1
|
Qu F, Xu B, Kang H, Wang H, Ji J, Pang L, Wu Y, Zhou Z. The role of macrophage polarization in ulcerative colitis and its treatment. Microb Pathog 2025; 199:107227. [PMID: 39675441 DOI: 10.1016/j.micpath.2024.107227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/27/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Macrophages have great plasticity. Typically, there are two of activated macrophages: M1 macrophages and M2 macrophages. Of them, M1 macrophages play a major role in responses that are pro-inflammatory, while M2 macrophages play an important part in responses that are anti-inflammatory. Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease of the intestine. The pathophysiology and course of UC are significantly influenced by the inflammatory response triggered by macrophage activation. M1 is a possible cause of increased inflammation in UC whereas M2 has a significant function in the healing of inflammation. The polarization imbalance of intestinal M1/M2 macrophages is closely linked to UC. Thus, by suppressing M1 polarization, encouraging M2 polarization, and reestablishing macrophage polarization balance, the treatment of UC based on macrophage polarization is beneficial for UC. Not only chemical drugs, but also traditional Chinese medicine compounds and herbal extracts have been shown to restore the balance of macrophage polarization, providing a new idea in the treatment of UC.
Collapse
Affiliation(s)
- Fanfan Qu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Baoqing Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongchang Kang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongxia Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianbin Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lianjing Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yaqian Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenghua Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
2
|
Yang L, Hou H, Lu L, Sun Y, Chen R, Deng Q, Chen H. Effects of natural source polysaccharides on neurological diseases: A review. Int J Biol Macromol 2025; 296:139697. [PMID: 39805435 DOI: 10.1016/j.ijbiomac.2025.139697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
With the aging of society and changes in lifestyle, the incidence of neurological diseases (NDs) has been increasing year by year, bringing a heavy burden to patients and society. Although the efficacy of chemical drugs in the treatment of NDs is remarkable, there are problems such as high side effects and high costs. Therefore, finding mild and efficient drugs for NDs treatment has become an urgent clinical need. Natural source polysaccharides (NSPs) are macromolecules with unique bioactivity and low toxicity characteristics, which have great potential to become novel therapeutic agents for NDs. In the present study, the pharmacological activities and potential molecular mechanisms of NSPs to alleviate NDs are systematically reviewed from the perspectives of inflammation, oxidative stress, apoptosis, neuronal cell autophagy, neurotoxicity, and sedation-hypnosis. In addition, the limitations of the existing studies were analyzed and discussed, and the future research direction was suggested. This study may provide scientific basis for the research and development of therapeutic agents for NDs based on NSPs.
Collapse
Affiliation(s)
- Luyuan Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Hailu Hou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Liping Lu
- Guizhou Dalong Pharmaceutical Co., Ltd., Guiyang 550001, China
| | - Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Ruhai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
3
|
Rawat S, Moglad E, Afzal M, Goyal A, Roopashree R, Bansal P, Mishra S, Prasad GVS, Pramanik A, Alzarea SI, Ali H, Imran M, Abida. Reprogramming tumor-associated macrophages: The role of MEK-STAT3 inhibition in lung cancer. Pathol Res Pract 2025; 265:155748. [PMID: 39616977 DOI: 10.1016/j.prp.2024.155748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Tumor-associated macrophages (TAMs) crucially contribute to lung cancer's advancement and escape from the immune system. TAMs, particularly the M2 phenotype, promote an immunosuppressive microenvironment, facilitating tumor growth and metastasis. The MEK-STAT3 signalling pathway is a critical mediator in this process, driving TAM reprogramming and contributing to lung cancer's resistance to treatment. Inhibiting the MEK and STAT3 pathways disrupts key cancer-promoting mechanisms, including immune evasion, angiogenesis, and metastasis. Preclinical studies have demonstrated the effectiveness of MEK inhibitors, such as trametinib and selumetinib, in synergistic therapies for NSCLC, particularly in modulating the tumor microenvironment. We analyse the present understanding of approaches that can transform TAMs via the inhibition of MEK-STAT3 with either solo or combined treatments in lung cancer therapy.
Collapse
Affiliation(s)
- Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India.
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - R Roopashree
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
4
|
Zhao X, Wu J, Lai J, Pan B, Ji M, Li X, He Y, Han J. CITMIC: Comprehensive Estimation of Cell Infiltration in Tumor Microenvironment based on Individualized Intercellular Crosstalk. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408007. [PMID: 39498855 PMCID: PMC11714168 DOI: 10.1002/advs.202408007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/27/2024] [Indexed: 11/07/2024]
Abstract
The tumor microenvironment (TME) cells interact with each other and play a pivotal role in tumor progression and treatment response. A comprehensive characterization of cell and intercellular crosstalk in the TME is essential for understanding tumor biology and developing effective therapies. However, current cell infiltration analysis methods only partially describe the TME's cellular landscape and overlook cell-cell crosstalk. Here, this approach, CITMIC, can infer the cell infiltration of TME by simultaneously measuring 86 different cell types, constructing an individualized cell-cell crosstalk network based on functional similarities between cells, and using only gene transcription data. This is a novel approach to estimating the relative cell infiltration levels, which are shown to be superior to the current methods. The TME cell-based features generated by analyzing melanoma data are effective in predicting prognosis and treatment response. Interestingly, these features are found to be particularly effective in assessing the prognosis of high-stage patients, and this method is applied to multiple high-stage adenocarcinomas, where more significant prognostic performance is also observed. In conclusion, CITMIC offers a more comprehensive description of TME cell composition by considering cell-cell crosstalk, providing an important reference for the discovery of predictive biomarkers and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Xilong Zhao
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Jiashuo Wu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Jiyin Lai
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Bingyue Pan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Miao Ji
