1
|
Karim M, Hasan MM, Kim SH, Azam Z, Wahab R, Islam T, Alam F, Kim YJ, Bae DJ, Roy S, Grippo P, Bishehsari F, Choi JU, Al-Hilal TA. Stromal fibrin shapes immune infiltration landscape of pancreatic ductal adenocarcinoma. Biomaterials 2025; 320:123280. [PMID: 40147113 DOI: 10.1016/j.biomaterials.2025.123280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), in-situ coagulation creates a thrombotic, crosslinked fibrin (x-fibrin)-rich tumor stroma (FibTS), whose impact on immune cell behavior remains unclear. We aimed to elucidate how FibTS in PDAC regulates immune cell infiltration, polarization, and crosstalk that favors immunosuppressive microenvironment and tumor growth. We assessed the spatial distribution of immune cells by multiplex immunostaining of human PDAC tissues, along with novel bioengineering and mouse tumor models. We investigated how FibTS influences the infiltration of tumor-associated macrophage (TAM) and T-cell subtypes and identified two distinct variants of PDAC, fibrin-high (Fibhi) and fibrin-low (Fiblow). Our findings reveal that PDAC cells secrete fibrinogen and thrombin to form FibTS, which acts as a physical barrier and biochemical niche that restricts CD8+ T-cell and TAM penetration into the tumor. The FibTS impeded immune cell penetration from the tumor stroma into the tumor parenchyma. Selective inhibition of FibTS formation by genetic and pharmacological tools altered the infiltration patterns of CD8+ T-cells and TAMs, decelerating PDAC growth. This study demonstrates that the barrier function of FibTS is crucial for immune evasion, particularly against macrophage and T-cell activity, presenting a potential therapeutic strategy to reshape the immune landscape within PDAC and slow tumor progression.
Collapse
Affiliation(s)
- Mazharul Karim
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Mahedi Hasan
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Seung Hyun Kim
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea, 02453
| | - Zulfikar Azam
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
| | - Riajul Wahab
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
| | - Tamanna Islam
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Farzana Alam
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Yun-Jae Kim
- PrismCDX, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Dong-Jun Bae
- PrismCDX, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Sourav Roy
- Department of Biological Sciences, College of Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Paul Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Faraz Bishehsari
- Gastroenterology Research Center, Division of Gastroenterology, Hepatology & Nutrition, Department of Internal Medicine, University of Texas Houston, TX 77030, USA; MD Anderson Cancer Center-UTHealth Houston Graduate School of Biomedical Sciences, USA
| | - Jeong Uk Choi
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea, 02453.
| | - Taslim A Al-Hilal
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Zhou M, Liu Y, Li C, Yang X, Ji C, Li W, Song M, Yang Z, Liu G, Liang X, Liang J, Zhang B, Wang L. INSL3 promotes macrophage polarization to an immunosuppressive phenotype via the cAMP downstream signaling pathway and Akt/mTOR pathway. Int Immunopharmacol 2025; 154:114540. [PMID: 40168802 DOI: 10.1016/j.intimp.2025.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025]
Abstract
Insulin-like peptide 3 (INSL3) is a small peptide hormone produced almost exclusively by testicular Leydig cells in males and thus serves as an essential biomarker of the maturation and functionality of these cells. Accumulated evidence suggests that INSL3 is a crucial factor affecting testicular descent during fetal development by regulating the growth of the gubernaculum. However, the physiological roles of INSL3 in adults remain unclear. Here, we reported that relaxin family peptide 2 (RXFP2), the receptor of INSL3, is expressed on macrophages, and treatment with INSL3 can promote M2 macrophage polarization via the Akt/mTOR/S6K and PKA/CREB pathways. In addition, INSL3 can inhibit macrophage phagocytosis and promote their migration via the Epac and PKA signaling pathways, respectively. These findings reveal a new role for INSL3 in regulating macrophage function and shed new light on our understanding of the role of INSL3 in adulthood.
Collapse
Affiliation(s)
- Mengting Zhou
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yi Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cuiping Li
- Laboratory medicine department, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xizhong Yang
- Department of Spine Surgery, Qingdao Haici Medical Group, Qingdao, China
| | - Cuijie Ji
- Department of Spine Surgery, Qingdao Haici Medical Group, Qingdao, China
| | - Wei Li
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Meiying Song
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zijie Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guixian Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xinping Liang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jie Liang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Luoyang Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China; Department of Spine Surgery, Qingdao Haici Medical Group, Qingdao, China.
| |
Collapse
|
3
|
Singh A, Pillai L, Danes D, Umar S, Balakrishnan S. 4-fluorophenylacetamide acetyl coumarin induces pro-inflammatory M1 macrophage polarization and suppresses the immunosuppressive M2 phenotype through PI3k/AKT/NF-κB modulation. Mol Biol Rep 2025; 52:415. [PMID: 40266432 DOI: 10.1007/s11033-025-10517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND The tumor microenvironment plays a critical role in cancer progression, with tumor-associated macrophages regulating immune responses. These macrophages can adopt a pro-inflammatory M1 phenotype that suppresses tumor growth or an anti-inflammatory M2 phenotype that promotes progression. Reprogramming macrophages toward the M1 phenotype is a therapeutic strategy. Previous studies showed that 4-Fluorophenylacetamide-acetyl coumarin (4-FPAC), a synthetic coumarin derivative, exhibits cytostatic activity in A549 lung carcinoma cells by modulating reactive oxygen species (ROS), nitric oxide synthase, and signaling pathways, including PI3K/AKT/NF-κB. This study evaluates the impact of 4-FPAC on macrophage polarization. HYPOTHESIS We hypothesized that 4-FPAC promotes M1 macrophage polarization while suppressing M2 markers through modulation of signaling pathways, thus serving as an immunomodulatory agent. RESULTS Treatment with 4-FPAC induced M1 polarization in THP1-derived macrophages, evident from morphological elongation, elevated ROS and NO production, and increased IL-12 levels. IL-10 levels and M2 markers (CD163, STAT3, AKT1) were downregulated, while M1 markers (CD80, STAT1, AKT2) were upregulated. Gene expression and western blot analyses revealed activation of P38 and NF-κB pathways and reduced phosphorylated AKT1 levels. In silico docking showed strong interactions of 4-FPAC with regulatory proteins like P38, NF-κB, and AKT1, suggesting pathway modulation. CONCLUSION 4-FPAC facilitates M1 macrophage polarization and inhibits M2 signaling, demonstrating its potential as an immunomodulatory agent. Coupled with its cytostatic effects on A549 cells, these findings position 4-FPAC as a promising candidate for cancer therapy. Further in vivo studies are warranted to validate its therapeutic potential and explore applications in immunotherapy and inflammation-associated diseases.
Collapse
Affiliation(s)
- Anjali Singh
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Lakshmi Pillai
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Dhanush Danes
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
- Department of Zoology, Union Christian College, Aluva, Kerala, 683102, India
| | - Shweta Umar
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
4
|
Lee SY, Prieto-Fernández E, Egia-Mendikute L, Antoñana-Vildosola A, Velasco-Beltrán P, Bosch A, Jimenez-Lasheras B, de Blas A, Etxaniz-Diaz de Durana J, Valdaliso-Díez E, Bozal-Basterra L, Ercilla A, Martin JE, Carracedo A, Gros A, Aransay AM, Palazón A, Pérez-Gutiérrez L. Syndecan-3 positively regulates the pro-inflammatory function of macrophages. Cell Mol Life Sci 2025; 82:145. [PMID: 40192763 PMCID: PMC11977058 DOI: 10.1007/s00018-025-05649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/10/2025]
Abstract
The tumour microenvironment (TME) is a highly structured ecosystem that surrounds a tumour and plays a crucial role in tumorigenesis. As one of the most abundant cell types in the TME, tumour-associated-macrophages (TAMs) can promote disease progression and resistance to therapy. Syndecan-3 (SDC3) is a cell-surface heparan sulphate proteoglycan expressed by TAMs, although its functional relevance in these cells remains unknown. Here, we demonstrated that pro-inflammatory cytokines drive the expression of SDC3 on the cell surface of macrophages. Genetic ablation of SDC3 in macrophages led to aberrant proliferation, adhesion and expression of CD40 and CD86 surface markers. Moreover, SDC3 defective macrophages exhibited distinctive gene expression patterns, leading to impaired tumour cell phagocytosis and increased tumour cell proliferation. Mechanistically, a decrease in the secretion of pro-inflammatory cytokines was observed in SDC3 KO macrophages, concomitant with impaired T cell effector functions. Additionally, a higher angiogenic capacity was observed in endothelial cells when co-cultured with macrophages deficient for SDC3, possibly mediated through an increased release of VEGFA, PECAM-1 and IL-8 by SDC3 KO cells. Collectively, we have identified SDC3 as a modulator of macrophage functions aiming at supporting a pro-inflammatory and anti-tumour phenotype in these cells.
Collapse
Affiliation(s)
- So Young Lee
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Endika Prieto-Fernández
- Tumor Immunology and Immunotherapy Lab, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Leire Egia-Mendikute
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Asier Antoñana-Vildosola
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Paloma Velasco-Beltrán
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Alexandre Bosch
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Borja Jimenez-Lasheras
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Ander de Blas
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Jone Etxaniz-Diaz de Durana
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Eunate Valdaliso-Díez
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Laura Bozal-Basterra
- Cancer Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Amaia Ercilla
- Cancer Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - José Ezequiel Martin
- Genome Analysis Platform, CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Arkaitz Carracedo
- Cancer Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alena Gros
- Tumor Immunology and Immunotherapy Lab, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana M Aransay
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Genome Analysis Platform, CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Asís Palazón
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Lorena Pérez-Gutiérrez
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain.
| |
Collapse
|
5
|
Mestan KK, Sharma AM, Lazar S, Pandey S, Parast MM, Laurent LC, Prince LS, Sahoo D. Bronchopulmonary dysplasia: signatures of monocyte-macrophage reactivity and tolerance define novel placenta-lung endotypes. Pediatr Res 2025:10.1038/s41390-025-04025-w. [PMID: 40175585 DOI: 10.1038/s41390-025-04025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a complex disease involving aberrant immune responses across the lifespan, but these mechanisms are challenging to follow in human infants. Leveraging novel Signatures of Macrophage Reactivity and Tolerance (SMaRT), we hypothesized that distinct profiles of immune cell polarization in blood and lung are associated with BPD. METHODS Published transcriptomic datasets of cord blood-derived monocytes (CB-MNC), peripheral blood monocytes (PBMC) and tracheal aspirate-derived lung macrophages were linked to placental inflammatory (PID) and vascular (PVD) disease states using Amsterdam criteria, and BPD outcomes using NIH consensus criteria. Datasets were integrated using SMaRT to investigate monocyte-macrophage polarization tracked over the neonatal course. RESULTS At birth and day 1 (D1), CB-MNCs and lung macrophages exhibited significant reactivity with PID versus PVD. After D14, macrophages from PID versus PVD-exposed infants exhibited reactive phenotypes (p = 0.002), with convergence towards original placental disease. Macrophages exhibited reactivity with BPD on D1-D7 (p = 0.007), but no difference after D14. At birth, CB-MNCs from BPD patients exhibited tolerance, which persisted in PBMCs throughout the neonatal period. CONCLUSION Inflammatory versus vascular-mediated processes in developing lungs are influenced by immune cells programmed by distinct placental disease states. Circulating monocytes may play a role in attenuating macrophage reactivity towards a tolerant phenotype. IMPACT Bronchopulmonary dysplasia is a complex, multifactorial chronic lung disease in which the mechanisms of placenta-lung crosstalk are poorly understood. This study uses novel AI approaches to understand how fetal monocytes and lung macrophages contribute to the pathogenesis of BPD. The study identified changes in macrophage reactivity versus tolerance that could explain the heterogeneity and adaptability of immune cells and the placenta in modulating health and disease in the developing fetus and neonate.
