS patients' clinical outcomes. Response effects of immunotherapy in OS patients was analyzed by Tumor Immune Dysfunction and Exclusion (TIDE) analysis, while sensitivity for chemotherapeutic agents was analyzed using oncoPredict. Finally, the expression patterns of hub genes were investigated by single-cell RNA sequencing (scRNA-seq) data analysis. Results A total of 53 EMT-RDGs related to prognosis were identified, separating OS samples into two separate subgroups. The EMT-high subgroup showed favourable overall survival and more active immune response. Significant correlations were found between EMT-Related DEGs and functions as well as pathways linked to the development of OS. Additionally, a risk signature was established and OS patients were divided into two categories based on the risk scores. The signature presented a good predictive performance and could be recognized as an independent predictive factor for OS. Furthermore, patients with higher risk scores exhibited better sensitivity for five drugs, while no significant difference existed in immunotherapy response between the two risk subgroups. scRNA-seq data analysis displayed different expression patterns of the hub genes. Conclusion We developed a novel EMT-Related risk signature that can be considered as an independent predictor for OS, which may help improve clinical outcome prediction and guide personalized treatments for patients with OS.
Collapse
Affiliation(s)
- Meng-Pan Li
- Department of Orthopedics, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Si-Ping Long
- The Fourth Clinical Medical College of Nanchang University, Nanchang, China
| | - Wen-Cai Liu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Long
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Xing-Hua Gao
- Department of Orthopedics, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Qu W, Chen C, Cai C, Gong M, Luo Q, Song Y, Yang M, Shi M. Non-invasive prediction for pathologic complete response to neoadjuvant chemoimmunotherapy in lung cancer using CT-based deep learning: a multicenter study. Front Immunol 2024; 15:1327779. [PMID: 38596674 PMCID: PMC11003263 DOI: 10.3389/fimmu.2024.1327779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Neoadjuvant chemoimmunotherapy has revolutionized the therapeutic strategy for non-small cell lung cancer (NSCLC), and identifying candidates likely responding to this advanced treatment is of important clinical significance. The current multi-institutional study aims to develop a deep learning model to predict pathologic complete response (pCR) to neoadjuvant immunotherapy in NSCLC based on computed tomography (CT) imaging and further prob the biologic foundation of the proposed deep learning signature. A total of 248 participants administrated with neoadjuvant immunotherapy followed by surgery for NSCLC at Ruijin Hospital, Ningbo Hwamei Hospital, and Affiliated Hospital of Zunyi Medical University from January 2019 to September 2023 were enrolled. The imaging data within 2 weeks prior to neoadjuvant chemoimmunotherapy were retrospectively extracted. Patients from Ruijin Hospital were grouped as the training set (n = 104) and the validation set (n = 69) at the 6:4 ratio, and other participants from Ningbo Hwamei Hospital and Affiliated Hospital of Zunyi Medical University served as an external cohort (n = 75). For the entire population, pCR was obtained in 29.4% (n = 73) of cases. The areas under the curve (AUCs) of our deep learning signature for pCR prediction were 0.775 (95% confidence interval [CI]: 0.649 - 0.901) and 0.743 (95% CI: 0.618 - 0.869) in the validation set and the external cohort, significantly superior than 0.579 (95% CI: 0.468 - 0.689) and 0.569 (95% CI: 0.454 - 0.683) of the clinical model. Furthermore, higher deep learning scores correlated to the upregulation for pathways of cell metabolism and more antitumor immune infiltration in microenvironment. Our developed deep learning model is capable of predicting pCR to neoadjuvant chemoimmunotherapy in patients with NSCLC.
Collapse
Affiliation(s)
- Wendong Qu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chuang Cai
- School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming Gong
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Luo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Minglei Yang
- Department of Thoracic Surgery, Ningbo Hwamei Hospital, Chinese Academy of Sciences, Zhejiang, China
| | - Min Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Hospital of Civil Aviation Administration of China, Shanghai, China
- Department of Oncology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Wuxi, China
| |
Collapse
|
4
|
Sadeghi M, Dehnavi S, Sharifat M, Amiri AM, Khodadadi A. Innate immune cells: Key players of orchestra in modulating tumor microenvironment (TME). Heliyon 2024; 10:e27480. [PMID: 38463798 PMCID: PMC10923864 DOI: 10.1016/j.heliyon.2024.e27480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
The tumor microenvironment (TME) with vital role in cancer progression is composed of various cells such as endothelial cells, immune cells, and mesenchymal stem cells. In particular, innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, innate lymphoid cells, γδT lymphocytes, and natural killer cells can either promote or suppress tumor progression when present in the TME. An increase in research on the cross-talk between the TME and innate immune cells will lead to new approaches for anti-tumoral therapeutic interventions. This review primarily focuses on the biology of innate immune cells and their main functions in the TME. In addition, it summarizes several innate immune-based immunotherapies that are currently tested in clinical trials.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moosa Sharifat
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Wang B, Jiang J, Luo D, Wang X. Pan-cancer analysis reveals potential immunological and prognostic roles of METTL7A in human cancers. Sci Rep 2024; 14:3476. [PMID: 38342956 PMCID: PMC10859372 DOI: 10.1038/s41598-024-54255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/10/2024] [Indexed: 02/13/2024] Open
Abstract
Methyltransferase-like protein 7A (METTL7A) is an m6A RNA methyltransferase that has been linked to cancer prognosis and drug resistance. However, a comprehensive analysis of METTL7A is lacking. The expression of METTL7A, prognostic performance, correlation with microsatellite instability (MSI), tumor mutational burden (TMB), and immune infiltration was investigated in The Cancer Genome Atlas (TCGA). Immunohistochemistry staining was applied to detect METTL7A in 6 tumors. METTL7A was significantly decreased in 19 cancers in TCGA including LUAD. Alterations of METTL7A include amplification and mutation, and epigenetic alterations revealed increased promoter methylation may result in down-regulation of METTL7A in LUAD. We also found that METTL7A was linked to both TMB and MSI in LUAD. METTL7A was increasingly correlated with invasive immune cells, while being negatively associated with Macrophages M0, Mast cells activated, activated memory CD4 T cells, CD8 T cells, and follicular helper T cells in several tumors. Additionally, METTL7A showed similar correlation with immune therapy-related genes across cancers. Our biological validation found that the protein levels of METTL7A were down-regulated in breast cancer (BRCA), endometrioid cancer (UCEC), colon cancer (COAD), prostate cancer (PRAD), and kidney clear cell carcinoma (KIRC), as detected by immunohistochemistry staining. Overall, our work indicates that METTL7A may serve as promising diagnostic and prognostic indicator of LUAD, and our work sheds light on the potential immunological and prognostic roles of METTL7A in human cancers.
Collapse
Affiliation(s)
- Bin Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Jiang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Xu B, Liang J, Fu L, Wei J, Lin J. A Novel Oncogenic Role of Disulfidptosis-related Gene SLC7A11 in Anti-tumor Immunotherapy Response to Human Cancers. Curr Cancer Drug Targets 2024; 24:846-866. [PMID: 38303526 DOI: 10.2174/0115680096277818231229105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND The protein Solute Carrier Family 7 Member 11 (SLC7A11) plays a pivotal role in cellular redox homeostasis by suppressing disulfidptosis, which restricts tumor growth. Yet, its relevance in prognosis, immunity, and cancer treatment efficacy is not well understood. METHODS We conducted a comprehensive analysis of the expression of SLC7A11 across 33 cancer types, employing datasets from public databases. Methods, such as Cox regression and survival analyses assessed its prognostic significance, while functional enrichment explored the biological processes tied to SLC7A11. The association between SLC7A11 expression, immune cell infiltration, and immune-related gene expression was also scrutinized. RESULTS Notably, SLC7A11 expression was more pronounced in cancerous compared to normal samples and correlated with higher tumor grades. Increased SLC7A11 expression was linked to poor outcomes, particularly in liver hepatocellular carcinoma (LIHC). This protein's expression also showcased significant relationships with diverse molecular and immune subtypes. Additionally, a prognostic nomogram was devised, integrating SLC7A11 expression and clinical variables. High SLC7A11 levels corresponded with cell growth and senescence pathways in various cancers and with lipid and cholesterol metabolism in LIHC. Furthermore, potential therapeutic compounds for LIHC with high SLC7A11 were identified. Real-time PCR (qPCR) and Western blot were conducted to explore the expression of SLC7A11 in tumor tissues and cancer cell lines. CONCLUSION In summation, this study emphasizes the prognostic and immunological importance of SLC7A11, spotlighting its potential as a therapeutic target in LIHC.