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Xiangmei Li
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Yalan He
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Junwei Han
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| |
Collapse
|
5
|
Yang W, Zheng Y, Zhou H, Liang R, Hu C. Cancer-Associated Fibroblast-Secreted Exosomes Regulate Macrophage Polarization in Pancreatic Cancer via the NOD1 Pathway. J Biochem Mol Toxicol 2025; 39:e70126. [PMID: 39756063 DOI: 10.1002/jbt.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/12/2024] [Accepted: 12/25/2024] [Indexed: 01/07/2025]
Abstract
Metastasis is a major cause of poor prognosis of pancreatic cancer. Exosomes (Exos) regulate cancer progression by modulating macrophage polarization. This study aimed to investigate the effects of cancer-associated fibroblast (CAF)-released Exos on macrophage polarization in pancreatic cancer and the molecular mechanisms. THP-1 cells or xenografted tumor mice were treated with Exos from CAFs, and macrophage polarization was analyzed using quantitative real-time PCR (qPCR) and flow cytometry. THP-1 cells were cocultured with BXPC-3 cells, and metastasis was analyzed using Transwell assay and scratch test. Exosomal PTGS2 was detected using qPCR, and the NOD1 pathway was evaluated using western blot analysis. The results showed that Exos promoted M2-type polarization and inhibited M1-type polarization, and then facilitated pancreatic cancer cell migration, invasion, and epithelial-mesenchymal transition. PTGS2 expression was increased in Exo-treated macrophages, and its knockdown in CAFs facilitated M2 to M1 macrophage polarization. Moreover, Exos promoted the NOD1 pathway via PTGS2, and inhibition of NOD1 reversed the polarization caused by Exos. Additionally, NOD1 was required in M1/M2 polarization in vivo mediated by Exos. In conclusion, CAF-secreted Exos facilitated M2 macrophage polarization by carrying PTGS2 to activate the NOD1 pathway, thereby promoting pancreatic cancer metastasis, providing evidence that CAF-Exos accelerating pancreatic cancer progression.
Collapse
Affiliation(s)
- Wenxin Yang
- Department of Pathology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Yuanyuan Zheng
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Han Zhou
- Department of Pathology, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Ruolong Liang
- Department of Pathology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Chaofeng Hu
- Department of Pathology and Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Hooda V, Sharma A. Interactions of NK Cells and Macrophages: From Infections to Cancer Therapeutics. Immunology 2024. [PMID: 39739619 DOI: 10.1111/imm.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025] Open
Abstract
The interaction between immune cells brings a consequence either on their role and functioning or the functioning of the other immune cells, modulating the whole mechanistic pathway. The interaction between natural killer (NK) cells and macrophages is one such interaction which is relatively less explored amongst diseased conditions. Their significance comes from their innate nature and secretion of large proportions of cytokines and chemokines which results in influencing adaptive immune responses. Their interplay can lead to several functional outcomes such as NK cell activation/inhibition, increased cytotoxicity and IFNγ release by NK cells, inhibition of macrophage function, etc. This paper delves into the interaction amongst NK cells and macrophages via different receptor-ligands and cytokines, particularly emphasising microbial infections and tumours. The review has the potential to uncover new insights and approaches that could lead to the development of innovative therapeutic tools and targets.
Collapse
Affiliation(s)
- Vishakha Hooda
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
7
|
Singer M, Zhang Z, Dayyani F, Zhang Z, Yaghmai V, Choi A, Valerin J, Imagawa D, Abi-Jaoudeh N. Modulation of Tumor-Associated Macrophages to Overcome Immune Suppression in the Hepatocellular Carcinoma Microenvironment. Cancers (Basel) 2024; 17:66. [PMID: 39796695 PMCID: PMC11718901 DOI: 10.3390/cancers17010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global health issue characterized by poor prognosis and complex tumor biology. One of the critical components of the HCC tumor microenvironment (TME) is tumor-associated macrophages (TAMs), which play a pivotal role in modulating tumor growth, immune evasion, and metastasis. Macrophages are divided into two major subtypes: pro-inflammatory M1 and anti-inflammatory M2, both of which may exist in TME with altered function and proportion. The anti-inflammatory M2 macrophages are further subdivided into four distinct immune suppressive subsets. TAMs are generally counted as M2-like macrophages with altered immune suppressive functions that exert a significant influence on both cancer progression and the ability of tumors to escape immune surveillance. Their involvement in modulating immune responses via different mechanisms at the local and systemic levels has made them a key target for therapeutic interventions seeking to enhance treatment outcomes. How TAMs' depletion influences immune responses in cancer is the primary interest in cancer immunotherapies. The purpose of this review is to delve into the recent progress made in TAM-targeting therapies. We will explore the current theories, benefits, and challenges associated with TAMs' depletion or inhibition. The manuscript concludes with future directions and potential implications for clinical practice.
Collapse
Affiliation(s)
- Mahmoud Singer
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| | - Zhuoli Zhang
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| | - Farshid Dayyani
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; (F.D.); (A.C.); (J.V.)
| | - Zigeng Zhang
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| | - Vahid Yaghmai
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| | - April Choi
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; (F.D.); (A.C.); (J.V.)
| | - Jennifer Valerin
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; (F.D.); (A.C.); (J.V.)
| | - David Imagawa
- Department of Surgery, University of California Irvine, Orange, CA 92697, USA;
| | - Nadine Abi-Jaoudeh
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| |
Collapse
|
8
|
Wang D, Han X, Liu HL. The role and research progress of tumor-associated macrophages in cervical cancer. Am J Cancer Res 2024; 14:5999-6011. [PMID: 39803646 PMCID: PMC11711540 DOI: 10.62347/ffxl7288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Tumor-associated macrophages (TAMs) are important immune cells in the tumor micro-environment (TME) and play a key role in the occurrence and development of cervical cancer. Besides, targeting TAMs can significantly inhibit cervical cancer tumor growth, invasion, metastasis, and angiogenesis as well as affect immune regulation. This review summarizes the correlation between TAM and tumors, the mechanism of action of TAM in cervical cancer, and the potential application of TAM in the treatment of cervical cancer. Therefore, this study may provide new ideas and targets for the development of further treatment strategies for cervical cancer patients.