Collapse
Affiliation(s)
- Karen K Mestan
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| | - Abhineet M Sharma
- Department of Pediatrics, Divisions of Neonatology and Pediatric Pulmonology, University of Nebraska College of Medicine, Omaha, NE, USA
| | - Sarah Lazar
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sonalisa Pandey
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
García-Giménez JL, Cánovas-Cervera I, Nacher-Sendra E, Dolz-Andrés E, Sánchez-Bernabéu Á, Agúndez AB, Hernández-Gil J, Mena-Mollá S, Pallardó FV. Oxidative stress and central metabolism pathways impact epigenetic modulation in inflammation and immune response. Free Radic Biol Med 2025; 233:378-399. [PMID: 40185167 DOI: 10.1016/j.freeradbiomed.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Oxidative stress, metabolism, and epigenetics are deeply interconnected processes that collectively influence cellular function, health status, and contribute to disease progression. This review highlights the critical role of metabolic intermediates in epigenetic regulation, focusing on lactate, glutathione (GSH), and S-adenosylmethionine (SAM). Beyond its traditional role in energy metabolism, lactate modulates epigenetic mechanisms, influencing gene expression and cellular adaptation. Meanwhile, GSH and SAM serve as key regulators of DNA methylation and histone post-translational modifications, maintaining epigenetic homeostasis. These processes are tightly controlled by redox balance and oxidative stress, underscoring the intricate interplay between metabolism and epigenetic regulation. GSH depletion disrupts methylation homeostasis, while oxidative post-translational modifications (oxPTMs) on histones-including S-glutathionylation, carbonylation, and nitrosylation-alter chromatin architecture and transcriptional regulation. Additionally, we focus on histone lactylation, particularly its role in regulating innate and adaptive immune responses. We also explore how GSH and oxidative stress influence lactate levels, potentially inducing histone lactylation or S-glutathionylation through S,D-lactoylglutathione (LGSH), thereby impacting epigenetic regulation. By integrating insights into metabolic-epigenetic crosstalk, this review underscores the role of oxidative stress and central metabolic pathways in regulating epigenetic mechanisms, a concept known as "redox epigenetics." Understanding these intricate interactions offers new perspectives for therapeutic strategies aimed at restoring redox homeostasis and metabolic integrity to counteract disturbances in the epigenetic landscape.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Irene Cánovas-Cervera
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Elena Nacher-Sendra
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Enric Dolz-Andrés
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Álvaro Sánchez-Bernabéu
- EpiDisease S.L. Parc Científic de la Universitat de València, Paterna, 46980, Valencia, Spain
| | - Ana Belén Agúndez
- EpiDisease S.L. Parc Científic de la Universitat de València, Paterna, 46980, Valencia, Spain
| | - Javier Hernández-Gil
- INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Salvador Mena-Mollá
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Federico V Pallardó
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
7
|
Ramalho A, Vale A, Carvalho F, Fernandes E, Freitas M. Parabens exposure and its impact on diabesity: A review. Toxicology 2025; 515:154125. [PMID: 40132785 DOI: 10.1016/j.tox.2025.154125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Parabens are a family of alkyl esters of 4-hydroxybenzoic acid. The most commonly used include methylparaben, ethylparaben, propylparaben, and butylparaben. These compounds have been reported to disrupt the endocrine system and are believed to affect the central nervous, immune, and reproductive systems, as well as lipid homeostasis, glucose levels, and thyroid function. Given these effects, parabens pose potential health risks, including their possible link to conditions like diabesity - a term describing the dual condition of type 2 diabetes mellitus and obesity. This review explores current literature on how parabens may influence key mechanisms in diabesity, such as gluconeogenesis, glycogenolysis, adipogenesis, insulin resistance, and inflammation. Understanding their role in these metabolic pathways is critical for assessing their contribution to the diabesity epidemic and guiding future research for minimizing their harmful health impacts.
Collapse
Affiliation(s)
- Ana Ramalho
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Abel Vale
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Félix Carvalho
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto 4050‑313, Portugal; Associated Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal.
| |
Collapse
|
8
|
Chai Q, Qi Y, Nie X, Wang H. APOC1, transcriptionally regulated by FOXM1, promotes M2 macrophage polarization and cervical cancer progression. Mutat Res 2025; 830:111904. [PMID: 40139083 DOI: 10.1016/j.mrfmmm.2025.111904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Cervical cancer (CC) is a common malignant tumor in women. M2 macrophages are associated with tumor growth, metastasis, and immunosuppression. Apolipoprotein C1 (APOC1) has been confirmed as an oncogene in CC. However, the role and mechanism of APOC1 in CC progression and M2 macrophages remain to be elucidated. METHODS The effects of APOC1 on CC cell malignant phenotypes were examined by CCK-8, colony formation, wound healing, and transwell assays in vitro and mice transplant tumor model in vivo. M2 macrophage polarization was assessed by qRT-PCR and flow cytometry assays. The interaction between APOC1 and forkhead box M1 (FOXM1) was determined using chromatin immunoprecipitation (ChIP) and luciferase reporter assays. RESULTS The expression of APOC1 and FOXM1 was upregulated in CC tissues and cells. Knockdown of APOC1 or FOXM1 resulted in the inhibition of cell proliferation, migration, invasion, and EMT. Moreover, the polarization of M2 macrophages was attenuated when APOC1 or FOXM1 was silenced. Mechanistically, FOXM1 transcriptionally activated APOC1 by binding to its promoter. Furthermore, overexpression of APOC1 reversed the inhibitory effects of FOXM1 knockdown on cell proliferation, metastasis, and M2 macrophage polarization. Additionally, the knockdown of APOC1 reduced tumor growth and M2 macrophage polarization in mice. CONCLUSION FOXM1/APOC1 axis is involved in the progression of CC and the regulation of M2 macrophages polarization, bringing new hope to the treatment of CC.
Collapse
Affiliation(s)
- Qing Chai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Yan Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China.
| | - Xiaoyan Nie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Huan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| |
Collapse
|
9
|
Yang H, Wei A, Zhou X, Chen Z, Wang Y. SUCNR1 Deficiency Alleviates Liver Ischemia-Reperfusion Injury by Regulating Kupffer Cell Activation and Polarization Through the ERK/NF-κB Pathway in Mice. Inflammation 2025:10.1007/s10753-025-02290-9. [PMID: 40106070 DOI: 10.1007/s10753-025-02290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Succinate regulates inflammation through its receptor, succinate receptor 1 (SUCNR1). However, the effects of this interaction on Kupffer cell (KC)-driven inflammation during liver ischemia-reperfusion injury (IRI) remain unclear. Herein, we investigated the succinate/SUCNR1 axis in the progression of liver IRI. In this study, succinate levels and SUCNR1 expression were analyzed in mice underwent segmental liver IRI. Sucnr1 deficiency (Sucnr1-/-) and Wild-type mice were treated with or without clodronate before liver IRI modeling, and a co-culture system was established to assess the impact of Sucnr1 deficiency in KCs on hepatocyte viability and apoptosis. KC activation status and polarization were determined, in vivo and in vitro. Furthermore, the downstream pathways in regulating KC polarization were investigated. We observed a significant increase in succinate levels in the serum and liver, and SUCNR1 expression in KCs after IRI. Sucnr1 deletion alleviated liver IRI and hepatocyte apoptosis either in vivo or in vitro. However, the aforementioned hepatoprotective effects were abolished by the depletion of KCs with clodronate. Sucnr1 deletion inhibited KC activation and M1 polarization, and dampened proinflammatory cytokine release after liver IRI. In addition, Sucnr1 knockout reversed the increasing phosphorylation of ERK and NF-κB p65 in KCs following liver IRI. The phosphorylation of ERK/NF-κB p65 and M1 polarization in KCs were also inhibited by the SUCNR1 antagonist Compound 4C or ERK inhibitor SCH772984. Together, these findings suggest that SUCNR1 deficiency protects against liver IRI by modulating KC activation and polarization probably through the ERK/NF-κB pathway.
Collapse
Affiliation(s)
- Huan Yang
- Department of Anesthesiology, the First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Shigu District, Hengyang, 421001, Hunan Province, China
| | - An Wei
- Department of Anesthesiology, the First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Shigu District, Hengyang, 421001, Hunan Province, China
| | - Xinting Zhou
- Department of Anesthesiology, the First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Shigu District, Hengyang, 421001, Hunan Province, China
| | - Zhiwei Chen
- Department of Anesthesiology, the First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Shigu District, Hengyang, 421001, Hunan Province, China
| | - Yiheng Wang
- Department of Anesthesiology, the First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Shigu District, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
10
|
Wang S, Kong L, Wang L, Zhuang Y, Guo C, Zhang Y, Cui H, Gu X, Wu J, Jiang C. Viral expression of NE/PPE enhances anti-colorectal cancer efficacy of oncolytic adenovirus by promoting TAM M1 polarization to reverse insufficient effector memory/effector CD8 + T cell infiltration. J Exp Clin Cancer Res 2025; 44:97. [PMID: 40082916 PMCID: PMC11907943 DOI: 10.1186/s13046-025-03358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Oncolytic adenoviruses are among the most widely utilized oncolytic viruses due to their notable anti-tumor and gene expression capabilities, and modification of ADVs to create armed adenoviruses remains a popular research direction. Nonetheless, immune suppression triggered by ADV and targeted enhancements based on this limitation have been relatively unexplored. METHODS Flow cytometry was employed to assess immune infiltration in the tumor microenvironment following ADV therapy. Targeted novel recombinant oncolytic viruses, ADVNE and ADVPPE, were designed, and their antitumor efficacy, safety, and ability to reshape immune infiltration were evaluated in both subcutaneous tumor models in mice and in vitro experiments. Immune cell depletion assays confirmed the critical role of macrophages. The impact of HMGB1 on macrophage polarization was investigated using shRNA, qRT-PCR, ELISA, and flow cytometry. Furthermore, the importance of TLR4 and its downstream pathways was validated through immunoprecipitation, Western blotting, homozygous knockout mice, and TLR4 inhibitors. RESULTS We demonstrated that ADV limits the infiltration of effector memory/effector CD8 + T cells (TEM/TE) within the tumor microenvironment. To address this, we leveraged the strong capacity of NE or PPE to recruit TEM/TE by constructing novel recombinant oncolytic adenoviruses, ADVNE or ADVPPE, armed with NE or PPE. These recombinant viruses induce pyroptosis in colorectal cancer cells accompanied by the release of HMGB1. HMGB1 binds to TLR4 on the surface of macrophages, activating the MyD88-NFκB-NLRP3 (ASC) pathway and promoting M1 polarization of TAMs, thereby increasing TEM/TE cell infiltration and enhancing antitumor efficacy. CONCLUSIONS In summary, this study presents the development of the novel oncolytic adenoviruses ADVNE and ADVPPE with enhanced anti-tumor efficacy and provides an in-depth exploration of their specific anti-tumor mechanisms. These findings indicate promising clinical therapeutic prospects and offer new insights for advancing oncolytic adenovirus therapies.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China
| | - Linpei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Yan Zhuang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China
| | - Ciliang Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China
| | - Huawei Cui
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China.
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, Nanjing, 210093, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China.
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, Nanjing, 210093, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China.
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, China.
| |
Collapse
|
11
|
Araújo HM, Moura GAD, Rocha YM, Pinheiro Gomes CV, Melo de Oliveira VNE, Oliveira RND, Figueiredo Nicolete LDD, Magalhães EP, de Menezes RR, Nicolete R. In vitro antitumor and immunomodulatory activities of 1,2,4-oxadiazole derivatives. Biochem Biophys Rep 2025; 41:101950. [PMID: 40028040 PMCID: PMC11868951 DOI: 10.1016/j.bbrep.2025.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Melanoma is the most aggressive and lethal type of skin cancer, responsible for approximately 60,000 deaths annually. The main strategy for treating melanoma is surgery to completely remove the lesion and its margins. However, for more advanced cases with a high recurrence rate, the preferred approach is to combine chemotherapy with immunotherapy treatments. Tumor-associated macrophages (TAMs) are the most abundant leukocytes in solid tumors. Current immunotherapy approaches target TAMs by inhibiting pro-tumoral TAMs and activating anti-tumoral TAMs, repolarizing them to the M1 phenotype. The antitumor and immunomodulatory activities of molecules derived from 1,2,4-oxadiazole, as demonstrated in the literature, highlight the potential of this class as a source of promising candidates for therapeutic applications. Thus, the present study aims to evaluate the antitumor and immunomodulatory effects of the synthetic derivative 1,2,4-oxadiazole, N-cyclohexyl-3-(3-methylphenyl)-1,2,4-oxadiazole-5-amine (1,2,4-oxadiazole derivative 2), in melanoma cells and murine Bone Marrow-Derived Macrophages (BMDMs). Cytotoxicity in B16-F10 and BMDMs cells was assessed using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT method. 1,2,4-oxadiazole derivative 2 exhibited antiproliferative effects on both cell lines, being 2.6 times more selective for B16-F10. Necrosis was identified as the active induced death pathway. BMDMs isolated and exposed to 1,2,4-oxadiazole derivative 2 polarize to the M1 phenotype and induce TNF-α at a concentration of 64.34 μM. Exposure to melanoma murine supernatants also promotes M1 polarization. Supernatants containing traces of 1,2,4-oxadiazole derivative 2 (Supernatants B, C, and D) increased the percentage of M1 cells compared to Supernatant A, as well as elevated levels of nitrite, TNF-α, and IL-12. 1,2,4-oxadiazole derivative 2 combined with Supernatant A and 1,2,4-oxadiazole derivative 2 combined with LPS also resulted in higher M1 polarization, suggesting a synergistic effect on M1 polarization and TNF-α production. Our findings underscore the significance of the 1,2,4-oxadiazole compound class and highlight the potential of 1,2,4-oxadiazole derivative 2 as an antitumoral and immunotherapeutic agent.