Collapse
Affiliation(s)
- Borui Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jiahua Liang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Liangmin Fu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Jinhuan Wei
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Juan Lin
- Department of Pediatrics, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| |
Collapse
|
7
|
Long Q, Wang Y, Li H. Homologous recombination deficiency reflects the heterogeneity and monitoring treatment response for patients with breast cancer. J Gene Med 2024; 26:e3637. [PMID: 37994492 DOI: 10.1002/jgm.3637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND In breast cancer (BC), homologous recombination defect (HRD) is a common carcinogenic mechanism. It is meaningful to classify BC according to HRD biomarkers and to develop a platform for identifying BC molecular features, pathological features and therapeutic responses. METHODS In total, 109 HRD genes were collected and screened by univariate Cox regression analysis to determine the prognostic genes, which were used to construct a consensus matrix to identify BC subtype. Differentially expressed genes (DEGs) were filtered by the Limma package and screened by random forest analysis to build a model to analyze the immunotherapy response and sensitivity and prognosis of patients suffering from BC to different drugs. RESULTS Thirteen out of 109 HRD genes were prognostic genes of BC, and BC was classified into two subgroups based on their expression. Cluster 1 had a significantly backward survival outcome and a significantly higher adaptive immunity score relative to cluster 2. Six genes were identified by random forest analysis as factors for developing the model. The model provided a prediction called risk score, which showed a significant stratification effect on BC prognosis, immunotherapy response and IC50 values of 62 drugs. CONCLUSIONS In the present study, two HRD subtypes of BC were successfully identified, for which mutation and immunological features were determined. A model based on differential genes of HRD subtypes was established, which was a potential predictor of prognosis, immunotherapy response and drug sensitivity of BC.
Collapse
Affiliation(s)
- Quanyi Long
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yunfei Wang
- Hangzhou Shengting Medical Technology Co., Ltd, Hangzhou, China
| | - Hongjiang Li
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Duan L, Liu R, Cui X, Zhang Q, Cao D, Chen M, Zhang A. Identification of UBFD1 as a prognostic biomarker and molecular target among estrogen receptor-positive breast cancer. Biochem Biophys Res Commun 2023; 686:149171. [PMID: 37922573 DOI: 10.1016/j.bbrc.2023.149171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Estrogen receptor (ER)-positive breast cancer (BRCA) is the most commonly diagnosed molecular subtype of BRCA. It is routinely treated with endocrine therapy; however, some patients relapse after therapy and develop drug resistance, resulting in treatment failure. In the present study, we identified markers of ER-positive BRCA and evaluated their putative function in immune infiltration as well as their clinicopathological significance. The ubiquitin family domain containing 1 (UBFD1) protein was associated with the prognosis of ER-positive BRCA patients. Its expression was higher in ER-positive BRCA tissues compared with adjacent nontumor tissues. Patients with higher UBFD1 expression had a poorer prognosis. UBFD1 is an independent risk factor for ER-positive BRCA patients and its function was primarily associated with hormone activity and inflammation. Taken together, UBFD1 is a potential prognostic biomarker and candidate target of ER-positive BRCA.
Collapse
Affiliation(s)
- Lian Duan
- Basic Laboratory, Suining Central Hospital, Suining, China
| | - Rui Liu
- Department of Breast and Thyroid Surgery, Suining Central Hospital, Suining, China
| | - Xiaoyue Cui
- Basic Laboratory, Suining Central Hospital, Suining, China
| | - Qiaoling Zhang
- Basic Laboratory, Suining Central Hospital, Suining, China; Key Laboratory of Metabolic Diseases, Suining Central Hospital, Suining, China
| | - Dan Cao
- Basic Laboratory, Suining Central Hospital, Suining, China; Key Laboratory of Metabolic Diseases, Suining Central Hospital, Suining, China
| | - Maoshan Chen
- Department of Breast and Thyroid Surgery, Suining Central Hospital, Suining, China.
| | - Aijie Zhang
- Basic Laboratory, Suining Central Hospital, Suining, China; Key Laboratory of Metabolic Diseases, Suining Central Hospital, Suining, China.
| |
Collapse
|
9
|
Li H, Pan L, Guo J, Lao J, Wei M, Huang F. Integration of single-cell and bulk RNA sequencing to establish a prognostic signature based on tumor-associated macrophages in colorectal cancer. BMC Gastroenterol 2023; 23:385. [PMID: 37950156 PMCID: PMC10638776 DOI: 10.1186/s12876-023-03035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Several studies have shown significant involvement of tumor-associated macrophages (TAMs) in the tumor microenvironment and cancer progression. However, no data on reliable TAM-related biomarkers are available for predicting the prognosis of patients with colorectal cancer (CRC). We analyzed the clinical data and gene expression profiles of patients with CRC from databases. The single-cell transcriptomic data was applied to identify M2-like TAM-related differentially expressed genes. Univariate Cox and least absolute shrinkage and selection operator regression analyses were used to determine the prognostic signature genes. Then, seven key genes were screened to develop the prognostic signature. In the training and external validation cohorts, the overall survival (OS) of patients in the high-risk group was significantly shorter compared to the low-risk group. Consequently, we created a nomogram that could accurately and reliably predict the prognosis of patient with CRC. A significant correlation was observed between the patient's prognosis, clinical features, sensitivity to anticancer drugs, TME, and risk scores. Moreover, risk score was strongly related to the response to immunotherapy in patients from GSE91061, GSE78220, and GSE60331 cohorts. Finally, high expression of HSPA1A, SERPINA1, CXCL1, and low expression of DNASE1L3 were found in human CRC tissue and normal tissue by using qRT-PCR. In conclusion, the M2-like TAM-related prognostic signature could predict the survival, prognosis, and response of patients with CRC to immunotherapy, which sheds light on the role of TAMs in CRCs and enhances our understanding of TAMs.
Collapse
Affiliation(s)
- Hua Li
- Department of Anorectal Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Lujuan Pan
- Gastroenterology Department, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Junyu Guo
- Department of Anorectal Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - JianLe Lao
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Mingwei Wei
- Department of Anorectal Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Fuda Huang
- Department of Anorectal Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China.