Collapse
Affiliation(s)
- Dan Wang
- Department of First Clinical Medical College, Gansu University of Chinese MedicineLanzhou, Gansu, China
| | - Xue Han
- Department of Gynecology, Gansu Provincial People’s HospitalLanzhou, Gansu, China
| | - Hui-Ling Liu
- Department of Gynecology, Gansu Provincial People’s HospitalLanzhou, Gansu, China
| |
Collapse
|
9
|
Kimura T, Kruhlak M, Zhao L, Hwang E, Fozzatti L, Cheng SY. Combinatory actions of cytokines induce M2-like macrophages in anaplastic thyroid cancer. Am J Cancer Res 2024; 14:5812-5825. [PMID: 39803637 PMCID: PMC11711523 DOI: 10.62347/quwq3794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Anaplastic thyroid cancer (ATC) is a lethal endocrine malignancy. It has been shown that tumor-associated macrophages (TAMs) contribute to the aggressiveness of ATC. However, stimulatory factors that could facilitate the induction and infiltration of TAMs in the ATC tumor microenvironment (TME) are not fully elucidated. In this study, we used a human leukemia monocytic cell line (THP-1) to study the differentiation of THP-1 into M2-like macrophages (M2) by conditioned media (CM) derived from each of the three human ATC cells: 8505C, THJ-11T (11T), and THJ-16T (16T). The capacity of CM to induce M2 was in the order of 16T>8505C>11T cells as determined by the expression of M2 markers (CD163, CD204, and CCL13). Cytokine arrays and ELISA assays revealed five commonly enriched cytokines (IL-6, IL-8, MCP-1, TIMP-1, and TGF-β1) in the CM derived from each of the three ATC cells. These cytokines, individually, had weak activity, but together, they mimicked full CM activity in the induction of M2. Further, they collaboratively activated STAT3, ERK, and PI3K-AKT signaling to facilitate the induction of M2 as found in CM. Importantly, we found that the CM-induced M2 could secrete soluble growth factors to promote ATC cell proliferation as evidenced by the increased Ki-67, cMYC, and cyclin D1 protein levels. Our studies identified the major stimulatory cytokines which acted collaboratively to induce M2 in the TME. Importantly, the present studies indicate that when using inhibitors to target TAMs, combination therapies would be required for effective treatment of ATC.
Collapse
Affiliation(s)
- Takahito Kimura
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Michael Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Li Zhao
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Eunmi Hwang
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba 5000, Argentina
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| |
Collapse
|
10
|
Khilwani R, Singh S. Leveraging Evolutionary Immunology in Interleukin-6 and Interleukin-17 Signaling for Lung Cancer Therapeutics. ACS Pharmacol Transl Sci 2024; 7:3658-3670. [PMID: 39698267 PMCID: PMC11650734 DOI: 10.1021/acsptsci.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
Lung cancer is among the most common instances of cancer subtypes and is associated with high mortality rates. Due to the availability of fewer therapies and delayed clinical investigations, the number of cancer incidences is rising dramatically. This is possibly an effect of immune modulations and chemotherapeutic drugs that raises cancer resistance. Among the list, IL-6 and IL-17 are host-derived paradoxical effectors that attune immune responses in malignant lung cells. Their excessive release in the cytokine milieu stabilizes immunosuppressive phenotypes, resulting in cellular perturbations. During tumor development, the significance of these molecules is reflected in their potential to regulate oncogenesis by initiating a myriad of signaling events that influence tumor growth and the metastatic ability of benign cancer cells. Moreover, their transactivation contributes to antiapoptotic mechanisms and favors cancer cell survival via constitutive expression of immunoregulatory molecules. Co-evolution and gene duplication events could be the major drivers behind cytokine evolution, which have prompted generic changes and, hence, the additive effect. The evolutionary model and statistical analysis provide evidence about the cytokines ancestral relationships and site-specific conservation, which is more convincing as both cytokines share cysteine-knot-like structures important in maintaining structural integrity. Funneling through the findings could help find residues that serve a catalytic role in immune functioning. Designing peptides or subunit vaccine formulations against those conserved residues could aid in combating lung cancer pathogenesis.
Collapse
Affiliation(s)
- Riya Khilwani
- Systems Medicine Laboratory, BRIC-National Centre for Cell Science, NCCS Complex,
Ganeshkhind, SPPU Campus, Pune 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, BRIC-National Centre for Cell Science, NCCS Complex,
Ganeshkhind, SPPU Campus, Pune 411007, India
| |
Collapse
|
11
|
Arachchi UPE, Madushani KP, Shanaka KASN, Kim G, Lim C, Yang H, Jayamali BPMV, Kodagoda YK, Warnakula WADLR, Jung S, Wan Q, Lee J. Characterization of tripartite motif containing 59 (TRIM59) in Epinephelus akaara: Insights into its immune involvement and functional properties in viral pathogenesis, macrophage polarization, and apoptosis regulation. FISH & SHELLFISH IMMUNOLOGY 2024; 157:110082. [PMID: 39645217 DOI: 10.1016/j.fsi.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The tripartite motif-containing (TRIM) superfamily is the largest family of RING-type E3 ubiquitin ligases that is conserved across the metazoan kingdom. Previous studies in mammals have demonstrated that TRIM59 possesses ubiquitin-protein ligase activity and acts as a negative regulator of NF-κB signaling. However, TRIM59 has rarely been characterized in fish. This study aimed to characterize TRIM59 from Epinephelus akaara (Eatrim59) and elucidate its structural features, expression patterns, and functional properties in innate immune responses and in the regulation of apoptosis. Eatrim59 is composed of 406 amino acids with a molecular weight of 45.84 kDa and a theoretical isoelectric point of 5.25. It comprises a conserved RING domain, a B-box motif, and a coiled-coil region. Subcellular localization analysis revealed that Eatrim59 was localized in the endoplasmic reticulum. Eatrim59 was ubiquitously expressed in all tissues examined, with the highest relative expression detected in the blood, followed by the brain and spleen. Temporal expression of Eatrim59 was dynamically regulated in response to in vivo immune stimulation by Toll-like receptor ligands and nervous necrosis virus infection. In FHM cells overexpressing Eatrim59, an increase in viral replication was observed upon infection with the Viral hemorrhagic septicemia virus. This phenomenon is attributed to Eatrim59-mediated downregulation of interferon, pro-inflammatory cytokines, and other antiviral pathways. Moreover, macrophages stably overexpressing Eatrim59 exhibited a decrease in nitric oxide production and the formation of a filamentous actin structure upon lipopolysaccharide stimulation, indicating dampened M1 polarization. Furthermore, a decrease in apoptosis was observed in Eatrim59-overexpressing FHM cells under oxidative stress induced by H2O2. In conclusion, these findings demonstrate the multifaceted role of Eatrim59 as a regulator of innate immune response and apoptosis in E. akaara.