Collapse
Affiliation(s)
- Héverton Mendes Araújo
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gabriel Acácio de Moura
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| | - Yasmim Mendes Rocha
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| | - Cristian Vicson Pinheiro Gomes
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| | | | | | | | - Emanuel Paula Magalhães
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Ramon R.P.P.B. de Menezes
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Roberto Nicolete
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| |
Collapse
|
12
|
Hooda V, Sharma A. Interactions of NK Cells and Macrophages: From Infections to Cancer Therapeutics. Immunology 2025; 174:287-295. [PMID: 39739619 DOI: 10.1111/imm.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025] Open
Abstract
The interaction between immune cells brings a consequence either on their role and functioning or the functioning of the other immune cells, modulating the whole mechanistic pathway. The interaction between natural killer (NK) cells and macrophages is one such interaction which is relatively less explored amongst diseased conditions. Their significance comes from their innate nature and secretion of large proportions of cytokines and chemokines which results in influencing adaptive immune responses. Their interplay can lead to several functional outcomes such as NK cell activation/inhibition, increased cytotoxicity and IFNγ release by NK cells, inhibition of macrophage function, etc. This paper delves into the interaction amongst NK cells and macrophages via different receptor-ligands and cytokines, particularly emphasising microbial infections and tumours. The review has the potential to uncover new insights and approaches that could lead to the development of innovative therapeutic tools and targets.
Collapse
Affiliation(s)
- Vishakha Hooda
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
13
|
Yang L, Hou H, Lu L, Sun Y, Chen R, Deng Q, Chen H. Effects of natural source polysaccharides on neurological diseases: A review. Int J Biol Macromol 2025; 296:139697. [PMID: 39805435 DOI: 10.1016/j.ijbiomac.2025.139697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
With the aging of society and changes in lifestyle, the incidence of neurological diseases (NDs) has been increasing year by year, bringing a heavy burden to patients and society. Although the efficacy of chemical drugs in the treatment of NDs is remarkable, there are problems such as high side effects and high costs. Therefore, finding mild and efficient drugs for NDs treatment has become an urgent clinical need. Natural source polysaccharides (NSPs) are macromolecules with unique bioactivity and low toxicity characteristics, which have great potential to become novel therapeutic agents for NDs. In the present study, the pharmacological activities and potential molecular mechanisms of NSPs to alleviate NDs are systematically reviewed from the perspectives of inflammation, oxidative stress, apoptosis, neuronal cell autophagy, neurotoxicity, and sedation-hypnosis. In addition, the limitations of the existing studies were analyzed and discussed, and the future research direction was suggested. This study may provide scientific basis for the research and development of therapeutic agents for NDs based on NSPs.
Collapse
Affiliation(s)
- Luyuan Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Hailu Hou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Liping Lu
- Guizhou Dalong Pharmaceutical Co., Ltd., Guiyang 550001, China
| | - Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Ruhai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
14
|
Ye K, Shi G, Xu J, Qiao K, Dai Q, Huo Z, Cao Y, Liu W, Hu Y, Yan L, Zhu Y, Li P, Su R, Xu L, Mi Y. Olaparib reverses prostate cancer resistance to Rapamycin by promoting macrophage polarization towards the M1 phenotype. Mol Cell Biochem 2025:10.1007/s11010-025-05231-0. [PMID: 39984794 DOI: 10.1007/s11010-025-05231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Prostate cancer (PCa) is the most common non-cutaneous malignancy and the second leading cause of cancer-related death in men. Despite its prevalence, treatment outcomes are often unsatisfactory, necessitating the search for more effective therapeutic approaches. mTOR inhibitor Rapamycin (RAPA) has shown promise in managing PCa, but the emergence of resistance often undermines its long-term effectiveness. Recent studies suggest that poly ADP-ribose polymerase (PARP) inhibitor Olaparib (OLP) may overcome drug resistance in various tumor types. This study aims to assess the efficacy of OLP in treating RAPA-resistant PCa, with a specific focus on elucidating its underlying molecular mechanisms. This study utilized drug exposure and concentration escalation experiments to establish human RAPA-resistant PCa cell line (PC-3R) based on the human PCa cell line (PC-3). PC-3R cell lines were screened through a cloning assay. The efficacy of OLP in RAPA-resistant PCa, as well as its regulatory impact on tumor-associated macrophages (TAMs), was evaluated through a combination of real-time PCR, ELISA, immunohistochemistry, and fluorescence experiments. This study unveiled that the combination of OLP and RAPA effectively suppressed the proliferation, stemness, invasion, angiogenesis, apoptosis resistance, and anti-oxidative stress capacity of RAPA-resistant PCa. Additionally, it demonstrated the capacity of OLP to regulate macrophage polarization within the tumor microenvironment and reverse drug resistance to RAPA in PCa. The findings of this study lay a theoretical foundation for the potential utilization of OLP in the treatment of RAPA-resistant PCa, offering substantial academic significance and promising application prospects.
Collapse
Affiliation(s)
- Kai Ye
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Gang Shi
- Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300021, China
| | - Jian Xu
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Kunyan Qiao
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Qinghai Dai
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Zhixiao Huo
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yu Cao
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Wei Liu
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yue Hu
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Lihua Yan
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yu Zhu
- Department of Clinical Laboratory, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, The Third Central Hospital of Tianjin, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China
| | - Ping Li
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China.
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China.
| | - Rui Su
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China.
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China.
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China.
| | - Liang Xu
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China.
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China.
- Department of Hepatology & Oncology, Tianjin Second People's Hospital, Tianjin, China.
| | - Yuqiang Mi
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China.
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China.
| |
Collapse
|
15
|
Rodríguez JP, Casas J, Balboa MA, Balsinde J. Bioactive lipid signaling and lipidomics in macrophage polarization: Impact on inflammation and immune regulation. Front Immunol 2025; 16:1550500. [PMID: 40028333 PMCID: PMC11867965 DOI: 10.3389/fimmu.2025.1550500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Macrophages, crucial innate immune cells, defend against pathogens and resolve inflammation, maintaining tissue balance. They perform phagocytosis, present antigens to T cells, and bond innate and adaptive immunity through various activation states. Classical activation is associated with Th1 responses and interferon γ production, while alternative activation, induced by interleukin 4, is characterized by increased endocytosis, reduced secretion of pro-inflammatory cytokines, and roles in immunoregulation and tissue remodeling. Although these represent opposite extremes observed in vitro, the remarkable plasticity of macrophages allows for a wide spectrum of activation phenotypes that are complex to characterize experimentally. While the application of omics techniques has resulted in significant advances in the characterization of macrophage polarization, lipidomic studies have received lesser attention. Beyond their role as structural components and energy sources, lipids function as signaling molecules that regulate macrophage activation and polarization, thereby shaping immune responses. This work reviews the interaction between lipid signaling and macrophage polarization, exploring how lipid metabolism influences macrophage phenotype and function. These insights offer potential therapeutic strategies for immune-mediated diseases and inflammation-related disorders, including inflammaging.
Collapse
Affiliation(s)
- Juan P. Rodríguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes, Argentina
| | - Javier Casas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas Uva, Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas Uva, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas Uva, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Verona F, Di Bella S, Schirano R, Manfredi C, Angeloro F, Bozzari G, Todaro M, Giannini G, Stassi G, Veschi V. Cancer stem cells and tumor-associated macrophages as mates in tumor progression: mechanisms of crosstalk and advanced bioinformatic tools to dissect their phenotypes and interaction. Front Immunol 2025; 16:1529847. [PMID: 39981232 PMCID: PMC11839637 DOI: 10.3389/fimmu.2025.1529847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Cancer stem cells (CSCs) are a small subset within the tumor mass significantly contributing to cancer progression through dysregulation of various oncogenic pathways, driving tumor growth, chemoresistance and metastasis formation. The aggressive behavior of CSCs is guided by several intracellular signaling pathways such as WNT, NF-kappa-B, NOTCH, Hedgehog, JAK-STAT, PI3K/AKT1/MTOR, TGF/SMAD, PPAR and MAPK kinases, as well as extracellular vesicles such as exosomes, and extracellular signaling molecules such as cytokines, chemokines, pro-angiogenetic and growth factors, which finely regulate CSC phenotype. In this scenario, tumor microenvironment (TME) is a key player in the establishment of a permissive tumor niche, where CSCs engage in intricate communications with diverse immune cells. The "oncogenic" immune cells are mainly represented by B and T lymphocytes, NK cells, and dendritic cells. Among immune cells, macrophages exhibit a more plastic and adaptable phenotype due to their different subpopulations, which are characterized by both immunosuppressive and inflammatory phenotypes. Specifically, tumor-associated macrophages (TAMs) create an immunosuppressive milieu through the production of a plethora of paracrine factors (IL-6, IL-12, TNF-alpha, TGF-beta, CCL1, CCL18) promoting the acquisition by CSCs of a stem-like, invasive and metastatic phenotype. TAMs have demonstrated the ability to communicate with CSCs via direct ligand/receptor (such as CD90/CD11b, LSECtin/BTN3A3, EPHA4/Ephrin) interaction. On the other hand, CSCs exhibited their capacity to influence immune cells, creating a favorable microenvironment for cancer progression. Interestingly, the bidirectional influence of CSCs and TME leads to an epigenetic reprogramming which sustains malignant transformation. Nowadays, the integration of biological and computational data obtained by cutting-edge technologies (single-cell RNA sequencing, spatial transcriptomics, trajectory analysis) has significantly improved the comprehension of the biunivocal multicellular dialogue, providing a comprehensive view of the heterogeneity and dynamics of CSCs, and uncovering alternative mechanisms of immune evasion and therapeutic resistance. Moreover, the combination of biology and computational data will lead to the development of innovative target therapies dampening CSC-TME interaction. Here, we aim to elucidate the most recent insights on CSCs biology and their complex interactions with TME immune cells, specifically TAMs, tracing an exhaustive scenario from the primary tumor to metastasis formation.
Collapse
Affiliation(s)
- Francesco Verona
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, Italy
| | - Sebastiano Di Bella
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, Italy
| | - Roberto Schirano
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Camilla Manfredi
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Francesca Angeloro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giulia Bozzari
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
- Azienda Ospedaliera Universitaria Policlinico “Paolo Giaccone” (AOUP), Palermo, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Giorgio Stassi
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| |
Collapse
|
17
|
Park M, Kim YS, Song H. Macrophages: a double-edged sword in female reproduction and disorders. Exp Mol Med 2025; 57:285-297. [PMID: 39894821 PMCID: PMC11873061 DOI: 10.1038/s12276-025-01392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
Reproduction consists of sequential inflammation-like events, primarily within the endometrium, from ovulation to embryo implantation, decidualization and delivery. During the reproductive cycle, the endometrium repeatedly undergoes cyclic periods of proliferation, differentiation, tissue breakdown and repair without scarring. Owing to their phagocytic activity, macrophages, key players in innate immunity, are thought to play crucial roles in the endometrium. Endometrial macrophages actively participate in various stages of reproductive tissue remodeling, particularly during decidualization and pregnancy establishment. Traditionally considered simple bystanders that clear debris to prevent autoimmune responses in tissue homeostasis, macrophages are now recognized as main actors with broad functional plasticity that allows them to fine tune the balance between pro- and anti-inflammatory responses during tissue inflammation, remodeling and repair. Homeostatic balance is determined by the sum of various mediators produced by two distinctly polarized macrophage subpopulations. The biased polarization of tissue-resident macrophages may contribute to the pathogenesis of various diseases, such as inflammation and cancer. Thus, understanding how macrophages contribute to endometrial homeostasis is crucial for deciphering the underlying mechanisms of various reproductive disorders. Nanomedicines using extracellular vesicles, nanoparticles and noncoding RNAs have recently been applied to modulate macrophage polarization and alleviate disease phenotypes. Despite these advances, the functions of endometrial macrophages under physiological and pathophysiological conditions remain poorly understood, which complicates the development of targeted therapies. Here we update the current understanding of the homeostatic function of macrophages and the putative contribution of endometrial macrophage dysfunction to reproductive disorders in women, along with innovative molecular therapeutics to resolve this issue.