| |
Collapse
|
10
|
Liu P, Deng X, Zhou H, Xie J, Kong Y, Zou Y, Yang A, Li X. Multi-omics analyses unravel DNA damage repair-related clusters in breast cancer with experimental validation. Front Immunol 2023; 14:1297180. [PMID: 38022619 PMCID: PMC10644223 DOI: 10.3389/fimmu.2023.1297180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background As one of the most common malignancies worldwide, breast cancer (BC) exhibits high heterogeneity of molecular phenotypes. The evolving view regarding DNA damage repair (DDR) is that it is context-specific and heterogeneous, but its role in BC remains unclear. Methods Multi-dimensional data of transcriptomics, genomics, and single-cell transcriptome profiling were obtained to characterize the DDR-related features of BC. We collected 276 DDR-related genes based on the Molecular Signature Database (MSigDB) database and previous studies. We acquired public datasets included the SCAN-B dataset (GEO: GSE96058), METABRIC database, and TCGA-BRCA database. Corresponding repositories such as transcriptomics, genomics, and clinical information were also downloaded. We selected scRNA-seq data from GEO: GSE176078, GSE114727, GSE161529, and GSE158724. Bulk RNA-seq data from GEO: GSE176078, GSE18728, GSE5462, GSE20181, and GSE130788 were extracted for independent analyses. Results The DDR classification was constructed in the SCAN-B dataset (GEO: GSE96058) and METABRIC database, Among BC patients, there were two clusters with distinct clinical and molecular characteristics: the DDR-suppressed cluster and the DDR-active cluster. A superior survival rate is found for tumors in the DDR-suppressed cluster, while those with the DDR-activated cluster tend to have inferior prognoses and clinically aggressive behavior. The DDR classification was validated in the TCGA-BRCA cohort and shown similar results. We also found that two clusters have different pathway activities at the genomic level. Based on the intersection of the different expressed genes among these cohorts, we found that PRAME might play a vital role in DDR. The DDR classification was then enabled by establishing a DDR score, which was verified through multilayer cohort analysis. Furthermore, our results revealed that malignant cells contributed more to the DDR score at the single-cell level than nonmalignant cells. Particularly, immune cells with immunosuppressive properties (such as FOXP3+ CD4+ T cells) displayed higher DDR scores among those with distinguishable characteristics. Conclusion Collectively, this study performs general analyses of DDR heterogeneity in BC and provides insight into the understanding of individualized molecular and clinicopathological mechanisms underlying unique DDR profiles.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huamao Zhou
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanan Kong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Anli Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
11
|
Saqib J, Park B, Jin Y, Seo J, Mo J, Kim J. Identification of Niche-Specific Gene Signatures between Malignant Tumor Microenvironments by Integrating Single Cell and Spatial Transcriptomics Data. Genes (Basel) 2023; 14:2033. [PMID: 38002976 PMCID: PMC10671538 DOI: 10.3390/genes14112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The tumor microenvironment significantly affects the transcriptomic states of tumor cells. Single-cell RNA sequencing (scRNA-seq) helps elucidate the transcriptomes of individual cancer cells and their neighboring cells. However, cell dissociation results in the loss of information on neighboring cells. To address this challenge and comprehensively assess the gene activity in tissue samples, it is imperative to integrate scRNA-seq with spatial transcriptomics. In our previous study on physically interacting cell sequencing (PIC-seq), we demonstrated that gene expression in single cells is affected by neighboring cell information. In the present study, we proposed a strategy to identify niche-specific gene signatures by harmonizing scRNA-seq and spatial transcriptomic data. This approach was applied to the paired or matched scRNA-seq and Visium platform data of five cancer types: breast cancer, gastrointestinal stromal tumor, liver hepatocellular carcinoma, uterine corpus endometrial carcinoma, and ovarian cancer. We observed distinct gene signatures specific to cellular niches and their neighboring counterparts. Intriguingly, these niche-specific genes display considerable dissimilarity to cell type markers and exhibit unique functional attributes independent of the cancer types. Collectively, these results demonstrate the potential of this integrative approach for identifying novel marker genes and their spatial relationships.
Collapse
Affiliation(s)
| | | | | | | | | | - Junil Kim
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul 06978, Republic of Korea; (J.S.); (Y.J.); (J.M.)
| |
Collapse
|
12
|
Kotsifaki A, Alevizopoulos N, Dimopoulou V, Armakolas A. Unveiling the Immune Microenvironment's Role in Breast Cancer: A Glimpse into Promising Frontiers. Int J Mol Sci 2023; 24:15332. [PMID: 37895012 PMCID: PMC10607694 DOI: 10.3390/ijms242015332] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC), one of the most widespread and devastating diseases affecting women worldwide, presents a significant public health challenge. This review explores the emerging frontiers of research focused on deciphering the intricate interplay between BC cells and the immune microenvironment. Understanding the role of the immune system in BC is critical as it holds promise for novel therapeutic approaches and precision medicine strategies. This review delves into the current literature regarding the immune microenvironment's contribution to BC initiation, progression, and metastasis. It examines the complex mechanisms by which BC cells interact with various immune cell populations, including tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs). Furthermore, this review highlights the impact of immune-related factors, such as cytokines and immune checkpoint molecules. Additionally, this comprehensive analysis sheds light on the potential biomarkers associated with the immune response in BC, enabling early diagnosis and prognostic assessment. The therapeutic implications of targeting the immune microenvironment are also explored, encompassing immunotherapeutic strategies and combination therapies to enhance treatment efficacy. The significance of this review lies in its potential to pave the way for novel therapeutic interventions, providing clinicians and researchers with essential knowledge to design targeted and personalized treatment regimens for BC patients.
Collapse
Affiliation(s)
| | | | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (N.A.); (V.D.)
| |
Collapse
|
13
|
Wu X, Zhou Z, Cao Q, Chen Y, Gong J, Zhang Q, Qiang Y, Lu Y, Cao G. Reprogramming of Treg cells in the inflammatory microenvironment during immunotherapy: a literature review. Front Immunol 2023; 14:1268188. [PMID: 37753092 PMCID: PMC10518452 DOI: 10.3389/fimmu.2023.1268188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
Regulatory T cells (Treg), as members of CD4+ T cells, have garnered extensive attention in the research of tumor progression. Treg cells have the function of inhibiting the immune effector cells, preventing tissue damage, and suppressing inflammation. Under the stimulation of the tumor inflammatory microenvironment (IM), the reprogramming of Treg cells enhances their suppression of immune responses, ultimately promoting tumor immune escape or tumor progression. Reducing the number of Treg cells in the IM or lowering the activity of Treg cells while preventing their reprogramming, can help promote the body's anti-tumor immune responses. This review introduces a reprogramming mechanism of Treg cells in the IM; and discusses the regulation of Treg cells on tumor progression. The control of Treg cells and the response to Treg inflammatory reprogramming in tumor immunotherapy are analyzed and countermeasures are proposed. This work will provide a foundation for downregulating the immunosuppressive role of Treg in the inflammatory environment in future tumor immunotherapy.
Collapse
Affiliation(s)
- Xinyan Wu
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhigang Zhou
- Department of Oncology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- School of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences, Beijing, China
| | - Junling Gong
- School of Public Health, Nanchang University, Qianhu, Nanchang, China
| | - Qi Zhang
- Undergraduate Department, Taishan University, Taian, China
| | - Yi Qiang
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Yanfeng Lu
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Guangzhu Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
14
|
Barb AC, Fenesan MP, Pirtea M, Margan MM, Tomescu L, Ceban E, Cimpean AM, Melnic E. Reassessing Breast Cancer-Associated Fibroblasts (CAFs) Interactions with Other Stromal Components and Clinico-Pathologic Parameters by Using Immunohistochemistry and Digital Image Analysis (DIA). Cancers (Basel) 2023; 15:3823. [PMID: 37568639 PMCID: PMC10417678 DOI: 10.3390/cancers15153823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Breast cancer (BC) stroma has CD34- and αSMA-positive cancer-associated fibroblasts (CAFs) differently distributed. During malignant transformation, CD34-positive fibroblasts decrease while αSMA-positive CAFs increase. The prevalence of αSMA-positive CAFs in BC stroma makes microscopic examination difficult without digital image analysis processing (DIA). DIA was used to compare CD34- and αSMA-positive CAFs among breast cancer molecular subgroups. DIA-derived data were linked to age, survival, tumor stroma vessels, tertiary lymphoid structures (TLS), invasion, and recurrence. METHODS Double immunostaining for CD34 and αSMA showed different CAF distribution patterns in normal and BC tissues. Single CD34 immunohistochemistry on supplemental slides quantified tumor stroma CD34_CAFs. Digital image analysis (DIA) data on CAF density, intensity, stromal score, and H-score were correlated with clinico-pathologic factors. RESULTS CD34/αSMA CAF proportion was significantly related to age in Luminal A (LA), Luminal B (LB), and HER2 subtypes. CD34_CAF influence on survival, invasion, and recurrence of LA, LB-HER2, and TNBC subtypes was found to be significant. The CD34/αSMA-expressing CAFs exhibited a heterogeneous impact on stromal vasculature and TLS. CONCLUSION BC stromal CD34_CAFs/αSMA_CAFs have an impact on survival, invasion, and recurrence differently between BC molecular subtypes. The tumor stroma DIA assessment may have predictive potential to prognosis and long-term follow-up of patients with breast cancer.