Collapse
Affiliation(s)
- U P E Arachchi
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - K P Madushani
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Hyerim Yang
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yasara Kavindi Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
12
|
Zhu L, Cai Q, Li G, Zou X. Bromodomain containing 4 inhibition combats gastric precancerous lesions via modulating macrophage polarization. Tissue Cell 2024; 91:102580. [PMID: 39396437 DOI: 10.1016/j.tice.2024.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Gastric precancerous lesions (GPL), characterized by intestinal metaplasia and dysplasia, marks a pivotal juncture in the transformation from gastritis to gastric cancer. Research on GPL could offer fresh perspectives on preventing cancer occurrence. METHODS This study employed 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) to establish GPL rat models and knocked BRD4 down in vivo to assess its impact on the lesions and macrophage morphology. Following that, the impacts of BRD4 knockdown on the malignant phenotypes of human gastric epithelial GES-1 cells were determined. Moreover, conditioned medium from macrophage was gathered and used for GES-1 cell culture. The involvement of macrophage polarization in the BRD4 regulatory mechanism in GES-1 cells was assessed. RESULTS This study elucidated that MNNG induced an increase level of BRD4 in the rat models. BRD4 knockdown reduced lesions based on pathological sections and immunohistochemistry to detect proliferative antigens. Western blotting and immunofluorescence showed that BRD4 knockdown suppressed epithelial-mesenchymal transition and macrophage M2 polarization. In in vitro experiments, BRD4 knockdown inhibited the malignant phenotype of GES-1 cells and the differentiation of THP-1 cells into M2 macrophages, respectively. The conditioned medium from M2 macrophages with BRD4 knockdown was co-incubated with GES-1 cells, which attenuated the malignant phenotypes compared with the medium from M2 macrophages. CONCLUSION Through in vivo and in vitro experiments, BRD4 upregulation was found to already occur during GPL, affecting macrophage polarization and epithelial cell cancerization. This finding provides an experimental basis for strategies targeting BRD4 inhibition at this critical stage.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Qingxin Cai
- Department of Pharmacy, The First Specialized Hospital of Harbin, Harbin, Heilongjiang 150001, China
| | - Gang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiaoming Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
13
|
Xu J, Xu X, Zhang H, Wu J, Pan R, Zhang B. Tumor-associated inflammation: The role and research progress in tumor therapy. J Drug Deliv Sci Technol 2024; 102:106376. [DOI: 10.1016/j.jddst.2024.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Cui K, Wang K, Huang Z. Ferroptosis and the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:315. [PMID: 39614322 PMCID: PMC11607824 DOI: 10.1186/s13046-024-03235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by its non-apoptotic, iron-dependent and oxidative nature. Since its discovery in 2012, extensive research has demonstrated its pivotal roles in tumorigenesis, metastasis and cancer therapy. The tumor microenvironment (TME) is a complex ecosystem comprising cancer cells, non-cancer cells, extracellular matrix, metabolites and cytokines. Recent studies have underscored a new paradigm in which non-cancer cells in the TME, such as immune and stromal cells, also play significant roles in regulating tumor progression and therapeutic resistance typically through complicated crosstalk with cancer cells. Notably, this crosstalk in the TME were partially mediated through ferrotopsis-related mechanisms. This review provides a comprehensive and systematic summary of the current findings concerning the roles of ferroptosis in the TME and how ferroptosis-mediated TME reprogramming impacts cancer therapeutic resistance and progression. Additionally, this review outlines various ferroptosis-related therapeutic strategies aimed at targeting the TME.
Collapse
Affiliation(s)
- Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Huihe Road 200, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, China
| | - Kang Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Huihe Road 200, Wuxi, Jiangsu, 214062, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
15
|
Chen S, Liu J, He G, Tang N, Zeng Y. Research Hotspots and Trends in Global Cancer immunometabolism:A Bibliometric Analysis from 2000 to 2023. J Multidiscip Healthc 2024; 17:5117-5137. [PMID: 39553266 PMCID: PMC11568773 DOI: 10.2147/jmdh.s495330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Background Cancer poses a major global health challenge, and immunotherapy, known as the third revolution in cancer treatment, has brought new hope to patients. The emerging field of immunometabolism has further enhanced the safety and efficacy of immunotherapy. Over the past two decades, this field has rapidly evolved in oncology, leading to numerous significant findings. This review systematically examines the literature on immunometabolism in cancer, visualizing research trends and identifying future directions. Methods A comprehensive literature search was conducted in the Web of Science, PubMed, and Scopus databases, covering publications from January 2000 to December 2023. We employed tools like Citespace, VOSviewer, and RStudio for visual analysis of publication trends, regional contributions, institutions, authors, journals, and keywords. Results A total of 3320 articles were published by 8090 authors across 1738 institutions, involving 71 countries. Leading contributors were China (n=469), the United States (n=361), and Germany (n=82). Harvard University was the most influential institution, while Frontiers in Immunology had the highest number of publications. The top research areas included glucose, lipid, and amino acid metabolism, the tumor microenvironment, and immune cell regulation. Conclusion International collaboration and interdisciplinary efforts are advancing the field of cancer immunometabolism. Future research will likely focus on the interplay between metabolism and immunity, metabolic markers, immune cell reprogramming, and tumor-immune metabolic competition.