Collapse
Affiliation(s)
- Mira Park
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Korea
| | - Yeon Sun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Korea.
- Division of Life Science, CHA University, Pocheon, Korea.
- Department of Life Science, Graduate School, CHA University, Pocheon, Korea.
- CHA Advanced Research Institute, Seongnam, Korea.
- KW-Bio Co., Chuncheon, Korea.
| |
Collapse
|
18
|
Arachchi UPE, Madushani KP, Shanaka KASN, Kim G, Lim C, Yang H, Jayamali BPMV, Kodagoda YK, Warnakula WADLR, Jung S, Wan Q, Lee J. Characterization of tripartite motif containing 59 (TRIM59) in Epinephelus akaara: Insights into its immune involvement and functional properties in viral pathogenesis, macrophage polarization, and apoptosis regulation. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110082. [PMID: 39645217 DOI: 10.1016/j.fsi.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The tripartite motif-containing (TRIM) superfamily is the largest family of RING-type E3 ubiquitin ligases that is conserved across the metazoan kingdom. Previous studies in mammals have demonstrated that TRIM59 possesses ubiquitin-protein ligase activity and acts as a negative regulator of NF-κB signaling. However, TRIM59 has rarely been characterized in fish. This study aimed to characterize TRIM59 from Epinephelus akaara (Eatrim59) and elucidate its structural features, expression patterns, and functional properties in innate immune responses and in the regulation of apoptosis. Eatrim59 is composed of 406 amino acids with a molecular weight of 45.84 kDa and a theoretical isoelectric point of 5.25. It comprises a conserved RING domain, a B-box motif, and a coiled-coil region. Subcellular localization analysis revealed that Eatrim59 was localized in the endoplasmic reticulum. Eatrim59 was ubiquitously expressed in all tissues examined, with the highest relative expression detected in the blood, followed by the brain and spleen. Temporal expression of Eatrim59 was dynamically regulated in response to in vivo immune stimulation by Toll-like receptor ligands and nervous necrosis virus infection. In FHM cells overexpressing Eatrim59, an increase in viral replication was observed upon infection with the Viral hemorrhagic septicemia virus. This phenomenon is attributed to Eatrim59-mediated downregulation of interferon, pro-inflammatory cytokines, and other antiviral pathways. Moreover, macrophages stably overexpressing Eatrim59 exhibited a decrease in nitric oxide production and the formation of a filamentous actin structure upon lipopolysaccharide stimulation, indicating dampened M1 polarization. Furthermore, a decrease in apoptosis was observed in Eatrim59-overexpressing FHM cells under oxidative stress induced by H2O2. In conclusion, these findings demonstrate the multifaceted role of Eatrim59 as a regulator of innate immune response and apoptosis in E. akaara.
Collapse
Affiliation(s)
- U P E Arachchi
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - K P Madushani
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Hyerim Yang
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yasara Kavindi Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
19
|
Qu F, Xu B, Kang H, Wang H, Ji J, Pang L, Wu Y, Zhou Z. The role of macrophage polarization in ulcerative colitis and its treatment. Microb Pathog 2025; 199:107227. [PMID: 39675441 DOI: 10.1016/j.micpath.2024.107227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/27/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Macrophages have great plasticity. Typically, there are two of activated macrophages: M1 macrophages and M2 macrophages. Of them, M1 macrophages play a major role in responses that are pro-inflammatory, while M2 macrophages play an important part in responses that are anti-inflammatory. Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease of the intestine. The pathophysiology and course of UC are significantly influenced by the inflammatory response triggered by macrophage activation. M1 is a possible cause of increased inflammation in UC whereas M2 has a significant function in the healing of inflammation. The polarization imbalance of intestinal M1/M2 macrophages is closely linked to UC. Thus, by suppressing M1 polarization, encouraging M2 polarization, and reestablishing macrophage polarization balance, the treatment of UC based on macrophage polarization is beneficial for UC. Not only chemical drugs, but also traditional Chinese medicine compounds and herbal extracts have been shown to restore the balance of macrophage polarization, providing a new idea in the treatment of UC.
Collapse
Affiliation(s)
- Fanfan Qu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Baoqing Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongchang Kang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongxia Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianbin Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lianjing Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yaqian Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenghua Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
20
|
Summer M, Riaz S, Ali S, Noor Q, Ashraf R, Khan RRM. Understanding the Dual Role of Macrophages in Tumor Growth and Therapy: A Mechanistic Review. Chem Biodivers 2025:e202402976. [PMID: 39869825 DOI: 10.1002/cbdv.202402976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Macrophages are heterogeneous cells that are the mediators of tissue homeostasis. These immune cells originated from monocytes and are classified into two basic categories, M1 and M2 macrophages. M1 macrophages exhibit anti-tumorous inflammatory reactions due to the behavior of phagocytosis. M2 macrophages or tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and have a basic role in tumor progression by interacting with other immune cells in TME. By the expression of various cytokines, chemokines, and growth factors, TAMs lead to strengthening tumor cell proliferation, angiogenesis, and suppression of the immune system which further support invasion and metastasis. This review discusses recent and updated mechanisms regarding tumor progression by M2 macrophages. Moreover, the current therapeutic approaches targeting TAMs, their advantages, and limitations are also summarized, and further treatment approaches are outlined along with an elaboration of the tumor regression role of macrophages. This comprehensive review article possibly helps to understand the mechanisms underlying the tumor progression and regression role of macrophages in a comparative way from a basic level to the advanced one.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Saima Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Qudsia Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Ashraf
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rana Rashad Mahmood Khan
- Faculty of Chemistry and Life Sciences, Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
21
|
Wang P, Li Z, Song Y, Zhang B, Fan C. Resveratrol-driven macrophage polarization: unveiling mechanisms and therapeutic potential. Front Pharmacol 2025; 15:1516609. [PMID: 39872049 PMCID: PMC11770351 DOI: 10.3389/fphar.2024.1516609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025] Open
Abstract
Resveratrol, a polyphenolic compound known for its diverse biological activities, has demonstrated multiple pharmacological effects, including anti-inflammatory, anti-aging, anti-diabetic, anti-cancer, and cardiovascular protective properties. Recent studies suggest that these effects are partly mediated through the regulation of macrophage polarization, wherein macrophages differentiate into pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Our review highlights how resveratrol modulates macrophage polarization through various signaling pathways to achieve therapeutic effects. For example, resveratrol can activate the senescence-associated secretory phenotype (SASP) pathway and inhibit the signal transducer and activator of transcription (STAT3) and sphingosine-1-phosphate (S1P)-YAP signaling axes, promoting M1 polarization or suppressing M2 polarization, thereby inhibiting tumor growth. Conversely, it can promote M2 polarization or suppress M1 polarization by inhibiting the NF-κB signaling pathway or activating the PI3K/Akt and AMP-activated protein kinase (AMPK) pathways, thus alleviating inflammatory responses. Notably, the effect of resveratrol on macrophage polarization is concentration-dependent; moderate concentrations tend to promote M1 polarization, while higher concentrations may favor M2 polarization. This concentration dependence offers new perspectives for clinical treatment but also underscores the necessity for precise dosage control when using resveratrol. In summary, resveratrol exhibits significant potential in regulating macrophage polarization and treating related diseases.
Collapse
Affiliation(s)
- Panting Wang
- Department of Neurosurgery West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing Sichuan University, Chengdu, China
| | - Zixi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bowei Zhang
- Southwest Institute of Technical Physics, Chengdu, China
| | - Chaofeng Fan
- Department of Neurosurgery West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Rawat S, Moglad E, Afzal M, Goyal A, Roopashree R, Bansal P, Mishra S, Prasad GVS, Pramanik A, Alzarea SI, Ali H, Imran M, Abida. Reprogramming tumor-associated macrophages: The role of MEK-STAT3 inhibition in lung cancer. Pathol Res Pract 2025; 265:155748. [PMID: 39616977 DOI: 10.1016/j.prp.2024.155748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Tumor-associated macrophages (TAMs) crucially contribute to lung cancer's advancement and escape from the immune system. TAMs, particularly the M2 phenotype, promote an immunosuppressive microenvironment, facilitating tumor growth and metastasis. The MEK-STAT3 signalling pathway is a critical mediator in this process, driving TAM reprogramming and contributing to lung cancer's resistance to treatment. Inhibiting the MEK and STAT3 pathways disrupts key cancer-promoting mechanisms, including immune evasion, angiogenesis, and metastasis. Preclinical studies have demonstrated the effectiveness of MEK inhibitors, such as trametinib and selumetinib, in synergistic therapies for NSCLC, particularly in modulating the tumor microenvironment. We analyse the present understanding of approaches that can transform TAMs via the inhibition of MEK-STAT3 with either solo or combined treatments in lung cancer therapy.
Collapse
Affiliation(s)
- Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India.
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - R Roopashree
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
23
|
Zhao X, Wu J, Lai J, Pan B, Ji M, Li X, He Y, Han J. CITMIC: Comprehensive Estimation of Cell Infiltration in Tumor Microenvironment based on Individualized Intercellular Crosstalk. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408007. [PMID: 39498855 PMCID: PMC11714168 DOI: 10.1002/advs.202408007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/27/2024] [Indexed: 11/07/2024]
Abstract
The tumor microenvironment (TME) cells interact with each other and play a pivotal role in tumor progression and treatment response. A comprehensive characterization of cell and intercellular crosstalk in the TME is essential for understanding tumor biology and developing effective therapies. However, current cell infiltration analysis methods only partially describe the TME's cellular landscape and overlook cell-cell crosstalk. Here, this approach, CITMIC, can infer the cell infiltration of TME by simultaneously measuring 86 different cell types, constructing an individualized cell-cell crosstalk network based on functional similarities between cells, and using only gene transcription data. This is a novel approach to estimating the relative cell infiltration levels, which are shown to be superior to the current methods. The TME cell-based features generated by analyzing melanoma data are effective in predicting prognosis and treatment response. Interestingly, these features are found to be particularly effective in assessing the prognosis of high-stage patients, and this method is applied to multiple high-stage adenocarcinomas, where more significant prognostic performance is also observed. In conclusion, CITMIC offers a more comprehensive description of TME cell composition by considering cell-cell crosstalk, providing an important reference for the discovery of predictive biomarkers and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Xilong Zhao
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Jiashuo Wu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Jiyin Lai
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Bingyue Pan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Miao Ji
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Xiangmei Li
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Yalan He
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Junwei Han
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| |
Collapse
|
24
|
Yang W, Zheng Y, Zhou H, Liang R, Hu C. Cancer-Associated Fibroblast-Secreted Exosomes Regulate Macrophage Polarization in Pancreatic Cancer via the NOD1 Pathway. J Biochem Mol Toxicol 2025; 39:e70126. [PMID: 39756063 DOI: 10.1002/jbt.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/12/2024] [Accepted: 12/25/2024] [Indexed: 01/07/2025]
Abstract
Metastasis is a major cause of poor prognosis of pancreatic cancer. Exosomes (Exos) regulate cancer progression by modulating macrophage polarization. This study aimed to investigate the effects of cancer-associated fibroblast (CAF)-released Exos on macrophage polarization in pancreatic cancer and the molecular mechanisms. THP-1 cells or xenografted tumor mice were treated with Exos from CAFs, and macrophage polarization was analyzed using quantitative real-time PCR (qPCR) and flow cytometry. THP-1 cells were cocultured with BXPC-3 cells, and metastasis was analyzed using Transwell assay and scratch test. Exosomal PTGS2 was detected using qPCR, and the NOD1 pathway was evaluated using western blot analysis. The results showed that Exos promoted M2-type polarization and inhibited M1-type polarization, and then facilitated pancreatic cancer cell migration, invasion, and epithelial-mesenchymal transition. PTGS2 expression was increased in Exo-treated macrophages, and its knockdown in CAFs facilitated M2 to M1 macrophage polarization. Moreover, Exos promoted the NOD1 pathway via PTGS2, and inhibition of NOD1 reversed the polarization caused by Exos. Additionally, NOD1 was required in M1/M2 polarization in vivo mediated by Exos. In conclusion, CAF-secreted Exos facilitated M2 macrophage polarization by carrying PTGS2 to activate the NOD1 pathway, thereby promoting pancreatic cancer metastasis, providing evidence that CAF-Exos accelerating pancreatic cancer progression.