Collapse
Affiliation(s)
- Alina Cristina Barb
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Clinical Oncology, OncoHelp Hospital, 300239 Timisoara, Romania
| | - Mihaela Pasca Fenesan
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Clinical Oncology, OncoHelp Hospital, 300239 Timisoara, Romania
| | - Marilena Pirtea
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
| | - Mădălin-Marius Margan
- Department of Functional Sciences/Discipline of Public Health, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Larisa Tomescu
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Emil Ceban
- Department of Urology and Surgical Nephrology, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
- Laboratory of Andrology, Functional Urology and Sexual Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
- Center of Expertise for Rare Vascular Disease in Children, Emergency Hospital for Children Louis Turcanu, 300011 Timisoara, Romania
| | - Eugen Melnic
- Department of Pathology, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| |
Collapse
|
15
|
Zhang J, Zhang X, Su J, Zhang J, Liu S, Han L, Liu M, Sun D. Identification and validation of a novel HOX-related classifier signature for predicting prognosis and immune microenvironment in pediatric gliomas. Front Cell Dev Biol 2023; 11:1203650. [PMID: 37547473 PMCID: PMC10401438 DOI: 10.3389/fcell.2023.1203650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Background: Pediatric gliomas (PGs) are highly aggressive and predominantly occur in young children. In pediatric gliomas, abnormal expression of Homeobox (HOX) family genes (HFGs) has been observed and is associated with the development and progression of the disease. Studies have found that overexpression or underexpression of certain HOX genes is linked to the occurrence and prognosis of gliomas. This aberrant expression may contribute to the dysregulation of important pathological processes such as cell proliferation, differentiation, and metastasis. This study aimed to propose a novel HOX-related signature to predict patients' prognosis and immune infiltrate characteristics in PGs. Methods: The data of PGs obtained from publicly available databases were utilized to reveal the relationship among abnormal expression of HOX family genes (HFGs), prognosis, tumor immune infiltration, clinical features, and genomic features in PGs. The HFGs were utilized to identify heterogeneous subtypes using consensus clustering. Then random forest-supervised classification algorithm and nearest shrunken centroid algorithm were performed to develop a prognostic signature in the training set. Finally, the signature was validated in an internal testing set and an external independent cohort. Results: Firstly, we identified HFGs significantly differentially expressed in PGs compared to normal tissues. The individuals with PGs were then divided into two heterogeneous subtypes (HOX-SI and HOX-SII) based on HFGs expression profiles. HOX-SII showed higher total mutation counts, lower immune infiltration, and worse prognosis than HOX-SI. Then, we constructed a HOX-related gene signature (including HOXA6, HOXC4, HOXC5, HOXC6, and HOXA-AS3) based on the cluster for subtype prediction utilizing random forest supervised classification and nearest shrunken centroid algorithm. The signature was revealed to be an independent prognostic factor for patients with PGs by multivariable Cox regression analysis. Conclusion: Our study provides a novel method for the prognosis classification of PGs. The findings also suggest that the HOX-related signature is a new biomarker for the diagnosis and prognosis of patients with PGs, allowing for more accurate survival prediction.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Cardiology, Capital Medical University Electric Power Teaching Hospital, State Grid Beijing Electric Power Hospital, Beijing, China
| | - Xueguang Zhang
- Department of Nephrology, Capital Medical University Electric Power Teaching Hospital, State Grid Beijing Electric Power Hospital, Beijing, China
| | - Junyan Su
- Beijing ChosenMed Clinical Laboratory Co Ltd., Beijing, China
| | - Jiali Zhang
- Beijing ChosenMed Clinical Laboratory Co Ltd., Beijing, China
| | - Siyao Liu
- Beijing ChosenMed Clinical Laboratory Co Ltd., Beijing, China
| | - Li Han
- Beijing ChosenMed Clinical Laboratory Co Ltd., Beijing, China
| | - Mengyuan Liu
- Beijing ChosenMed Clinical Laboratory Co Ltd., Beijing, China
| | - Dawei Sun
- Beijing ChosenMed Clinical Laboratory Co Ltd., Beijing, China
| |
Collapse
|
16
|
Chen X, Yang M, Wang L, Wang Y, Tu J, Zhou X, Yuan X. Identification and in vitro and in vivo validation of the key role of GSDME in pyroptosis-related genes signature in hepatocellular carcinoma. BMC Cancer 2023; 23:411. [PMID: 37149620 PMCID: PMC10164321 DOI: 10.1186/s12885-023-10850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/14/2023] [Indexed: 05/08/2023] Open
Abstract
We used pyroptosis-related genes to establish a risk-score model for prognostic prediction of liver hepatocellular carcinoma (LIHC) patients. A total of 52 pyroptosis-associated genes were identified. Then, data for 374 LIHC patients and 50 normal individuals were acquired from the TCGA database. Through gene expression analyses, differentially expressed genes (DEGs) were determined. The 13 pyroptosis-related genes (PRGs) confirmed as potential prognostic factors through univariate Cox regression analysis were entered into Lasso and multivariate Cox regression to build a PRGs prognostic signature, containing four PRGs (BAK1, GSDME, NLRP6, and NOD2) determined as independent prognostic factors. mRNA levels were evaluated by qRT-PCR, while overall survival (OS) rates were assessed by the Kaplan-Meier method. Enrichment analyses were done to establish the mechanisms associated with differential survival status of LIHC patients from a tumor immunology perspective. Additionally, a risk score determined by the prognostic model could divide LIHC patients into low- and high-risk groups using median risk score as cut-off. A prognostic nomogram, derived from the prognostic model and integrating clinical characteristics of patients, was constructed. The prognostic function of the model was also validated using GEO, ICGC cohorts, and online databases Kaplan-Meier Plotter. Small interfering RNA-mediated knockdown of GSDME, as well as lentivirus-mediated GSDME knockdown, were performed to validate that knockdown of GSDME markedly suppressed growth of HCC cells both in vivo and in vitro. Collectively, our study demonstrated a PRGs prognostic signature that had great clinical value in prognosis assessment.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China
| | - Mu Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China.
| | - Xiao Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Liao H, Li H, Dong J, Song J, Chen H, Si H, Wang J, Bai X. Melatonin blunts the tumor-promoting effect of cancer-associated fibroblasts by reducing IL-8 expression and reversing epithelial-mesenchymal transition. Int Immunopharmacol 2023; 119:110194. [PMID: 37080066 DOI: 10.1016/j.intimp.2023.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Most studies on melatonin have focused on tumor cells but have ignored the tumor microenvironment (TME), especially one of its important components, the cancer-associated fibroblasts (CAFs). Therefore, we attempted to explore the role of melatonin in TME. METHODS We investigated the regulatory role of melatonin in the tumor-promoting effect of CAFs and its underlying mechanism by using cell and animal models. RESULTS CAFs promoted tumor progression, but melatonin weakened the tumor-promoting effect of CAFs. Compared with tumor cells, IL-8 was mainly expressed in CAFs. CAFs-overexpressing IL-8 induced the epithelial-mesenchymal transition (EMT) of tumor cells, and a positive crosstalk was observed between CAFs and tumor cells undergoing EMT, thereby further promoting the IL-8 expression. Melatonin suppressed this crosstalk by inhibiting the NF-κB pathway, thereby impeding the IL-8 expression from CAFs. Importantly, melatonin reversed CAFs-derived IL-8-mediated EMT by inhibiting the AKT pathway. Melatonin was found to directly and indirectly inhibit tumor progression. CONCLUSION Our research reveals the potential action mechanism of melatonin in regulating the CAF-tumor cell interaction and suggests the potential of melatonin as an adjuvant of tumor therapy.
Collapse
Affiliation(s)
- Huifeng Liao
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huayan Li
- Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junhua Dong
- Department of General Surgery, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Jin Song
- Department of General Surgery, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Hongye Chen
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Huiyan Si
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiandong Wang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Xue Bai
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
18
|
He Z, Chang T, Chen Y, Wang H, Dai L, Zeng H. PARM1 Drives Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension via AKT/FOXO3A Axis. Int J Mol Sci 2023; 24:ijms24076385. [PMID: 37047359 PMCID: PMC10094810 DOI: 10.3390/ijms24076385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/25/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a group of severe, progressive, and debilitating diseases with limited therapeutic options. This study aimed to explore novel therapeutic targets in PAH through bioinformatics and experiments. Weighted gene co-expression network analysis (WGCNA) was applied to detect gene modules related to PAH, based on the GSE15197, GSE113439, and GSE117261. GSE53408 was applied as validation set. Subsequently, the validated most differentially regulated hub gene was selected for further ex vivo and in vitro assays. PARM1, TSHZ2, and CCDC80 were analyzed as potential intervention targets for PAH. Consistently with the bioinformatic results, our ex vivo and in vitro data indicated that PARM1 expression increased significantly in the lung tissue and/or pulmonary artery of the MCT-induced PAH rats and hypoxia-induced PAH mice in comparison with the respective controls. Besides, a similar expression pattern of PARM1 was found in the hypoxia- and PDGF--treated isolated rat primary pulmonary arterial smooth muscle cells (PASMCs). In addition, hypoxia/PDGF--induced PARM1 protein expression could promote the elevation of phosphorylation of AKT, phosphorylation of FOXO3A and PCNA, and finally the proliferation of PASMCs in vitro, whereas PARM1 siRNA treatment inhibited it. Mechanistically, PARM1 promoted PAH via AKT/FOXO3A/PCNA signaling pathway-induced PASMC proliferation.