Collapse
Affiliation(s)
- Shupeng Chen
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Jie Liu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Guilian He
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Nana Tang
- Hematology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Yingjian Zeng
- Hematology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
16
|
Yang B, Wang X, Wei X, Ma J. Development of a novel HER2-CAR monocyte cell therapy with controllable proliferation and enhanced anti-tumor efficacy. Chin Med J (Engl) 2024; 137:2590-2602. [PMID: 38243698 PMCID: PMC11557030 DOI: 10.1097/cm9.0000000000002944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND One of the significant challenges for cell therapies, such as chimeric antigen receptor (CAR)-T cell therapy, is the poor infiltration of immune cells into tumor tissues. CAR-monocytes/macrophages (CAR-M) are promising therapies because of their enrichment in the tumor microenvironment. Thus, we constructed a novel CAR-M to facilitate the infiltration of T cells and other immune cells. METHODS The suicide gene inducible caspase-9 ( iCasp9 ) and anti-erb-b2 receptor tyrosine kinase 2 (HER2) CAR elements were transfected into THP1 (an immortalized human monocyte cell line) by lentivirus. The suicide efficiency and specific anti-tumor efficacy were assessed using flow cytometry, inCucyte, and tumor-bearing BALB/c-nude mouse models. The activation of related signaling pathways in CAR-THP1 activation was explored by transcriptome sequencing. Finally, the synergistic therapeutic efficacy of CAR-THP1 combined with RAK cell treatment was demonstrated in tumor-bearing NOD.CB17-Prkdc scid Il2rg tm1 /Bcgen mouse models. RESULTS We developed a novel CAR-THP1, which incorporated iCasp9, CD3ζ, and CD147 intracellular segments, based on the first-generation HER2-CAR backbone. By constructing and comparing a series of CARs with different permutations, CAR-CD3ζ-CD147-iCasp9-THP1 was selected as the optimal combination. CAR-CD3ζ-CD147-iCasp9-THP1 initiated suicide quickly and efficiently under the control of iCasp9 gene, which enabled us to achieve controlled proliferation of CAR-THP1. CAR-THP1 also exhibited robust specific anti-tumor efficacy independently of T cells in vitro and in vivo . Through transcriptional sequencing, we found that CAR-THP1 tended to differentiate into the M1 phenotype and bridged innate and adaptive immunity. A combination of CAR-THP1 and Retronectin actived killer cells (RAKs) showed better therapeutic efficiency, as the metalloproteinases (MMPs) secreted by CAR-THP1 facilitated the degradation of the dense tumor matrix. This further assisted intratumoral infiltration of T cells and augmented the anti-tumor immune response. CONCLUSION CAR-THP1 might be effective against HER2-positive tumor cells and has great potential for combination therapy with other immune cells.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Monocytes/metabolism
- Cell Proliferation
- Mice, Inbred BALB C
- Cell Line, Tumor
- Cell- and Tissue-Based Therapy/methods
- Mice, Nude
- Immunotherapy, Adoptive/methods
- Mice, Inbred NOD
- Female
- Mice, SCID
- Caspase 9/metabolism
- Caspase 9/genetics
Collapse
Affiliation(s)
- Bing Yang
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoxue Wang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing 100038, China
| | - Xundong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Ma
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
17
|
Zhen X, Kim J, Kang JS, Choi BJ, Park KH, Lee DS, Hong SH, Lee JH. Homology-independent targeted insertion-mediated derivation of M1-biased macrophages harbouring Megf10 and CD3ζ from human pluripotent stem cells. EBioMedicine 2024; 109:105390. [PMID: 39383607 PMCID: PMC11497429 DOI: 10.1016/j.ebiom.2024.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Macrophages engineered with chimeric antigen receptors (CAR) are suitable for immunotherapy based on their immunomodulatory activity and ability to infiltrate solid tumours. However, the production and application of genetically edited, highly effective, and mass-produced CAR-modified macrophages (CAR-Ms) are challenging. METHODS Here, we used homology-independent targeted insertion (HITI) for site-directed CAR integration into the safe-harbour region of human pluripotent stem cells (hPSCs). This approach, together with a simple differentiation protocol, produced stable and highly effective CAR-Ms without heterogeneity. FINDINGS These engineered cells phagocytosed cancer cells, leading to significant inhibition of cancer-cell proliferation in vitro and in vivo. Furthermore, the engineered CARs, which incorporated a combination of CD3ζ and Megf10 (referred to as FRP5Mζ), markedly enhanced the antitumour effect of CAR-Ms by promoting M1, but not M2, polarisation. FRP5Mζ promoted M1 polarisation via nuclear factor kappa B (NF-κB), ERK, and STAT1 signalling, and concurrently inhibited STAT3 signalling even under M2 conditions. These features of CAR-Ms modulated the tumour microenvironment by activating inflammatory signalling, inducing M1 polarisation of bystander non-CAR macrophages, and enhancing the infiltration of T cells in cancer spheroids. INTERPRETATION Our findings suggest that CAR-Ms have promise as immunotherapeutics. In conclusion, the guided insertion of CAR containing CD3ζ and Megf10 domains is an effective strategy for the immunotherapy of solid tumours. FUNDING This work was supported by KRIBB Research Initiative Program Grant (KGM4562431, KGM5282423) and a Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korean government (Ministry of Science and ICT,Ministry of Health and Welfare) (22A0304L1-01).