Collapse
Affiliation(s)
- Wenxin Yang
- Department of Pathology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Yuanyuan Zheng
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Han Zhou
- Department of Pathology, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Ruolong Liang
- Department of Pathology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Chaofeng Hu
- Department of Pathology and Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Singer M, Hamdy R, Elsayed TM, Husseiny MI. The Mechanisms and Therapeutic Implications of Metabolic Communication in the Tumor-Immune Microenvironment. METABOLIC DYNAMICS IN HOST-MICROBE INTERACTION 2025:291-315. [DOI: 10.1007/978-981-96-1305-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
26
|
Singer M, Zhang Z, Dayyani F, Zhang Z, Yaghmai V, Choi A, Valerin J, Imagawa D, Abi-Jaoudeh N. Modulation of Tumor-Associated Macrophages to Overcome Immune Suppression in the Hepatocellular Carcinoma Microenvironment. Cancers (Basel) 2024; 17:66. [PMID: 39796695 PMCID: PMC11718901 DOI: 10.3390/cancers17010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global health issue characterized by poor prognosis and complex tumor biology. One of the critical components of the HCC tumor microenvironment (TME) is tumor-associated macrophages (TAMs), which play a pivotal role in modulating tumor growth, immune evasion, and metastasis. Macrophages are divided into two major subtypes: pro-inflammatory M1 and anti-inflammatory M2, both of which may exist in TME with altered function and proportion. The anti-inflammatory M2 macrophages are further subdivided into four distinct immune suppressive subsets. TAMs are generally counted as M2-like macrophages with altered immune suppressive functions that exert a significant influence on both cancer progression and the ability of tumors to escape immune surveillance. Their involvement in modulating immune responses via different mechanisms at the local and systemic levels has made them a key target for therapeutic interventions seeking to enhance treatment outcomes. How TAMs' depletion influences immune responses in cancer is the primary interest in cancer immunotherapies. The purpose of this review is to delve into the recent progress made in TAM-targeting therapies. We will explore the current theories, benefits, and challenges associated with TAMs' depletion or inhibition. The manuscript concludes with future directions and potential implications for clinical practice.
Collapse
Affiliation(s)
- Mahmoud Singer
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| | - Zhuoli Zhang
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| | - Farshid Dayyani
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; (F.D.); (A.C.); (J.V.)
| | - Zigeng Zhang
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| | - Vahid Yaghmai
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| | - April Choi
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; (F.D.); (A.C.); (J.V.)
| | - Jennifer Valerin
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; (F.D.); (A.C.); (J.V.)
| | - David Imagawa
- Department of Surgery, University of California Irvine, Orange, CA 92697, USA;
| | - Nadine Abi-Jaoudeh
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| |
Collapse
|
27
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the pan-cancer role of exosomal miRNAs in metastasis across cancers. Comput Struct Biotechnol J 2024; 27:252-264. [PMID: 39866667 PMCID: PMC11763893 DOI: 10.1016/j.csbj.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Exosomal microRNAs (exomiRs) play a critical role in intercellular communication, especially in cancer, where they regulate key cellular processes like proliferation, angiogenesis, and metastasis, highlighting their significance as potential diagnostic and therapeutic targets. Here, we aimed to characterize the role of exomiRs, derived from seven cancer types (four cell lines and three tumors), in influencing the pre-metastatic niche (PMN). In each cancer type we extracted high confidence exomiRs (LogFC >= 2 in exosomes relative to control), their experimentally validated targets, and the enriched pathways among those targets. We then selected the top100 high-confidence targets based on their frequency of appearance in the enriched pathways. We observed significantly higher GC content in exomiRs relative to genomic background. Gene Ontology analysis revealed both general cancer processes, such as wound healing and epithelial cell proliferation, as well as cancer-specific processes, such as "angiogenesis" in the kidney and "ossification" in the lung. ExomiR targets were enriched for cancer-specific tumor suppressor genes and downregulated in PMN formed in lungs compared to normal. Motif analysis showed high inter-cancer similarity among motifs enriched in exomiRs. Our analysis recapitulated exomiRs associated with M2 macrophage differentiation and chemoresistance, such as miR-21 and miR-222-3p, regulating signaling pathways like PTEN/PI3/Akt, NF-kB, etc. Additionally, Cox regression analysis in TCGA indicated that exomiR targets are significantly associated with better overall survival of patients. Lastly, support vector machine model using exomiR targets gene expression classified responders and non-responders to therapy with an AUROC ranging from 0.72 to 0.96, higher than previously reported gene signatures.
Collapse
Affiliation(s)
- Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
28
|
Wang D, Han X, Liu HL. The role and research progress of tumor-associated macrophages in cervical cancer. Am J Cancer Res 2024; 14:5999-6011. [PMID: 39803646 PMCID: PMC11711540 DOI: 10.62347/ffxl7288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Tumor-associated macrophages (TAMs) are important immune cells in the tumor micro-environment (TME) and play a key role in the occurrence and development of cervical cancer. Besides, targeting TAMs can significantly inhibit cervical cancer tumor growth, invasion, metastasis, and angiogenesis as well as affect immune regulation. This review summarizes the correlation between TAM and tumors, the mechanism of action of TAM in cervical cancer, and the potential application of TAM in the treatment of cervical cancer. Therefore, this study may provide new ideas and targets for the development of further treatment strategies for cervical cancer patients.
Collapse
Affiliation(s)
- Dan Wang
- Department of First Clinical Medical College, Gansu University of Chinese MedicineLanzhou, Gansu, China
| | - Xue Han
- Department of Gynecology, Gansu Provincial People’s HospitalLanzhou, Gansu, China
| | - Hui-Ling Liu
- Department of Gynecology, Gansu Provincial People’s HospitalLanzhou, Gansu, China
| |
Collapse
|
29
|
Kimura T, Kruhlak M, Zhao L, Hwang E, Fozzatti L, Cheng SY. Combinatory actions of cytokines induce M2-like macrophages in anaplastic thyroid cancer. Am J Cancer Res 2024; 14:5812-5825. [PMID: 39803637 PMCID: PMC11711523 DOI: 10.62347/quwq3794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Anaplastic thyroid cancer (ATC) is a lethal endocrine malignancy. It has been shown that tumor-associated macrophages (TAMs) contribute to the aggressiveness of ATC. However, stimulatory factors that could facilitate the induction and infiltration of TAMs in the ATC tumor microenvironment (TME) are not fully elucidated. In this study, we used a human leukemia monocytic cell line (THP-1) to study the differentiation of THP-1 into M2-like macrophages (M2) by conditioned media (CM) derived from each of the three human ATC cells: 8505C, THJ-11T (11T), and THJ-16T (16T). The capacity of CM to induce M2 was in the order of 16T>8505C>11T cells as determined by the expression of M2 markers (CD163, CD204, and CCL13). Cytokine arrays and ELISA assays revealed five commonly enriched cytokines (IL-6, IL-8, MCP-1, TIMP-1, and TGF-β1) in the CM derived from each of the three ATC cells. These cytokines, individually, had weak activity, but together, they mimicked full CM activity in the induction of M2. Further, they collaboratively activated STAT3, ERK, and PI3K-AKT signaling to facilitate the induction of M2 as found in CM. Importantly, we found that the CM-induced M2 could secrete soluble growth factors to promote ATC cell proliferation as evidenced by the increased Ki-67, cMYC, and cyclin D1 protein levels. Our studies identified the major stimulatory cytokines which acted collaboratively to induce M2 in the TME. Importantly, the present studies indicate that when using inhibitors to target TAMs, combination therapies would be required for effective treatment of ATC.
Collapse
Affiliation(s)
- Takahito Kimura
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Michael Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Li Zhao
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Eunmi Hwang
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba 5000, Argentina
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| |
Collapse
|
30
|
Khilwani R, Singh S. Leveraging Evolutionary Immunology in Interleukin-6 and Interleukin-17 Signaling for Lung Cancer Therapeutics. ACS Pharmacol Transl Sci 2024; 7:3658-3670. [PMID: 39698267 PMCID: PMC11650734 DOI: 10.1021/acsptsci.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
Lung cancer is among the most common instances of cancer subtypes and is associated with high mortality rates. Due to the availability of fewer therapies and delayed clinical investigations, the number of cancer incidences is rising dramatically. This is possibly an effect of immune modulations and chemotherapeutic drugs that raises cancer resistance. Among the list, IL-6 and IL-17 are host-derived paradoxical effectors that attune immune responses in malignant lung cells. Their excessive release in the cytokine milieu stabilizes immunosuppressive phenotypes, resulting in cellular perturbations. During tumor development, the significance of these molecules is reflected in their potential to regulate oncogenesis by initiating a myriad of signaling events that influence tumor growth and the metastatic ability of benign cancer cells. Moreover, their transactivation contributes to antiapoptotic mechanisms and favors cancer cell survival via constitutive expression of immunoregulatory molecules. Co-evolution and gene duplication events could be the major drivers behind cytokine evolution, which have prompted generic changes and, hence, the additive effect. The evolutionary model and statistical analysis provide evidence about the cytokines ancestral relationships and site-specific conservation, which is more convincing as both cytokines share cysteine-knot-like structures important in maintaining structural integrity. Funneling through the findings could help find residues that serve a catalytic role in immune functioning. Designing peptides or subunit vaccine formulations against those conserved residues could aid in combating lung cancer pathogenesis.
Collapse
Affiliation(s)
- Riya Khilwani
- Systems Medicine Laboratory, BRIC-National Centre for Cell Science, NCCS Complex,
Ganeshkhind, SPPU Campus, Pune 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, BRIC-National Centre for Cell Science, NCCS Complex,
Ganeshkhind, SPPU Campus, Pune 411007, India
| |
Collapse
|
31
|
Zhu L, Cai Q, Li G, Zou X. Bromodomain containing 4 inhibition combats gastric precancerous lesions via modulating macrophage polarization. Tissue Cell 2024; 91:102580. [PMID: 39396437 DOI: 10.1016/j.tice.2024.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Gastric precancerous lesions (GPL), characterized by intestinal metaplasia and dysplasia, marks a pivotal juncture in the transformation from gastritis to gastric cancer. Research on GPL could offer fresh perspectives on preventing cancer occurrence. METHODS This study employed 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) to establish GPL rat models and knocked BRD4 down in vivo to assess its impact on the lesions and macrophage morphology. Following that, the impacts of BRD4 knockdown on the malignant phenotypes of human gastric epithelial GES-1 cells were determined. Moreover, conditioned medium from macrophage was gathered and used for GES-1 cell culture. The involvement of macrophage polarization in the BRD4 regulatory mechanism in GES-1 cells was assessed. RESULTS This study elucidated that MNNG induced an increase level of BRD4 in the rat models. BRD4 knockdown reduced lesions based on pathological sections and immunohistochemistry to detect proliferative antigens. Western blotting and immunofluorescence showed that BRD4 knockdown suppressed epithelial-mesenchymal transition and macrophage M2 polarization. In in vitro experiments, BRD4 knockdown inhibited the malignant phenotype of GES-1 cells and the differentiation of THP-1 cells into M2 macrophages, respectively. The conditioned medium from M2 macrophages with BRD4 knockdown was co-incubated with GES-1 cells, which attenuated the malignant phenotypes compared with the medium from M2 macrophages. CONCLUSION Through in vivo and in vitro experiments, BRD4 upregulation was found to already occur during GPL, affecting macrophage polarization and epithelial cell cancerization. This finding provides an experimental basis for strategies targeting BRD4 inhibition at this critical stage.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Qingxin Cai
- Department of Pharmacy, The First Specialized Hospital of Harbin, Harbin, Heilongjiang 150001, China
| | - Gang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiaoming Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
32
|
Xu J, Xu X, Zhang H, Wu J, Pan R, Zhang B. Tumor-associated inflammation: The role and research progress in tumor therapy. J Drug Deliv Sci Technol 2024; 102:106376. [DOI: 10.1016/j.jddst.2024.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Cui K, Wang K, Huang Z. Ferroptosis and the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:315. [PMID: 39614322 PMCID: PMC11607824 DOI: 10.1186/s13046-024-03235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by its non-apoptotic, iron-dependent and oxidative nature. Since its discovery in 2012, extensive research has demonstrated its pivotal roles in tumorigenesis, metastasis and cancer therapy. The tumor microenvironment (TME) is a complex ecosystem comprising cancer cells, non-cancer cells, extracellular matrix, metabolites and cytokines. Recent studies have underscored a new paradigm in which non-cancer cells in the TME, such as immune and stromal cells, also play significant roles in regulating tumor progression and therapeutic resistance typically through complicated crosstalk with cancer cells. Notably, this crosstalk in the TME were partially mediated through ferrotopsis-related mechanisms. This review provides a comprehensive and systematic summary of the current findings concerning the roles of ferroptosis in the TME and how ferroptosis-mediated TME reprogramming impacts cancer therapeutic resistance and progression. Additionally, this review outlines various ferroptosis-related therapeutic strategies aimed at targeting the TME.