Collapse
|
19
|
Luo Y, Ye Y, Chen Y, Zhang C, Sun Y, Wang C, Ou J. A degradome-based prognostic signature that correlates with immune infiltration and tumor mutation burden in breast cancer. Front Immunol 2023; 14:1140993. [PMID: 36993976 PMCID: PMC10040797 DOI: 10.3389/fimmu.2023.1140993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionFemale breast cancer is the most common malignancy worldwide, with a high disease burden. The degradome is the most abundant class of cellular enzymes that play an essential role in regulating cellular activity. Dysregulation of the degradome may disrupt cellular homeostasis and trigger carcinogenesis. Thus we attempted to understand the prognostic role of degradome in breast cancer by means of establishing a prognostic signature based on degradome-related genes (DRGs) and assessed its clinical utility in multiple dimensions.MethodsA total of 625 DRGs were obtained for analysis. Transcriptome data and clinical information of patients with breast cancer from TCGA-BRCA, METABRIC and GSE96058 were collected. NetworkAnalyst and cBioPortal were also utilized for analysis. LASSO regression analysis was employed to construct the degradome signature. Investigations of the degradome signature concerning clinical association, functional characterization, mutation landscape, immune infiltration, immune checkpoint expression and drug priority were orchestrated. Cell phenotype assays including colony formation, CCK8, transwell and wound healing were conducted in MCF-7 and MDA-MB-435S breast cancer cell lines, respectively.ResultsA 10-gene signature was developed and verified as an independent prognostic predictor combined with other clinicopathological parameters in breast cancer. The prognostic nomogram based on risk score (calculated based on the degradome signature) showed favourable capability in survival prediction and advantage in clinical benefit. High risk scores were associated with a higher degree of clinicopathological events (T4 stage and HER2-positive) and mutation frequency. Regulation of toll-like receptors and several cell cycle promoting activities were upregulated in the high-risk group. PIK3CA and TP53 mutations were dominant in the low- and high-risk groups, respectively. A significantly positive correlation was observed between the risk score and tumor mutation burden. The infiltration levels of immune cells and the expressions of immune checkpoints were significantly influenced by the risk score. Additionally, the degradome signature adequately predicted the survival of patients undergoing endocrinotherapy or radiotherapy. Patients in the low-risk group may achieve complete response after the first round of chemotherapy with cyclophosphamide and docetaxel, whereas patients in the high-risk group may benefit from 5-flfluorouracil. Several regulators of the PI3K/AKT/mTOR signaling pathway and the CDK family/PARP family were identified as potential molecular targets in the low- and high-risk groups, respectively. In vitro experiments further revealed that the knockdown of ABHD12 and USP41 significantly inhibit the proliferation, invasion and migration of breast cancer cells.ConclusionMultidimensional evaluation verified the clinical utility of the degradome signature in predicting prognosis, risk stratification and guiding treatment for patients with breast cancer.
Collapse
Affiliation(s)
- Yulou Luo
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yinghui Ye
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Chenguang Zhang
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yutian Sun
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengwei Wang
- Cancer Research Institute of Xinjiang Uygur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Chengwei Wang, ; Jianghua Ou,
| | - Jianghua Ou
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Chengwei Wang, ; Jianghua Ou,
| |
Collapse
|
20
|
Development and Verification of a Prognostic Stemness-Related Gene Signature in Triple-Negative Breast Cancer. JOURNAL OF ONCOLOGY 2023. [DOI: 10.1155/2023/6242355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Background. It is well known that cancer stem cells can induce cancer metastasis, which causes the majority of cancer-related death, especially in triple-negative breast cancer (TNBC). TNBC features a high metastatic rate and low metastasis-free survival and is regarded as the most malignant subtype of breast cancer. The purpose of this study is to explore prognostic biomarkers that can predict metastasis of triple-negative breast cancer. Methods. The human triple-negative breast cancerSUM149PT cells were used for the study. The cancer stem cell spheres (sum149-Stem) and paired adherent cancer cells (sum149-Tumor) were collected to extract total RNAs. RNA-seq was used to analysis the mRNA expression of cancer stem cells and paired adherent cancer cells. Two different gene expression omnibus datasets (https://www.ncbi.nlm.nih.gov/gds), GSE58812 and GSE33926, were used to explore the mechanism of different expression genes between stem cells and adherent cancer cells. Seven genes showed prognostic function in all datasets. The STITCH database (https://www.stitchdata.com/) was used to explore the possible metastasis-inhibiting drugs that can target the seven genes. Each gene expression was compared by Pearson analysis. The receiver operating characteristic curve (ROC) and Kaplan–Meier survival curve were performed to assess the metastasis prognostic ability of the seven-gene modeling two different GEO datasets. Results. A subset of 7 stemness-related genes (SRGs) containing UCN, ST3GAL5, FDPS, HK2, MALL, LMTK3, and CRHR2 were identified in three independent cohorts. Univariate Cox analysis showed that ST3GAL5 plays an antitumor role in TNBC metastasis, and the other 6 genes promote the metastatic progression of TNBC. The ability of the 7-SRGs gene Cox model to predict TNBC metastasis was constructed with the GSE58812 dataset. Most of the genes showed significant expression in patients with different risk levels. Additionally, the model showed predictive value in another GEO dataset of TNBC patients. ROC curves indicated that the seven-gene model has a significant predictive value of TNBC metastasis. Conclusions. Expression analysis of the 7-SRGs signature model at diagnosis has predictive value for metastasis in TNBC patients.
Collapse
|
21
|
Pei S, Zhang P, Yang L, Kang Y, Chen H, Zhao S, Dai Y, Zheng M, Xia Y, Xie H. Exploring the role of sphingolipid-related genes in clinical outcomes of breast cancer. Front Immunol 2023; 14:1116839. [PMID: 36860848 PMCID: PMC9968761 DOI: 10.3389/fimmu.2023.1116839] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Background Despite tremendous advances in cancer research, breast cancer (BC) remains a major health concern and is the most common cancer affecting women worldwide. Breast cancer is a highly heterogeneous cancer with potentially aggressive and complex biology, and precision treatment for specific subtypes may improve survival in breast cancer patients. Sphingolipids are important components of lipids that play a key role in the growth and death of tumor cells and are increasingly the subject of new anti-cancer therapies. Key enzymes and intermediates of sphingolipid metabolism (SM) play an important role in regulating tumor cells and further influencing clinical prognosis. Methods We downloaded BC data from the TCGA database and GEO database, on which we performed in depth single-cell sequencing analysis (scRNA-seq), weighted co-expression network analysis, and transcriptome differential expression analysis. Then seven sphingolipid-related genes (SRGs) were identified using Cox regression, least absolute shrinkage, and selection operator (Lasso) regression analysis to construct a prognostic model for BC patients. Finally, the expression and function of the key gene PGK1 in the model were verified by in vitro experiments. Results This prognostic model allows for the classification of BC patients into high-risk and low-risk groups, with a statistically significant difference in survival time between the two groups. The model is also able to show high prediction accuracy in both internal and external validation sets. After further analysis of the immune microenvironment and immunotherapy, it was found that this risk grouping could be used as a guide for the immunotherapy of BC. The proliferation, migration, and invasive ability of MDA-MB-231 and MCF-7 cell lines were dramatically reduced after knocking down the key gene PGK1 in the model through cellular experiments. Conclusion This study suggests that prognostic features based on genes related to SM are associated with clinical outcomes, tumor progression, and immune alterations in BC patients. Our findings may provide insights for the development of new strategies for early intervention and prognostic prediction in BC.