Collapse
Affiliation(s)
- Xing Zhen
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea; Department of Nanoscience and Nanotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jieun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Jong Soon Kang
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.
| | - Byeong Jo Choi
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.
| | - Ki Hwan Park
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.
| | - Dong-Seok Lee
- Department of Nanoscience and Nanotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea; KW-Bio Co., Ltd, Chuncheon, 24252, South Korea.
| | - Jong-Hee Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
18
|
Gu M, Liu Y, Zheng W, Jing Z, Li X, Guo W, Zhao Z, Yang X, Liu Z, Zhu X, Gao W. Combined targeting of senescent cells and senescent macrophages: A new idea for integrated treatment of lung cancer. Semin Cancer Biol 2024; 106-107:43-57. [PMID: 39214157 DOI: 10.1016/j.semcancer.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer is one of the most common cancers worldwide and a leading cause of cancer-related deaths. Macrophages play a key role in the immune response and the tumour microenvironment. As an important member of the immune system, macrophages have multiple functions, including phagocytosis and clearance of pathogens, modulation of inflammatory responses, and participation in tissue repair and regeneration. In lung cancer, macrophages are considered to be the major cellular component of the tumor-associated inflammatory response and are closely associated with tumorigenesis, progression and metastasis. However, macrophages gradually undergo a senescence process with age and changes in pathological states. Macrophage senescence is an important change in the functional and metabolic state of macrophages and may have a significant impact on lung cancer development. In lung cancer, senescent macrophages interact with other cells in the tumor microenvironment (TME) by secreting senescence-associated secretory phenotype (SASP) factors, which can either promote the proliferation, invasion and metastasis of tumor cells or exert anti-tumor effects through reprogramming or clearance under specific conditions. Therefore, senescent macrophages are considered important potential targets for lung cancer therapy. In this paper, a systematic review of macrophages and their senescence process, and their role in tumors is presented. A variety of inhibitory strategies against senescent macrophages, including enhancing autophagy, inhibiting SASP, reducing DNA damage, and modulating metabolic pathways, were also explored. These strategies are expected to improve lung cancer treatment outcomes by restoring the anti-tumor function of macrophages.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zuoqian Jing
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Xinwang Zhu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Wei Gao
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
19
|
van Eijck CWF, Ju J, van 't Land FR, Verheij M, Li Y, Stubbs A, Doukas M, Lila K, Heij LR, Wiltberger G, Alonso L, Malats N, Groot Koerkamp B, Vietsch EE, van Eijck CHJ. The tumor immune microenvironment in resected treatment-naive pancreatic cancer patients with long-term survival. Pancreatology 2024; 24:1057-1065. [PMID: 39218754 DOI: 10.1016/j.pan.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Presently, only a fraction of patients undergo successful surgical resection, the most effective treatment. Enhancing treatment strategies necessitates a deep comprehension of the factors underlying extended survival after surgical resection in patients. METHODS This study aims to identify the important factors of PDAC patients' long-term survival with metatranscriptomics and multiplex immunofluorescence (IF) staining analyses. Specifically, differences in tumor immune microenvironment (TIME) were investigated between treatment-naïve PDAC short-term survivors (STS, overall survival <6 months) and long-term survivors (LTS, overall survival >5 years). RESULTS As a result, we detected 589 over-expressed genes, including HOXB9, CDA, and HOXB8, and 507 under-expressed genes, including AMY2B, SCARA5, and SLC2A2 in LTS. Most of the Reactome overbiological pathways enriched in our data were over-expressed in LTS, such as RHO GTPase Effectors and Cell Cycle Checkpoints. Eleven microbiomes significantly differed between LTS and STS, including Sphingopyxis and Capnocytophaga. Importantly, we demonstrate that the TIME profile with an increased abundance of memory B cells and the reduction of M0 and pro-tumoral M2 macrophages are associated with a good prognosis in PDAC. CONCLUSIONS In this study, we delved into the TIME with metatranscriptomics and IF staining analyses to understand the prerequisite of prolonged survival in PDAC patients. In LTS, several biological pathways were overexpressed, and specific microbiomes were identified. Furthermore, apparent differences in driven immune factors were found that provide valuable insights into developing new treatment strategies.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Jie Ju
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Freek R van 't Land
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Maaike Verheij
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Yunlei Li
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Andrew Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Michael Doukas
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Karishma Lila
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Lara R Heij
- Institute of Pathology, Medical Center University Duisburg-Essen, Essen, Germany; Department of Surgery and Transplantation, University Hospital Essen, Germany; Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Georg Wiltberger
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Lola Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bas Groot Koerkamp
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Eveline E Vietsch
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Casper H J van Eijck
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
20
|
Kerneur C, Foucher E, Guillén Casas J, Colazet M, Le KS, Fullana M, Bergot E, Audemard C, Drapeau M, Louche P, Gorvel L, Rouvière MS, Boucherit N, Audebert S, Magrini E, Carnevale S, de Gassart A, Madakamutil L, Mantovani A, Garlanda C, Agaugué S, Cano CE, Olive D. BTN2A1 targeting reprograms M2-like macrophages and TAMs via SYK and MAPK signaling. Cell Rep 2024; 43:114773. [PMID: 39325623 DOI: 10.1016/j.celrep.2024.114773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/05/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Tumor-associated macrophages (TAMs), often adopting an immunosuppressive M2-like phenotype, correlate with unfavorable cancer outcomes. Our investigation unveiled elevated expression of the butyrophilin (BTN)2A1 in M2-like TAMs across diverse cancer types. We developed anti-BTN2A1 monoclonal antibodies (mAbs), and notably, one clone demonstrated a robust inhibitory effect on M2-like macrophage differentiation, inducing a shift toward an M1-like phenotype both in vitro and ex vivo in TAMs from patients with cancer. Macrophages treated with this anti-BTN2A1 mAb exhibited enhanced support for T cell proliferation and interferon-gamma (IFNγ) secretion. Mechanistically, BTN2A1 engagement induced spleen tyrosine kinase (SYK) recruitment, leading to sequential SYK and extracellular signal-regulated kinase (ERK) phosphorylation. Inhibition of SYK or ERK phosphorylation abolished M2 reprogramming upon BTN2A1 engagement. Our findings, derived from an analysis of macrophages from healthy donors and human tumors, underscore the pivotal role of BTN2A1 in immunosuppressive macrophage differentiation and function, offering potential applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Clément Kerneur
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France; Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Etienne Foucher
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | | | - Magali Colazet
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Kieu-Suong Le
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Marie Fullana
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Elise Bergot
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | | | - Marion Drapeau
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Pauline Louche
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Laurent Gorvel
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Marie-Sarah Rouvière
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Nicolas Boucherit
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Stéphane Audebert
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Elena Magrini
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy
| | | | - Aude de Gassart
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | | | - Alberto Mantovani
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Milan, Italy; William Harvey Research Institute, Queen Mary University, London EC1M 6BQ, UK
| | | | - Sophie Agaugué
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Carla E Cano
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France.