Collapse
Affiliation(s)
- Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Huihe Road 200, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, China
| | - Kang Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Huihe Road 200, Wuxi, Jiangsu, 214062, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
34
|
Chen S, Liu J, He G, Tang N, Zeng Y. Research Hotspots and Trends in Global Cancer immunometabolism:A Bibliometric Analysis from 2000 to 2023. J Multidiscip Healthc 2024; 17:5117-5137. [PMID: 39553266 PMCID: PMC11568773 DOI: 10.2147/jmdh.s495330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Background Cancer poses a major global health challenge, and immunotherapy, known as the third revolution in cancer treatment, has brought new hope to patients. The emerging field of immunometabolism has further enhanced the safety and efficacy of immunotherapy. Over the past two decades, this field has rapidly evolved in oncology, leading to numerous significant findings. This review systematically examines the literature on immunometabolism in cancer, visualizing research trends and identifying future directions. Methods A comprehensive literature search was conducted in the Web of Science, PubMed, and Scopus databases, covering publications from January 2000 to December 2023. We employed tools like Citespace, VOSviewer, and RStudio for visual analysis of publication trends, regional contributions, institutions, authors, journals, and keywords. Results A total of 3320 articles were published by 8090 authors across 1738 institutions, involving 71 countries. Leading contributors were China (n=469), the United States (n=361), and Germany (n=82). Harvard University was the most influential institution, while Frontiers in Immunology had the highest number of publications. The top research areas included glucose, lipid, and amino acid metabolism, the tumor microenvironment, and immune cell regulation. Conclusion International collaboration and interdisciplinary efforts are advancing the field of cancer immunometabolism. Future research will likely focus on the interplay between metabolism and immunity, metabolic markers, immune cell reprogramming, and tumor-immune metabolic competition.
Collapse
Affiliation(s)
- Shupeng Chen
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Jie Liu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Guilian He
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Nana Tang
- Hematology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Yingjian Zeng
- Hematology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
35
|
Yang B, Wang X, Wei X, Ma J. Development of a novel HER2-CAR monocyte cell therapy with controllable proliferation and enhanced anti-tumor efficacy. Chin Med J (Engl) 2024; 137:2590-2602. [PMID: 38243698 PMCID: PMC11557030 DOI: 10.1097/cm9.0000000000002944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND One of the significant challenges for cell therapies, such as chimeric antigen receptor (CAR)-T cell therapy, is the poor infiltration of immune cells into tumor tissues. CAR-monocytes/macrophages (CAR-M) are promising therapies because of their enrichment in the tumor microenvironment. Thus, we constructed a novel CAR-M to facilitate the infiltration of T cells and other immune cells. METHODS The suicide gene inducible caspase-9 ( iCasp9 ) and anti-erb-b2 receptor tyrosine kinase 2 (HER2) CAR elements were transfected into THP1 (an immortalized human monocyte cell line) by lentivirus. The suicide efficiency and specific anti-tumor efficacy were assessed using flow cytometry, inCucyte, and tumor-bearing BALB/c-nude mouse models. The activation of related signaling pathways in CAR-THP1 activation was explored by transcriptome sequencing. Finally, the synergistic therapeutic efficacy of CAR-THP1 combined with RAK cell treatment was demonstrated in tumor-bearing NOD.CB17-Prkdc scid Il2rg tm1 /Bcgen mouse models. RESULTS We developed a novel CAR-THP1, which incorporated iCasp9, CD3ζ, and CD147 intracellular segments, based on the first-generation HER2-CAR backbone. By constructing and comparing a series of CARs with different permutations, CAR-CD3ζ-CD147-iCasp9-THP1 was selected as the optimal combination. CAR-CD3ζ-CD147-iCasp9-THP1 initiated suicide quickly and efficiently under the control of iCasp9 gene, which enabled us to achieve controlled proliferation of CAR-THP1. CAR-THP1 also exhibited robust specific anti-tumor efficacy independently of T cells in vitro and in vivo . Through transcriptional sequencing, we found that CAR-THP1 tended to differentiate into the M1 phenotype and bridged innate and adaptive immunity. A combination of CAR-THP1 and Retronectin actived killer cells (RAKs) showed better therapeutic efficiency, as the metalloproteinases (MMPs) secreted by CAR-THP1 facilitated the degradation of the dense tumor matrix. This further assisted intratumoral infiltration of T cells and augmented the anti-tumor immune response. CONCLUSION CAR-THP1 might be effective against HER2-positive tumor cells and has great potential for combination therapy with other immune cells.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Monocytes/metabolism
- Cell Proliferation
- Mice, Inbred BALB C
- Cell Line, Tumor
- Cell- and Tissue-Based Therapy/methods
- Mice, Nude
- Immunotherapy, Adoptive/methods
- Mice, Inbred NOD
- Female
- Mice, SCID
- Caspase 9/metabolism
- Caspase 9/genetics
Collapse
Affiliation(s)
- Bing Yang
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoxue Wang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing 100038, China
| | - Xundong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Ma
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
36
|
Zhen X, Kim J, Kang JS, Choi BJ, Park KH, Lee DS, Hong SH, Lee JH. Homology-independent targeted insertion-mediated derivation of M1-biased macrophages harbouring Megf10 and CD3ζ from human pluripotent stem cells. EBioMedicine 2024; 109:105390. [PMID: 39383607 PMCID: PMC11497429 DOI: 10.1016/j.ebiom.2024.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Macrophages engineered with chimeric antigen receptors (CAR) are suitable for immunotherapy based on their immunomodulatory activity and ability to infiltrate solid tumours. However, the production and application of genetically edited, highly effective, and mass-produced CAR-modified macrophages (CAR-Ms) are challenging. METHODS Here, we used homology-independent targeted insertion (HITI) for site-directed CAR integration into the safe-harbour region of human pluripotent stem cells (hPSCs). This approach, together with a simple differentiation protocol, produced stable and highly effective CAR-Ms without heterogeneity. FINDINGS These engineered cells phagocytosed cancer cells, leading to significant inhibition of cancer-cell proliferation in vitro and in vivo. Furthermore, the engineered CARs, which incorporated a combination of CD3ζ and Megf10 (referred to as FRP5Mζ), markedly enhanced the antitumour effect of CAR-Ms by promoting M1, but not M2, polarisation. FRP5Mζ promoted M1 polarisation via nuclear factor kappa B (NF-κB), ERK, and STAT1 signalling, and concurrently inhibited STAT3 signalling even under M2 conditions. These features of CAR-Ms modulated the tumour microenvironment by activating inflammatory signalling, inducing M1 polarisation of bystander non-CAR macrophages, and enhancing the infiltration of T cells in cancer spheroids. INTERPRETATION Our findings suggest that CAR-Ms have promise as immunotherapeutics. In conclusion, the guided insertion of CAR containing CD3ζ and Megf10 domains is an effective strategy for the immunotherapy of solid tumours. FUNDING This work was supported by KRIBB Research Initiative Program Grant (KGM4562431, KGM5282423) and a Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korean government (Ministry of Science and ICT,Ministry of Health and Welfare) (22A0304L1-01).
Collapse
Affiliation(s)
- Xing Zhen
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea; Department of Nanoscience and Nanotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jieun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Jong Soon Kang
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.
| | - Byeong Jo Choi
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.
| | - Ki Hwan Park
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.
| | - Dong-Seok Lee
- Department of Nanoscience and Nanotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea; KW-Bio Co., Ltd, Chuncheon, 24252, South Korea.
| | - Jong-Hee Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
37
|
Gu M, Liu Y, Zheng W, Jing Z, Li X, Guo W, Zhao Z, Yang X, Liu Z, Zhu X, Gao W. Combined targeting of senescent cells and senescent macrophages: A new idea for integrated treatment of lung cancer. Semin Cancer Biol 2024; 106-107:43-57. [PMID: 39214157 DOI: 10.1016/j.semcancer.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer is one of the most common cancers worldwide and a leading cause of cancer-related deaths. Macrophages play a key role in the immune response and the tumour microenvironment. As an important member of the immune system, macrophages have multiple functions, including phagocytosis and clearance of pathogens, modulation of inflammatory responses, and participation in tissue repair and regeneration. In lung cancer, macrophages are considered to be the major cellular component of the tumor-associated inflammatory response and are closely associated with tumorigenesis, progression and metastasis. However, macrophages gradually undergo a senescence process with age and changes in pathological states. Macrophage senescence is an important change in the functional and metabolic state of macrophages and may have a significant impact on lung cancer development. In lung cancer, senescent macrophages interact with other cells in the tumor microenvironment (TME) by secreting senescence-associated secretory phenotype (SASP) factors, which can either promote the proliferation, invasion and metastasis of tumor cells or exert anti-tumor effects through reprogramming or clearance under specific conditions. Therefore, senescent macrophages are considered important potential targets for lung cancer therapy. In this paper, a systematic review of macrophages and their senescence process, and their role in tumors is presented. A variety of inhibitory strategies against senescent macrophages, including enhancing autophagy, inhibiting SASP, reducing DNA damage, and modulating metabolic pathways, were also explored. These strategies are expected to improve lung cancer treatment outcomes by restoring the anti-tumor function of macrophages.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zuoqian Jing
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Xinwang Zhu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Wei Gao
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
38
|
van Eijck CWF, Ju J, van 't Land FR, Verheij M, Li Y, Stubbs A, Doukas M, Lila K, Heij LR, Wiltberger G, Alonso L, Malats N, Groot Koerkamp B, Vietsch EE, van Eijck CHJ. The tumor immune microenvironment in resected treatment-naive pancreatic cancer patients with long-term survival. Pancreatology 2024; 24:1057-1065. [PMID: 39218754 DOI: 10.1016/j.pan.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Presently, only a fraction of patients undergo successful surgical resection, the most effective treatment. Enhancing treatment strategies necessitates a deep comprehension of the factors underlying extended survival after surgical resection in patients. METHODS This study aims to identify the important factors of PDAC patients' long-term survival with metatranscriptomics and multiplex immunofluorescence (IF) staining analyses. Specifically, differences in tumor immune microenvironment (TIME) were investigated between treatment-naïve PDAC short-term survivors (STS, overall survival <6 months) and long-term survivors (LTS, overall survival >5 years). RESULTS As a result, we detected 589 over-expressed genes, including HOXB9, CDA, and HOXB8, and 507 under-expressed genes, including AMY2B, SCARA5, and SLC2A2 in LTS. Most of the Reactome overbiological pathways enriched in our data were over-expressed in LTS, such as RHO GTPase Effectors and Cell Cycle Checkpoints. Eleven microbiomes significantly differed between LTS and STS, including Sphingopyxis and Capnocytophaga. Importantly, we demonstrate that the TIME profile with an increased abundance of memory B cells and the reduction of M0 and pro-tumoral M2 macrophages are associated with a good prognosis in PDAC. CONCLUSIONS In this study, we delved into the TIME with metatranscriptomics and IF staining analyses to understand the prerequisite of prolonged survival in PDAC patients. In LTS, several biological pathways were overexpressed, and specific microbiomes were identified. Furthermore, apparent differences in driven immune factors were found that provide valuable insights into developing new treatment strategies.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Jie Ju
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Freek R van 't Land
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Maaike Verheij
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Yunlei Li
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Andrew Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Michael Doukas
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Karishma Lila
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Lara R Heij
- Institute of Pathology, Medical Center University Duisburg-Essen, Essen, Germany; Department of Surgery and Transplantation, University Hospital Essen, Germany; Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Georg Wiltberger
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Lola Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bas Groot Koerkamp
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Eveline E Vietsch
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Casper H J van Eijck
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
39
|
Kerneur C, Foucher E, Guillén Casas J, Colazet M, Le KS, Fullana M, Bergot E, Audemard C, Drapeau M, Louche P, Gorvel L, Rouvière MS, Boucherit N, Audebert S, Magrini E, Carnevale S, de Gassart A, Madakamutil L, Mantovani A, Garlanda C, Agaugué S, Cano CE, Olive D. BTN2A1 targeting reprograms M2-like macrophages and TAMs via SYK and MAPK signaling. Cell Rep 2024; 43:114773. [PMID: 39325623 DOI: 10.1016/j.celrep.2024.114773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/05/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Tumor-associated macrophages (TAMs), often adopting an immunosuppressive M2-like phenotype, correlate with unfavorable cancer outcomes. Our investigation unveiled elevated expression of the butyrophilin (BTN)2A1 in M2-like TAMs across diverse cancer types. We developed anti-BTN2A1 monoclonal antibodies (mAbs), and notably, one clone demonstrated a robust inhibitory effect on M2-like macrophage differentiation, inducing a shift toward an M1-like phenotype both in vitro and ex vivo in TAMs from patients with cancer. Macrophages treated with this anti-BTN2A1 mAb exhibited enhanced support for T cell proliferation and interferon-gamma (IFNγ) secretion. Mechanistically, BTN2A1 engagement induced spleen tyrosine kinase (SYK) recruitment, leading to sequential SYK and extracellular signal-regulated kinase (ERK) phosphorylation. Inhibition of SYK or ERK phosphorylation abolished M2 reprogramming upon BTN2A1 engagement. Our findings, derived from an analysis of macrophages from healthy donors and human tumors, underscore the pivotal role of BTN2A1 in immunosuppressive macrophage differentiation and function, offering potential applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Clément Kerneur
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France; Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Etienne Foucher
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | | | - Magali Colazet
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Kieu-Suong Le
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Marie Fullana
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Elise Bergot
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | | | - Marion Drapeau
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Pauline Louche
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Laurent Gorvel
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Marie-Sarah Rouvière
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Nicolas Boucherit
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Stéphane Audebert
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Elena Magrini
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy
| | | | - Aude de Gassart
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | | | - Alberto Mantovani
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Milan, Italy; William Harvey Research Institute, Queen Mary University, London EC1M 6BQ, UK
| | | | - Sophie Agaugué
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Carla E Cano
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France.