Collapse
Affiliation(s)
- Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lili Yang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yakun Kang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huilin Chen
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuhan Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuhan Dai
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingjie Zheng
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqin Xia
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Hui Xie, ; Yiqin Xia,
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Hui Xie, ; Yiqin Xia,
| |
Collapse
|
22
|
Zheng S, Liang J, Tang Y, Xie J, Zou Y, Yang A, Shao N, Kuang X, Ji F, Liu X, Tian W, Xiao W, Lin Y. Dissecting the role of cancer-associated fibroblast-derived biglycan as a potential therapeutic target in immunotherapy resistance: A tumor bulk and single-cell transcriptomic study. Clin Transl Med 2023; 13:e1189. [PMID: 36772945 PMCID: PMC9920016 DOI: 10.1002/ctm2.1189] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Cancer-associated fibroblasts (CAFs) are correlated with the immunotherapy response. However, the culprits that link CAFs to immunotherapy resistance are still rarely investigated in real-world studies. OBJECTIVES This study aims to systematically assess the landscape of fibroblasts in cancer patients by combining single-cell and bulk profiling data from pan-cancer cohorts. We further sought to decipher the expression, survival predictive value and association with immunotherapy response of biglycan (BGN), a proteoglycan in the extracellular matrix, in multiple cohorts. METHODS Pan-cancer tumor bulks and 27 single-cell RNA sequencing cohorts were enrolled to investigate the correlations and crosstalk between CAFs and tumor or immune cells. Specific secreting factors of CAFs were then identified by expression profiling at tissue microdissection, isolated primary fibroblasts and single-cell level. The role of BGN was further dissected in additional three bulk and five single-cell profiling datasets from immunotherapy cohorts and validated in real-world patients who have received PD-1 blockade using immunohistochemistry and immunofluorescence. RESULTS CAFs were closely correlated with immune components. Frequent crosstalk between CAFs and other cells was revealed by the CellChat analysis. Single-cell regulatory network inference and clustering identified common and distinct regulators for CAFs across cancers. The BGN was determined to be a specific secreting factor of CAFs. The BGN served as an unfavourable indicator for overall survival and immunotherapy response. In the real-world immunotherapy cohort, patients with high BGN levels presented a higher proportion of poor response compared with those with low BGN (46.7% vs. 11.8%) and a lower level of infiltrating CD8+ T cells was also observed. CONCLUSIONS We highlighted the importance of CAFs in the tumor microenvironment and revealed that the BGN, which is mainly derived from CAFs, may be applicable in clinical practice and serve as a therapeutic target in immunotherapy resistance.
Collapse
Affiliation(s)
- Shaoquan Zheng
- Department of Breast SurgeryBreast Disease Center, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jie‐Ying Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Anli Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Nan Shao
- Department of Breast SurgeryBreast Disease Center, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xiaying Kuang
- Department of Breast SurgeryBreast Disease Center, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Fei Ji
- Department of Breast, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xuefeng Liu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Wenwen Tian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Weikai Xiao
- Department of Breast, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Ying Lin
- Department of Breast SurgeryBreast Disease Center, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
23
|
Wang Q, Li Z, Zhou S, Li Z, Huang X, He Y, Zhang Y, Zhao X, Tang Y, Xu M. NCAPG2 could be an immunological and prognostic biomarker: From pan-cancer analysis to pancreatic cancer validation. Front Immunol 2023; 14:1097403. [PMID: 36776838 PMCID: PMC9911455 DOI: 10.3389/fimmu.2023.1097403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
More recently, NCAPG2 has emerged as an intrinsically essential participant of the condensin II complex involved in the process of chromosome cohesion and stabilization in mitosis, and its position in particular tumours is now being highlighted. Simultaneously, the genetic properties of NCAPG2 hint that it might have enormous potential to interpret the malignant progression of tumors in a broader perspective, that is, in pan-cancer. Yet, at present, this recognition remains merely superficial and there is a lack of more detailed studies to explore the underlying pathogenesis. To meet this need, the current study was undertaken to comprehensively elucidate the potential functions of NCAPG2 in pan-cancer, based on a combination of existing databases like TCGA and GTEx. NCAPG2 was identified to be overexpressed in almost every tumor and to exhibit significant prognostic and diagnostic efficacy. Furthermore, the correlation between NCAPG2 and selected immune features, namely immune cell infiltration, immune checkpoint genes, TMB, MSI, etc. also indicates that NCAPG2 could potentially be applied in guidance of immunotherapy. Subsequently, in pancreatic cancer, this study further clarified the utility of NCAPG2 that downregulation of its expression could result in reduced proliferation, invasion and metastasis of pancreatic cancer cells, among such phenotypical changes, the epithelial-mesenchymal transition disruption could be at least one of the possible mechanisms raising or enhancing tumorigenesis. Taken above, NCAPG2, as a member of pan-oncogenes, would serve as a biomarker and potential therapeutic target for a range of malignancies, sharing new insights into precision medicine.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Zhangzuo Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai JiaoTong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai JiaoTong University, Shanghai, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Yiwei He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Yuhan Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai JiaoTong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai JiaoTong University, Shanghai, China
| | - Xiaoxian Zhao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai JiaoTong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai JiaoTong University, Shanghai, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
24
|
Zhang Q, Sun C, Liu X, Zhu C, Ma C, Feng R. Mechanism of immune infiltration in synovial tissue of osteoarthritis: a gene expression-based study. J Orthop Surg Res 2023; 18:58. [PMID: 36681837 PMCID: PMC9862811 DOI: 10.1186/s13018-023-03541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/13/2023] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Osteoarthritis is a chronic degenerative joint disease, and increasing evidences suggest that the pathogenic mechanism involves immune system and inflammation. AIMS The aim of current study was to uncover hub genes linked to immune infiltration in osteoarthritis synovial tissue using comprehensive bioinformatics analysis and experimental confirmation. METHODS Multiple microarray datasets (GSE55457, GSE55235, GSE12021 and GSE1919) for osteoarthritis in Gene Expression Omnibus database were downloaded for analysis. Differentially expressed genes (DEGs) were identified using Limma package in R software, and immune infiltration was evaluated by CIBERSORT algorithm. Then weighted gene co-expression network analysis (WGCNA) was performed to uncover immune infiltration-associated gene modules. Protein-protein interaction (PPI) network was constructed to select the hub genes, and the tissue distribution of these genes was analyzed using BioGPS database. Finally, the expression pattern of these genes was confirmed by RT-qPCR using clinical samples. RESULTS Totally 181 DEGs between osteoarthritis and normal control were screened. Macrophages, mast cells, memory CD4 T cells and B cells accounted for the majority of immune cell composition in synovial tissue. Osteoarthritis synovial showed high abundance of infiltrating resting mast cells, B cells memory and plasma cells. WGCNA screened 93 DEGs related to osteoarthritis immune infiltration. These genes were involved in TNF signaling pathway, IL-17 signaling pathway, response to steroid hormone, glucocorticoid and corticosteroid. Ten hub genes including MYC, JUN, DUSP1, NFKBIA, VEGFA, ATF3, IL-6, PTGS2, IL1B and SOCS3 were selected by using PPI network. Among them, four genes (MYC, JUN, DUSP1 and NFKBIA) specifically expressed in immune system were identified and clinical samples revealed consistent change of these four genes in synovial tissue retrieved from patients with osteoarthritis. CONCLUSION A 4-gene-based diagnostic model was developed, which had well predictive performance in osteoarthritis. MYC, JUN, DUSP1 and NFKBIA might be biomarkers and potential therapeutic targets in osteoarthritis.