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France.
| |
Collapse
|
21
|
Park YJ, Pang WK, Hwang SM, Ryu DY, Rahman MS, Pang MG. Establishment of tumor microenvironment following bisphenol A exposure in the testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117071. [PMID: 39303638 DOI: 10.1016/j.ecoenv.2024.117071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Although detrimental roles of bisphenol A (BPA) in xenoestrogen target organs, testis and epididymis, and male fertility are well-documented, disruption of the immune privilege system in the male reproductive tract following BPA exposure remains poorly understood. Therefore, this study aimed to explore the precise mechanisms of BPA in interfering immune privilege in the testis on RNA sequencing results. CD-1 male mice were daily treated no-observed-adverse-effect (NOAEL, 5 mg BPA/kg BW) and lowest-observed-adverse-effects (LOAEL, 50 mg BPA/kg BW) of BPA by oral gavage for 6 weeks. Following the LOAEL exposure, the expression of immune response-associated transcripts was upregulated in the testis. Moreover, BPA switch the testicular microenvironment to tumor friendly through the recruitment of tumor associated macrophages (TAMs), which can produce both anti- and pro-inflammatory cytokines, such as TNF-α, TLR2, IL-10, and CXCL9. Number of testicular blood vessels were approximately 2-times increased by upregulation of matrix metallopeptidase 2 in TAMs and upregulation of AR expression in the nucleus of Leydig cells. Moreover, we found that the tumor-supportive environment can also be generated even though NOAEL BPA concentration due to the individual's variability in cancer susceptibility.
Collapse
Affiliation(s)
- Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Soo-Min Hwang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
22
|
Najjar MK, Khan MS, Zhuang C, Chandra A, Lo HW. Interleukin-1 Receptor-Associated Kinase 1 in Cancer Metastasis and Therapeutic Resistance: Mechanistic Insights and Translational Advances. Cells 2024; 13:1690. [PMID: 39451208 PMCID: PMC11506742 DOI: 10.3390/cells13201690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-1 Receptor Associated Kinase 1 (IRAK1) is a serine/threonine kinase that plays a critical role as a signaling transducer of the activated Toll-like receptor (TLR)/Interleukin-1 receptor (IL-1R) signaling pathway in both immune cells and cancer cells. Upon hyperphosphorylation by IRAK4, IRAK1 forms a complex with TRAF6, which results in the eventual activation of the NF-κB and MAPK pathways. IRAK1 can translocate to the nucleus where it phosphorylates STAT3 transcription factor, leading to enhanced IL-10 gene expression. In immune cells, activated IRAK1 coordinates innate immunity against pathogens and mediates inflammatory responses. In cancer cells, IRAK1 is frequently activated, and the activation is linked to the progression and therapeutic resistance of various types of cancers. Consequently, IRAK1 is considered a promising cancer drug target and IRAK1 inhibitors have been developed and evaluated preclinically and clinically. This is a comprehensive review that summarizes the roles of IRAK1 in regulating metastasis-related signaling pathways of importance to cancer cell proliferation, cancer stem cells, and dissemination. This review also covers the significance of IRAK1 in mediating cancer resistance to therapy and the underlying molecular mechanisms, including the evasion of apoptosis and maintenance of an inflammatory tumor microenvironment. Finally, we provide timely updates on the development of IRAK1-targeted therapy for human cancers.
Collapse
Affiliation(s)
- Mariana K. Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Munazza S. Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ankush Chandra
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
23
|
Gao H, Jiang Y, Zeng G, Huda N, Thoudam T, Yang Z, Liangpunsakul S, Ma J. Cell-to-cell and organ-to-organ crosstalk in the pathogenesis of alcohol-associated liver disease. EGASTROENTEROLOGY 2024; 2:e100104. [PMID: 39735421 PMCID: PMC11674000 DOI: 10.1136/egastro-2024-100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Alcohol-associated liver disease (ALD) is a growing global health concern and its prevalence and severity are increasing steadily. While bacterial endotoxin translocation into the portal circulation is a well-established key factor, recent evidence highlights the critical role of sterile inflammation, triggered by diverse stimuli, in alcohol-induced liver injury. This review provides a comprehensive analysis of the complex interactions within the hepatic microenvironment in ALD. It examines the contributions of both parenchymal cells, like hepatocytes, and non-parenchymal cells, such as hepatic stellate cells, Kupffer cells, neutrophils, and liver sinusoidal endothelial cells, in driving the progression of the disease. Additionally, we explored the involvement of key mediators, including cytokines, chemokines and inflammasomes, which regulate inflammatory responses and promote liver injury and fibrosis. A particular focus has been placed on extracellular vesicles (EVs) as essential mediators of intercellular communication both within and beyond the liver. These vesicles facilitate the transfer of signalling molecules, such as microRNAs and proteins, which modulate immune responses, fibrogenesis and lipid metabolism, thereby influencing disease progression. Moreover, we underscore the importance of organ-to-organ crosstalk, particularly in the gut-liver axis, where dysbiosis and increased intestinal permeability lead to microbial translocation, exacerbating hepatic inflammation. The adipose-liver axis is also highlighted, particularly the impact of adipokines and free fatty acids from adipose tissue on hepatic steatosis and inflammation in the context of alcohol consumption.