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France.
| |
Collapse
|
40
|
Park YJ, Pang WK, Hwang SM, Ryu DY, Rahman MS, Pang MG. Establishment of tumor microenvironment following bisphenol A exposure in the testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117071. [PMID: 39303638 DOI: 10.1016/j.ecoenv.2024.117071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Although detrimental roles of bisphenol A (BPA) in xenoestrogen target organs, testis and epididymis, and male fertility are well-documented, disruption of the immune privilege system in the male reproductive tract following BPA exposure remains poorly understood. Therefore, this study aimed to explore the precise mechanisms of BPA in interfering immune privilege in the testis on RNA sequencing results. CD-1 male mice were daily treated no-observed-adverse-effect (NOAEL, 5 mg BPA/kg BW) and lowest-observed-adverse-effects (LOAEL, 50 mg BPA/kg BW) of BPA by oral gavage for 6 weeks. Following the LOAEL exposure, the expression of immune response-associated transcripts was upregulated in the testis. Moreover, BPA switch the testicular microenvironment to tumor friendly through the recruitment of tumor associated macrophages (TAMs), which can produce both anti- and pro-inflammatory cytokines, such as TNF-α, TLR2, IL-10, and CXCL9. Number of testicular blood vessels were approximately 2-times increased by upregulation of matrix metallopeptidase 2 in TAMs and upregulation of AR expression in the nucleus of Leydig cells. Moreover, we found that the tumor-supportive environment can also be generated even though NOAEL BPA concentration due to the individual's variability in cancer susceptibility.
Collapse
Affiliation(s)
- Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Soo-Min Hwang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
41
|
Najjar MK, Khan MS, Zhuang C, Chandra A, Lo HW. Interleukin-1 Receptor-Associated Kinase 1 in Cancer Metastasis and Therapeutic Resistance: Mechanistic Insights and Translational Advances. Cells 2024; 13:1690. [PMID: 39451208 PMCID: PMC11506742 DOI: 10.3390/cells13201690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-1 Receptor Associated Kinase 1 (IRAK1) is a serine/threonine kinase that plays a critical role as a signaling transducer of the activated Toll-like receptor (TLR)/Interleukin-1 receptor (IL-1R) signaling pathway in both immune cells and cancer cells. Upon hyperphosphorylation by IRAK4, IRAK1 forms a complex with TRAF6, which results in the eventual activation of the NF-κB and MAPK pathways. IRAK1 can translocate to the nucleus where it phosphorylates STAT3 transcription factor, leading to enhanced IL-10 gene expression. In immune cells, activated IRAK1 coordinates innate immunity against pathogens and mediates inflammatory responses. In cancer cells, IRAK1 is frequently activated, and the activation is linked to the progression and therapeutic resistance of various types of cancers. Consequently, IRAK1 is considered a promising cancer drug target and IRAK1 inhibitors have been developed and evaluated preclinically and clinically. This is a comprehensive review that summarizes the roles of IRAK1 in regulating metastasis-related signaling pathways of importance to cancer cell proliferation, cancer stem cells, and dissemination. This review also covers the significance of IRAK1 in mediating cancer resistance to therapy and the underlying molecular mechanisms, including the evasion of apoptosis and maintenance of an inflammatory tumor microenvironment. Finally, we provide timely updates on the development of IRAK1-targeted therapy for human cancers.
Collapse
Affiliation(s)
- Mariana K. Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Munazza S. Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ankush Chandra
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
42
|
Gao H, Jiang Y, Zeng G, Huda N, Thoudam T, Yang Z, Liangpunsakul S, Ma J. Cell-to-cell and organ-to-organ crosstalk in the pathogenesis of alcohol-associated liver disease. EGASTROENTEROLOGY 2024; 2:e100104. [PMID: 39735421 PMCID: PMC11674000 DOI: 10.1136/egastro-2024-100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/08/2024] [Indexed: 12/31/2024]
Abstract
Alcohol-associated liver disease (ALD) is a growing global health concern and its prevalence and severity are increasing steadily. While bacterial endotoxin translocation into the portal circulation is a well-established key factor, recent evidence highlights the critical role of sterile inflammation, triggered by diverse stimuli, in alcohol-induced liver injury. This review provides a comprehensive analysis of the complex interactions within the hepatic microenvironment in ALD. It examines the contributions of both parenchymal cells, like hepatocytes, and non-parenchymal cells, such as hepatic stellate cells, Kupffer cells, neutrophils, and liver sinusoidal endothelial cells, in driving the progression of the disease. Additionally, we explored the involvement of key mediators, including cytokines, chemokines and inflammasomes, which regulate inflammatory responses and promote liver injury and fibrosis. A particular focus has been placed on extracellular vesicles (EVs) as essential mediators of intercellular communication both within and beyond the liver. These vesicles facilitate the transfer of signalling molecules, such as microRNAs and proteins, which modulate immune responses, fibrogenesis and lipid metabolism, thereby influencing disease progression. Moreover, we underscore the importance of organ-to-organ crosstalk, particularly in the gut-liver axis, where dysbiosis and increased intestinal permeability lead to microbial translocation, exacerbating hepatic inflammation. The adipose-liver axis is also highlighted, particularly the impact of adipokines and free fatty acids from adipose tissue on hepatic steatosis and inflammation in the context of alcohol consumption.
Collapse
Affiliation(s)
- Hui Gao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ge Zeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Southern Medical University, Guangzhou, China
| | - Nazmul Huda
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Themis Thoudam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Jing Ma
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
43
|
Xue JD, Gao J, Tang AF, Feng C. Shaping the immune landscape: Multidimensional environmental stimuli refine macrophage polarization and foster revolutionary approaches in tissue regeneration. Heliyon 2024; 10:e37192. [PMID: 39296009 PMCID: PMC11408064 DOI: 10.1016/j.heliyon.2024.e37192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In immunology, the role of macrophages extends far beyond their traditional classification as mere phagocytes; they emerge as pivotal architects of the immune response, with their function being significantly influenced by multidimensional environmental stimuli. This review investigates the nuanced mechanisms by which diverse external signals ranging from chemical cues to physical stress orchestrate macrophage polarization, a process that is crucial for the modulation of immune responses. By transitioning between pro-inflammatory (M1) and anti-inflammatory (M2) states, macrophages exhibit remarkable plasticity, enabling them to adapt to and influence their surroundings effectively. The exploration of macrophage polarization provides a compelling narrative on how these cells can be manipulated to foster an immune environment conducive to tissue repair and regeneration. Highlighting cutting-edge research, this review presents innovative strategies that leverage the dynamic interplay between macrophages and their environment, proposing novel therapeutic avenues that harness the potential of macrophages in regenerative medicine. Moreover, this review critically evaluates the current challenges and future prospects of translating macrophage-centered strategies from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Jing-Dong Xue
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jing Gao
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ai-Fang Tang
- Department of Geratology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chao Feng
- Department of Reproductive Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| |
Collapse
|
44
|
Lin Q, Ma W, Xu M, Xu Z, Wang J, Liang Z, Zhu L, Wu M, Luo J, Liu H, Liu J, Jin Y. A clinical prognostic model related to T cells based on machine learning for predicting the prognosis and immune response of ovarian cancer. Heliyon 2024; 10:e36898. [PMID: 39296051 PMCID: PMC11409031 DOI: 10.1016/j.heliyon.2024.e36898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Background Ovarian cancer (OV) is regarded as one of the most lethal malignancies affecting the female reproductive system, with individuals diagnosed with OV often facing a dismal prognosis due to resistance to chemotherapy and the presence of an immunosuppressive environment. T cells serve as a crucial mediator for immune surveillance and cancer elimination. This study aims to analyze the mechanism of T cell-associated markers in OV and create a prognostic model for clinical use in enhancing outcomes for OV patients. Methods Based on the single-cell dataset GSE184880, this study used single-cell data analysis to identify characteristic T cell subsets. Analysis of high dimensional weighted gene co-expression network analysis (hdWGCNA) is utilized to identify crucial gene modules along with their corresponding hub genes. A grand total of 113 predictive models were formed utilizing ten distinct machine learning algorithms along with the combination of the cancer genome atlas (TCGA)-OV dataset and the GSE140082 dataset. The most dependable clinical prognostic model was created utilizing the leave one out cross validation (LOOCV) framework. The validation process for the models was achieved by conducting survival curve analysis and receiver operating characteristic (ROC) analysis. The relationship between risk scores and immune cells was explored through the utilization of the Cibersort algorithm. Additionally, an analysis of drug sensitivity was carried out to anticipate chemotherapy responses across various risk groups. The genes implicated in the model were authenticated utilizing qRT-PCR, cell viability experiments, and EdU assay. Results This study developed a clinical prognostic model that includes ten risk genes. The results obtained from the training set of the study indicate that patients classified in the low-risk group experience a significant survival advantage compared to those in the high-risk group. The ROC analysis demonstrates that the model holds significant clinical utility. These results were verified using an independent dataset, strengthening the model's precision and dependability. The risk assessment provided by the model also serves as an independent prognostic factor for OV patients. The study also unveiled a noteworthy relationship between the risk scores calculated by the model and various immune cells, suggesting that the model may potentially serve as a valuable tool in forecasting responses to both immune therapy and chemotherapy in ovarian cancer patients. Notably, experimental evidence suggests that PFN1, one of the genes included in the model, is upregulated in human OV cell lines and has the capacity to promote cancer progression in in vitro models. Conclusion We have created an accurate and dependable clinical prognostic model for OV capable of predicting clinical outcomes and categorizing patients. This model effectively forecasts responses to both immune therapy and chemotherapy. By regulating the immune microenvironment and targeting the key gene PFN1, it may improve the prognosis for high-risk patients.