Collapse
Affiliation(s)
- Qingyu Zhang
- grid.460018.b0000 0004 1769 9639Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Road Jing Wu Wei Qi, Jinan, 250021 Shandong China
| | - Chao Sun
- grid.460018.b0000 0004 1769 9639Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Road Jing Wu Wei Qi, Jinan, 250021 Shandong China
| | - Xuchang Liu
- grid.460018.b0000 0004 1769 9639Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Road Jing Wu Wei Qi, Jinan, 250021 Shandong China
| | - Chao Zhu
- grid.460018.b0000 0004 1769 9639Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Road Jing Wu Wei Qi, Jinan, 250021 Shandong China
| | - Chuncheng Ma
- grid.460018.b0000 0004 1769 9639Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Road Jing Wu Wei Qi, Jinan, 250021 Shandong China
| | - Rongjie Feng
- grid.460018.b0000 0004 1769 9639Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Road Jing Wu Wei Qi, Jinan, 250021 Shandong China
| |
Collapse
|
25
|
Li Z, Fu R, Wen X, Wang Q, Huang X, Zhang L. The significant clinical correlation of the intratumor oral microbiome in oral squamous cell carcinoma based on tissue-derived sequencing. Front Physiol 2023; 13:1089539. [PMID: 36699672 PMCID: PMC9868672 DOI: 10.3389/fphys.2022.1089539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background: The microbiota is a critical component of the complex human microenvironment, impacting various physiological processes and disease development via the microbe-host interaction. In particular, the oral microbiota profoundly affects tumor development and progression. There is increasing evidence that oral microbiota is associated with the development of oral cancer, especially oral squamous cell carcinoma (OSCC). Methods: We comprehensively analyzed the oral microbiota in 133 OSCC samples worldwide. Subsequently, we evaluated the microbial compositions between OSCC patients and healthy people and their correlation with clinical parameters. The value of the oral microbiota as a diagnostic and prognostic biomarker was also determined. Results: This study found differences in critical oral microbiota between OSCC and normal controls. The most notable differences are present in p_Firmicutes, p_Actinobacteria, c_Fusobacteriia, o_Fusobacteriales, f_Fusobacteriaceae, and g_Fusobacterium. All six-level oral microorganisms were also associated with the clinical characteristics of OSCC, particularly with the clinical outcomes (survival time and status). We developed a predictive model based on this. We found that five different oral microorganisms have high confidence and can be used for clinical diagnosis and prognostic prediction, except for p_Actinobacteria. Conclusion: This study revealed that the intratumor oral microbiota of OSCC patients worldwide and the microbial signatures of OSCC patients possess similar properties in different regions, further refining the shortcomings of the current research field. We revealed that the oral microbiota could be used as a biomarker to reflect human health and disease progression status. This will provide new directions for tumor microbiome research. This means we can develop strategies through diet, probiotics, and antibiotics for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,National Center for Stomatology, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology, Shanghai, China,Shanghai Research Institute of Stomatology, Shanghai, China
| | - Rao Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,National Center for Stomatology, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology, Shanghai, China,Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xutao Wen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,National Center for Stomatology, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology, Shanghai, China,Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qi Wang
- Department of Gastroenterology, Affliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,National Center for Stomatology, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology, Shanghai, China,Shanghai Research Institute of Stomatology, Shanghai, China,*Correspondence: Ling Zhang,
| |
Collapse
|
26
|
Balkrishna A, Mittal R, Arya V. Tumor Suppressive Role of MicroRNAs in Triple Negative Breast Cancer. Curr Pharm Des 2023; 29:3357-3367. [PMID: 38037837 DOI: 10.2174/0113816128272489231124095922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Triple-negative breast cancers are highly aggressive, a heterogeneous form of breast cancer with a high re-occurrence rate that further lacks an efficient treatment strategy and prognostic marker. The tumor microenvironment of the disease comprises cancer-associated fibroblasts, cancer stem cells, immunological molecules, epithelial-mesenchymal transition, and a metastatic microenvironment that contributes to disease progression and metastasis to distant sites. Emerging evidence indicated that miRNA clusters would be of clinical utility as they exert an oncogenic or tumor suppressor role in TNBC. The present review article aims to highlight the therapeutic significance of miRNA in targeting the above-mentioned signaling cascades and modulating the intracellular crosstalk in the tumor microenvironment of TNBC. Prognostic implications of miRNAs to depict disease-free survival, distant metastasis-free survival, relapse-free survival, and overall survival outcome were also unveiled.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Rashmi Mittal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| |
Collapse
|
27
|
Li Z, Wang Q, Huang X, Yang M, Zhou S, Li Z, Fang Z, Tang Y, Chen Q, Hou H, Li L, Fei F, Wang Q, Wu Y, Gong A. Lactate in the tumor microenvironment: A rising star for targeted tumor therapy. Front Nutr 2023; 10:1113739. [PMID: 36875841 PMCID: PMC9978120 DOI: 10.3389/fnut.2023.1113739] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Metabolic reprogramming is one of fourteen hallmarks of tumor cells, among which aerobic glycolysis, often known as the "Warburg effect," is essential to the fast proliferation and aggressive metastasis of tumor cells. Lactate, on the other hand, as a ubiquitous molecule in the tumor microenvironment (TME), is generated primarily by tumor cells undergoing glycolysis. To prevent intracellular acidification, malignant cells often remove lactate along with H+, yet the acidification of TME is inevitable. Not only does the highly concentrated lactate within the TME serve as a substrate to supply energy to the malignant cells, but it also works as a signal to activate multiple pathways that enhance tumor metastasis and invasion, intratumoral angiogenesis, as well as immune escape. In this review, we aim to discuss the latest findings on lactate metabolism in tumor cells, particularly the capacity of extracellular lactate to influence cells in the tumor microenvironment. In addition, we examine current treatment techniques employing existing medications that target and interfere with lactate generation and transport in cancer therapy. New research shows that targeting lactate metabolism, lactate-regulated cells, and lactate action pathways are viable cancer therapy strategies.
Collapse
Affiliation(s)
- Zhangzuo Li
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.,Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Mengting Yang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zhengrui Li
- School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhengzou Fang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Qian Chen
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hanjin Hou
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fei Fei
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiaowei Wang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuqing Wu
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.,Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
28
|
A Novel Molecular Signature of Cancer-Associated Fibroblasts Predicts Prognosis and Immunotherapy Response in Pancreatic Cancer. Int J Mol Sci 2022; 24:ijms24010156. [PMID: 36613599 PMCID: PMC9820557 DOI: 10.3390/ijms24010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs), a prominent population of stromal cells, play a crucial role in tumor progression, prognosis, and treatment response. However, the relationship among CAF-based molecular signatures, clinical outcomes, and tumor microenvironment infiltration remains largely elusive in pancreatic cancer (PC). Here, we collected multicenter PC data and performed integrated analysis to investigate the role of CAF-related genes (CRGs) in PC. Firstly, we demonstrated that α-SMA+ CAFs were the most prominent stromal components and correlated with the poor survival rates of PC patients in our tissue microarrays. Then, we discriminated two diverse molecular subtypes (CAF clusters A and B) and revealed the significant differences in the tumor immune microenvironment (TME), four reported CAF subpopulations, clinical characteristics, and prognosis in PC samples. Furthermore, we analyzed their association with the immunotherapy response of PC patients. Lastly, a CRG score was constructed to predict prognosis, immunotherapy responses, and chemosensitivity in pancreatic cancer patients. In summary, these findings provide insights into further research targeting CAFs and their TME, and they pave a new road for the prognosis evaluation and individualized treatment of PC patients.
Collapse
|
29
|
Xie J, Zhang J, Tian W, Zou Y, Tang Y, Zheng S, Wong CW, Deng X, Wu S, Chen J, Mo Y, Xie X. The Pan-Cancer Multi-Omics Landscape of FOXO Family Relevant to Clinical Outcome and Drug Resistance. Int J Mol Sci 2022; 23:ijms232415647. [PMID: 36555288 PMCID: PMC9778770 DOI: 10.3390/ijms232415647] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The forkhead box O (FOXO) transcription factors (TFs) family are frequently mutated, deleted, or amplified in various human cancers, making them attractive candidates for therapy. However, their roles in pan-cancer remain unclear. Here, we evaluated the expression, prognostic value, mutation, methylation, and clinical features of four FOXO family genes (FOXO1, FOXO3, FOXO4, and FOXO6) in 33 types of cancers based on the Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases. We used a single sample gene set enrichment analysis (ssGSEA) algorithm to establish a novel index called "FOXOs score". Moreover, we investigated the association between the FOXOs score and tumor microenvironment (TME), the responses to multiple treatments, along with drug resistance. We found that the FOXO family genes participated in tumor progression and were related to the prognosis in various types of cancer. We calculated the FOXOs score and found that it was significantly correlated with multiple malignant pathways in pan-cancer, including Wnt/beta-catenin signaling, TGF-beta signaling, and hedgehog signaling. In addition, the FOXOs score was also associated with multiple immune-related characteristics. Furthermore, the FOXOs score was sensitive for predicting the efficacy of diverse treatments in multiple cancers, especially immunotherapy. In conclusion, FOXO family genes were vital in pan-cancer and were strongly correlated with the TME. A high FOXOs score indicated an excellent immune-activated TME and sensitivity to multiple treatments. Hence, the FOXOs score might potentially be used as a biomarker in patients with a tumor.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Junsheng Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wenwen Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shaoquan Zheng
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510060, China
| | - Chau-Wei Wong
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Song Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Junxin Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510060, China
| | - Yunxian Mo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Correspondence: (Y.M.); (X.X.); Tel.: +86-13924277788 (X.X.); Fax: +86-20-87343805 (X.X.)