Collapse
Affiliation(s)
- Qiwang Lin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Weixu Ma
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Mengchang Xu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial First-class Applied Discipline (pharmacy), Changsha, China
| | - Zijin Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhu Liang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lin Zhu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Menglu Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiejun Luo
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiying Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yunfeng Jin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Kunachowicz D, Kłosowska K, Sobczak N, Kepinska M. Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities-A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1424. [PMID: 39269086 PMCID: PMC11396817 DOI: 10.3390/nano14171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The increasing incidence of breast cancers (BCs) in the world population and their complexity and high metastatic ability are serious concerns for healthcare systems. Despite the significant progress in medicine made in recent decades, the efficient treatment of invasive cancers still remains challenging. Chemotherapy, a fundamental systemic treatment method, is burdened with severe adverse effects, with efficacy limited by resistance development and risk of disease recurrence. Also, current diagnostic methods have certain drawbacks, attracting attention to the idea of developing novel, more sensitive detection and therapeutic modalities. It seems the solution for these issues can be provided by nanotechnology. Particularly, quantum dots (QDs) have been extensively evaluated as potential targeted drug delivery vehicles and, simultaneously, sensing and bioimaging probes. These fluorescent nanoparticles offer unlimited possibilities of surface modifications, allowing for the attachment of biomolecules, such as antibodies or proteins, and drug molecules, among others. In this work, we discuss the potential applicability of QDs in breast cancer diagnostics and treatment in light of the current knowledge. We begin with introducing the molecular and histopathological features of BCs, standard therapeutic regimens, and current diagnostic methods. Further, the features of QDs, along with their uptake, biodistribution patterns, and cytotoxicity, are described. Based on the reports published in recent years, we present the progress in research on possible QD use in improving BC diagnostics and treatment efficacy as chemotherapeutic delivery vehicles and photosensitizing agents, along with the stages of their development. We also address limitations and open questions regarding this topic.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kłosowska
- Students' Scientific Association at the Department of Pharmaceutical Biochemistry (SKN No. 214), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Natalia Sobczak
- Students' Scientific Association of Biomedical and Environmental Analyses (SKN No. 85), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
46
|
Yang Y, Yao Z, Huo L. The Nf1-Q181X point mutation induces M2 macrophage polarization via the AKT/STAT pathway to promote smooth muscle cell proliferation and migration. Mol Biol Rep 2024; 51:946. [PMID: 39215899 DOI: 10.1007/s11033-024-09887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Increased case reports have shown that patients with NF1 have an increased risk of extensive vascular vasculopathy. Previous studies demonstrated the presence of macrophages and smooth muscle cells in the neoplastic intima of carotid arteries after injury in Nf1+/- mice. However, whether NF1 gene mutations affect macrophage polarization and macrophage-smooth muscle cell interactions remains to be elucidated. METHODS Scratch assay and transwell assay were utilized to detect cell migration ability. The dye 2',7'dichlorofluorescin diacetate and neutral red stain were used to assess intracellular ROS production and cell phagocytosis function, respectively. Proteins and mRNA expression were determined by western blot, RT-qPCR, and immunofluorescence. Finally, the macrophage (MAC) and vascular smooth muscle cell (VSMC) co-culture system was used to detect cellular crosstalk. RESULTS Cell function assays confirmed that the Nf1-Q181X point mutation attenuated the phagocytosis of bone marrow-derived macrophages (BMDMs) and promoted the migration and ROS production of BMDMs. Moreover, we found that the Nf1-Q181X point mutation inhibited M1 but promoted M2 macrophage polarization by down-regulating p38, ERK, and JNK and up-regulating the Akt/STAT3 signaling pathway, respectively. Furthermore, in the MAC-VSMC co-culture system, we demonstrated that Nf1-Q181X point mutation-activated M2 BMDMs promoted proliferation and migration of VSMCs and induced the transformation of VSMCs from contractile phenotype to synthetic phenotype. CONCLUSION The findings suggest that the Nf1-Q181X point mutation can mediate macrophage polarization and promote smooth muscle cell proliferation and migration, providing clinical clues for the treatment of NF1-complicated vasculopathy.
Collapse
Affiliation(s)
- Yang Yang
- Central Laboratory, Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, 100038, China
| | - Zhichao Yao
- Central Laboratory, Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, 100038, China
| | - Lirong Huo
- Central Laboratory, Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
47
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the role of exosomal miRNAs in metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608894. [PMID: 39372783 PMCID: PMC11451750 DOI: 10.1101/2024.08.20.608894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Exosomal microRNAs (exomiRs), transported via exosomes, play a pivotal role in intercellular communication. In cancer, exomiRs influence tumor progression by regulating key cellular processes such as proliferation, angiogenesis, and metastasis. Their role in mediating communication between cancer cells and the tumor microenvironment highlights their significance as potential diagnostic and therapeutic targets. Methodology In this study, we aimed to characterize the role of exomiRs in influencing the pre-metastatic niche (PMN). Across 7 tumor types, including 4 cell lines and three tumors, we extracted high confidence exomiRs (Log FC >= 2 in exosomes relative to control) and their targets (experimentally identified and targeted by at least 2 exomiRs). Subsequently, we identified enriched pathways and selected the top 100 high-confidence exomiR targets based on the frequency of their appearance in the enriched pathways. These top 100 targets were consistently used throughout the analysis. Results Cancer cell line and tumor derived ExomiRs have significantly higher GC content relative to genomic background. Pathway enriched among the top exomiR targets included general cancer-associated processes such as "wound healing" and "regulation of epithelial cell proliferation", as well as cancer-specific processes, such as "regulation of angiogenesis in kidney" (KIRC), "ossification" in lung (LUAD), and "positive regulation of cytokine production" in pancreatic cancer (PAAD). Similarly, 'Pathways in cancer' and 'MicroRNAs in cancer' ranked among the top 10 enriched KEGG pathways in all cancer types. ExomiR targets were not only enriched for cancer-specific tumor suppressor genes (TSG) but are also downregulated in pre-metastatic niche formed in lungs compared to normal lung. Motif analysis shows high similarity among motifs identified from exomiRs across cancer types. Our analysis recapitulates exomiRs associated with M2 macrophage differentiation and chemoresistance such as miR-21 and miR-222-3p, regulating signaling pathways such as PTEN/PI3/Akt, NF-κB, etc. Cox regression indicated that exomiR targets are significantly associated with overall survival of patients in TCGA. Lastly, a Support Vector Machine (SVM) model using exomiR target gene expression classified responders and non-responders to neoadjuvant chemotherapy with an AUROC of 0.96 (in LUAD), higher than other previously reported gene signatures. Conclusion Our study characterizes the pivotal role of exomiRs in shaping the PMN in diverse cancers, underscoring their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Medical Research, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, 06800, Ankara, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
48
|
Valdez-Salazar F, Jiménez-Del Rio LA, Padilla-Gutiérrez JR, Valle Y, Muñoz-Valle JF, Valdés-Alvarado E. Advances in Melanoma: From Genetic Insights to Therapeutic Innovations. Biomedicines 2024; 12:1851. [PMID: 39200315 PMCID: PMC11351162 DOI: 10.3390/biomedicines12081851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Advances in melanoma research have unveiled critical insights into its genetic and molecular landscape, leading to significant therapeutic innovations. This review explores the intricate interplay between genetic alterations, such as mutations in BRAF, NRAS, and KIT, and melanoma pathogenesis. The MAPK and PI3K/Akt/mTOR signaling pathways are highlighted for their roles in tumor growth and resistance mechanisms. Additionally, this review delves into the impact of epigenetic modifications, including DNA methylation and histone changes, on melanoma progression. The tumor microenvironment, characterized by immune cells, stromal cells, and soluble factors, plays a pivotal role in modulating tumor behavior and treatment responses. Emerging technologies like single-cell sequencing, CRISPR-Cas9, and AI-driven diagnostics are transforming melanoma research, offering precise and personalized approaches to treatment. Immunotherapy, particularly immune checkpoint inhibitors and personalized mRNA vaccines, has revolutionized melanoma therapy by enhancing the body's immune response. Despite these advances, resistance mechanisms remain a challenge, underscoring the need for combined therapies and ongoing research to achieve durable therapeutic responses. This comprehensive overview aims to highlight the current state of melanoma research and the transformative impacts of these advancements on clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuel Valdés-Alvarado
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.V.-S.)
| |
Collapse
|
49
|
Nain A, Joshi A, Debnath S, Choudhury S, Thomas J, Satija J, Huang CC, Chatterjee K. A 4D printed nanoengineered super bioactive hydrogel scaffold with programmable deformation for potential bifurcated vascular channel construction. J Mater Chem B 2024; 12:7604-7617. [PMID: 38984474 DOI: 10.1039/d4tb00498a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Four-dimensional (4D) printing of hydrogels enabled the fabrication of complex scaffold geometries out of static parts. Although current 4D fabrication strategies are promising for creating vascular parts such as tubes, developing branched networks or tubular junctions is still challenging. Here, for the first time, a 4D printing approach is employed to fabricate T-shaped perfusable bifurcation using an extrusion-based multi-material 3D printing process. An alginate/methylcellulose-based dual-component hydrogel system (with defined swelling behavior) is nanoengineered with carbonized alginate (∼100 nm) to introduce anti-oxidative, anti-inflammatory, and anti-thrombotic properties and shape-shifting properties. A computational model to predict shape deformations in the printed hydrogels with defined infill angles was designed and further validated experimentally. Shape deformations of the 3D-printed flat sheets were achieved by ionic cross-linking. An undisrupted perfusion of a dye solution through a T-junction with minimal leakage mimicking blood flow through vessels is also demonstrated. Moreover, human umbilical vein endothelial and fibroblast cells seeded with printed constructs show intact morphology and excellent cell viability. Overall, the developed strategy paves the way for manufacturing self-actuated vascular bifurcations with remarkable anti-thrombotic properties to potentially treat coronary artery diseases.
Collapse
Affiliation(s)
- Amit Nain
- Department of Material Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
- Department of Applied Mechanics & Biomedical Engineering, Indian Institute of Technology-Madras, 600036, Tamil Nadu, India
| | - Akshat Joshi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Souvik Debnath
- Department of Material Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Jobin Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Jitendra Satija
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology and Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Kaushik Chatterjee
- Department of Material Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
50
|
van Eijck CWF, Vadgama D, van Eijck CHJ, Wilmink JW. Metformin boosts antitumor immunity and improves prognosis in upfront resected pancreatic cancer: an observational study. J Natl Cancer Inst 2024; 116:1374-1383. [PMID: 38530777 PMCID: PMC11308183 DOI: 10.1093/jnci/djae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Beyond demographic and immune factors, metabolic considerations, particularly metformin's recognized impact in oncology, warrant exploration in treating pancreatic cancer. This study aimed to investigate the influence of metformin on patient survival and its potential correlation with distinct immune profiles in pancreatic ductal adenocarcinoma (PDAC) tumors. METHODS We included 82 upfront resected and 66 gemcitabine-based neoadjuvant chemoradiotherapy (nCRT)-treated patients from the PREOPANC randomized controlled trial (RCT). Transcriptomic NanoString immunoprofiling was performed for a subset of 96 available resected specimens. RESULTS Disparities in survival outcomes and immune profiles were apparent between metformin and non-metformin users in upfront resected patients but lacking in nCRT-treated patients. Compared to non-metformin users, upfront resected metformin users showed a higher median overall survival (OS) of 29 vs 14 months and a better 5-year OS rate of 19% vs 5%. Furthermore, metformin use was a favorable prognostic factor for OS in the upfront surgery group (HR = 0.56; 95% CI = 0.32 to 0.99). Transcriptomic data revealed that metformin users significantly underexpressed genes related to pro-tumoral immunity, including monocyte to M2 macrophage polarization and activation. Furthermore, the relative abundance of anti-inflammatory CD163+ MRC1+ M2 macrophages in non-metformin users and immune-activating CD1A+ CD1C+ dendritic cells in metformin users was heightened (P < .001). CONCLUSION This study unveils immune profile changes resulting from metformin use in upfront resected pancreatic cancer patients, possibly contributing to prolonged survival outcomes. Specifically, metformin use may decrease the abundance and activity of pro-tumoral M2 macrophages and increase the recruitment and function of tumor-resolving DCs, favoring antitumor immunity.[PREOPANC trial EudraCT: 2012-003181-40].
Collapse
Affiliation(s)
- Casper W F van Eijck
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Disha Vadgama
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Johanna W Wilmink
- Department of Medical Oncology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|