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Correspondence: (Y.M.); (X.X.); Tel.: +86-13924277788 (X.X.); Fax: +86-20-87343805 (X.X.)
| |
Collapse
|
30
|
Ding L, Wang X, Deng X, Xia W, Wang K, Yu X, Huang Y, Wang J. Preoperative systemic immune‐inflammation index as a significant prognostic factor after
TURBT
in patients with non‐muscle‐invasive bladder cancer: A retrospective study based on propensity score matching analysis. Cancer Med 2022; 12:7019-7028. [PMID: 36479836 PMCID: PMC10067042 DOI: 10.1002/cam4.5501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the association of the preoperative systemic immune-inflammation index (SII) with recurrence-free survival (RFS) after transurethral resection of the bladder tumor (TURBT) of non-muscle-invasive bladder cancer (NMIBC) using propensity score matching (PSM) analysis. METHODS The clinicopathological characteristics and follow-up data of NMIBC patients were collected retrospectively from two tertiary medical centers. A 1:1 PSM analysis was carried out using the nearest-neighbor method (caliper size: 0.02). Cox regression analysis was used to identify the risk factors associated with RFS. RESULTS A total of 416 NMIBC patients were included in this study. Before and after matching, patients with increased SII had worse RFS (p < 0.0001 and p = 0.027, respectively). Multivariate Cox analysis identified SII as an independent predictor of RFS before (HR [95% CI]: 1.789 [1.232, 2.599], p = 0.002) and after matching (HR [95% CI]: 1.646 [1.077, 2.515], p = 0.021). In the matched subgroup analysis, an elevated SII had a significant association with postoperative worse RFS in the T1 stage (p = 0.025), primary status (p = 0.049), high-grade (p = 0.0015), and multiple lesions (p = 0.043) subgroups. CONCLUSION SII could accurately stratify the prognosis of NMIBC patients before and after PSM analysis. An elevated SII was significantly associated with worse RFS in NMIBC patients.
Collapse
Affiliation(s)
- Li Ding
- Department of Urology The Affiliated Hospital of Xuzhou Medical University Xuzhou PR China
| | - Xiangbu Wang
- Department of Pathology The Affiliated Hospital of Xuzhou Medical University Xuzhou PR China
| | - Xiaobin Deng
- Department of Urology The First Affiliated Hospital of Guangxi Medical University Nanning PR China
| | - Wentao Xia
- Department of Urology The Affiliated Hospital of Xuzhou Medical University Xuzhou PR China
| | - Kun Wang
- Department of Urology The Affiliated Hospital of Xuzhou Medical University Xuzhou PR China
| | - Xianlin Yu
- Department of Urology The First Affiliated Hospital of Guangxi Medical University Nanning PR China
| | - Yaotian Huang
- Department of Urology The First Affiliated Hospital of Guangxi Medical University Nanning PR China
| | - Junqi Wang
- Department of Urology The Affiliated Hospital of Xuzhou Medical University Xuzhou PR China
| |
Collapse
|
31
|
Li XY, Wang Y, Zhu WG, Kong C, Lu SB. Impact of cervical and global spine sagittal alignment on cervical curvature changes after posterior cervical laminoplasty. J Orthop Surg Res 2022; 17:521. [PMID: 36461088 PMCID: PMC9717424 DOI: 10.1186/s13018-022-03421-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE To analyze the correlation between the changes in cervical curvature and the sagittal parameters of spino-pelvic and clinical efficacy after posterior laminoplasty (LP). METHODS The patients with cervical spondylosis treated with LP from June 2018 to December 2020 were reviewed. The preoperative and follow-up spine full-length films were measured. The measured data included C2-C7 Cobb angle, C2-7 sagittal vertical axis (SVA), T1 slope (T1S), pelvic incidence, sacral slope (SS), pelvic tilt (PT), lumbar lordosis (LL), thoracic kyphosis (TK), and C7-SVA. Japanese Orthopaedic Association (JOA) score and neck disability index (NDI) score were recorded before surgery and follow-up. RESULTS There were 56 patients in this study. There were no significant differences in spino-pelvic sagittal parameters before and after surgery; however, the JOA score significantly improved. The changes in postoperative cervical lordosis correlated with SS, PT, LL, T1S, and C7-SVA (P < 0.05). Regression analysis showed that T1S and C7-SVA were associated with reducing cervical lordosis (P = 0.021 and P = 0.001, respectively). Patients with larger T1S combined with larger C7-SVA had more cervical lordosis loss, poor JOA improvement, and high postoperative NDI scores (P < 0.001, P = 0.018, and P < 0.001, respectively). CONCLUSION Patients should be examined with full-length spine film before surgery to evaluate the cervical and spino-pelvic sagittal balance. T1S and C7-SVA correlated with changes in cervical sagittal alignment after LP. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Xiang-Yu Li
- grid.413259.80000 0004 0632 3337Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China ,National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yu Wang
- grid.413259.80000 0004 0632 3337Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China ,National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei-Guo Zhu
- grid.413259.80000 0004 0632 3337Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China ,National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Chao Kong
- grid.413259.80000 0004 0632 3337Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China ,National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shi-Bao Lu
- grid.413259.80000 0004 0632 3337Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China ,National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
32
|
Luo Y, Tian W, Lu X, Zhang C, Xie J, Deng X, Xie Y, Yang S, Du W, He R, Wei W. Prognosis stratification in breast cancer and characterization of immunosuppressive microenvironment through a pyrimidine metabolism-related signature. Front Immunol 2022; 13:1056680. [PMID: 36524129 PMCID: PMC9745154 DOI: 10.3389/fimmu.2022.1056680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Pyrimidine metabolism is a hallmark of cancer and will soon become an essential part of cancer therapy. In the tumor microenvironment, cells reprogram pyrimidine metabolism intrinsically and extracellularly, thereby promoting tumorigenesis. Metabolites in pyrimidine metabolism have a significant impact on promoting cancer advancement and modulating immune system responses. In preclinical studies and practical clinical applications, critical targets in pyrimidine metabolism are acted upon by drugs to exert promising therapeutic effects on tumors. However, the pyrimidine metabolism in breast cancer (BC) is still largely underexplored. In this study, 163 credible pyrimidine metabolism-related genes (PMGs) were retrieved, and their somatic mutations and expression levels were determined. In addition, by using The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases, 12 PMGs related to the overall survival (OS) were determined using the univariate Cox regression analysis. Subsequently, by performing the LASSO Cox hazards regression analysis in the 12 PMGs in TCGA-BRCA dataset, we developed a prognosis nomogram using eight OS-related PMGs and then verified the same in the METABRIC, GSE96058, GSE20685, GSE42568 and GSE86166 data. Moreover, we validated relationships between the pyrimidine metabolism index (PMI) and the survival probability of patients, essential clinical parameters, including the TNM stage and the PAM50 subtypes. Next, we verified the predictive capability of the optimum model, including the signature, the PAM50 subtype, and age, using ROC analysis and calibration curve, and compared it with other single clinical factors for the predictive power of benefit using decision curve analysis. Finally, we investigated the potential effects of pyrimidine metabolism on immune checkpoints, tumor-infiltrating immune cells, and cytokine levels and determined the potential implications of pyrimidine metabolism in BC immunotherapy. In conclusion, our findings suggest that pyrimidine metabolism has underlying prognostic significance in BC and can facilitate a new management approach for patients with different prognoses and more precise immunotherapy.
Collapse
Affiliation(s)
- Yongzhou Luo
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenwen Tian
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiuqing Lu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chao Zhang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jindong Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xinpei Deng
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yi Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuhui Yang
- Surgical and Transplant Intensive Care Unit of The Third Affiliated Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Du
- Department of Pathology, The First People’s Hospital of Changde City, Changde, Hunan, China,*Correspondence: Weidong Wei, ; Rongfang He, ; Wei Du,
| | - Rongfang He
- Department of Pathology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China,*Correspondence: Weidong Wei, ; Rongfang He, ; Wei Du,
| | - Weidong Wei
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,*Correspondence: Weidong Wei, ; Rongfang He, ; Wei Du,
| |
Collapse
|