Collapse
Affiliation(s)
- Hui Gao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ge Zeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Southern Medical University, Guangzhou, China
| | - Nazmul Huda
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Themis Thoudam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Jing Ma
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
24
|
Xue JD, Gao J, Tang AF, Feng C. Shaping the immune landscape: Multidimensional environmental stimuli refine macrophage polarization and foster revolutionary approaches in tissue regeneration. Heliyon 2024; 10:e37192. [PMID: 39296009 PMCID: PMC11408064 DOI: 10.1016/j.heliyon.2024.e37192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In immunology, the role of macrophages extends far beyond their traditional classification as mere phagocytes; they emerge as pivotal architects of the immune response, with their function being significantly influenced by multidimensional environmental stimuli. This review investigates the nuanced mechanisms by which diverse external signals ranging from chemical cues to physical stress orchestrate macrophage polarization, a process that is crucial for the modulation of immune responses. By transitioning between pro-inflammatory (M1) and anti-inflammatory (M2) states, macrophages exhibit remarkable plasticity, enabling them to adapt to and influence their surroundings effectively. The exploration of macrophage polarization provides a compelling narrative on how these cells can be manipulated to foster an immune environment conducive to tissue repair and regeneration. Highlighting cutting-edge research, this review presents innovative strategies that leverage the dynamic interplay between macrophages and their environment, proposing novel therapeutic avenues that harness the potential of macrophages in regenerative medicine. Moreover, this review critically evaluates the current challenges and future prospects of translating macrophage-centered strategies from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Jing-Dong Xue
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jing Gao
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ai-Fang Tang
- Department of Geratology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chao Feng
- Department of Reproductive Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| |
Collapse
|
25
|
Lin Q, Ma W, Xu M, Xu Z, Wang J, Liang Z, Zhu L, Wu M, Luo J, Liu H, Liu J, Jin Y. A clinical prognostic model related to T cells based on machine learning for predicting the prognosis and immune response of ovarian cancer. Heliyon 2024; 10:e36898. [PMID: 39296051 PMCID: PMC11409031 DOI: 10.1016/j.heliyon.2024.e36898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Background Ovarian cancer (OV) is regarded as one of the most lethal malignancies affecting the female reproductive system, with individuals diagnosed with OV often facing a dismal prognosis due to resistance to chemotherapy and the presence of an immunosuppressive environment. T cells serve as a crucial mediator for immune surveillance and cancer elimination. This study aims to analyze the mechanism of T cell-associated markers in OV and create a prognostic model for clinical use in enhancing outcomes for OV patients. Methods Based on the single-cell dataset GSE184880, this study used single-cell data analysis to identify characteristic T cell subsets. Analysis of high dimensional weighted gene co-expression network analysis (hdWGCNA) is utilized to identify crucial gene modules along with their corresponding hub genes. A grand total of 113 predictive models were formed utilizing ten distinct machine learning algorithms along with the combination of the cancer genome atlas (TCGA)-OV dataset and the GSE140082 dataset. The most dependable clinical prognostic model was created utilizing the leave one out cross validation (LOOCV) framework. The validation process for the models was achieved by conducting survival curve analysis and receiver operating characteristic (ROC) analysis. The relationship between risk scores and immune cells was explored through the utilization of the Cibersort algorithm. Additionally, an analysis of drug sensitivity was carried out to anticipate chemotherapy responses across various risk groups. The genes implicated in the model were authenticated utilizing qRT-PCR, cell viability experiments, and EdU assay. Results This study developed a clinical prognostic model that includes ten risk genes. The results obtained from the training set of the study indicate that patients classified in the low-risk group experience a significant survival advantage compared to those in the high-risk group. The ROC analysis demonstrates that the model holds significant clinical utility. These results were verified using an independent dataset, strengthening the model's precision and dependability. The risk assessment provided by the model also serves as an independent prognostic factor for OV patients. The study also unveiled a noteworthy relationship between the risk scores calculated by the model and various immune cells, suggesting that the model may potentially serve as a valuable tool in forecasting responses to both immune therapy and chemotherapy in ovarian cancer patients. Notably, experimental evidence suggests that PFN1, one of the genes included in the model, is upregulated in human OV cell lines and has the capacity to promote cancer progression in in vitro models. Conclusion We have created an accurate and dependable clinical prognostic model for OV capable of predicting clinical outcomes and categorizing patients. This model effectively forecasts responses to both immune therapy and chemotherapy. By regulating the immune microenvironment and targeting the key gene PFN1, it may improve the prognosis for high-risk patients.
Collapse
Affiliation(s)
- Qiwang Lin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Weixu Ma
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Mengchang Xu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial First-class Applied Discipline (pharmacy), Changsha, China
| | - Zijin Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhu Liang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lin Zhu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Menglu Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiejun Luo
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiying Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yunfeng Jin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Kunachowicz D, Kłosowska K, Sobczak N, Kepinska M. Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities-A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1424. [PMID: 39269086 PMCID: PMC11396817 DOI: 10.3390/nano14171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The increasing incidence of breast cancers (BCs) in the world population and their complexity and high metastatic ability are serious concerns for healthcare systems. Despite the significant progress in medicine made in recent decades, the efficient treatment of invasive cancers still remains challenging. Chemotherapy, a fundamental systemic treatment method, is burdened with severe adverse effects, with efficacy limited by resistance development and risk of disease recurrence. Also, current diagnostic methods have certain drawbacks, attracting attention to the idea of developing novel, more sensitive detection and therapeutic modalities. It seems the solution for these issues can be provided by nanotechnology. Particularly, quantum dots (QDs) have been extensively evaluated as potential targeted drug delivery vehicles and, simultaneously, sensing and bioimaging probes. These fluorescent nanoparticles offer unlimited possibilities of surface modifications, allowing for the attachment of biomolecules, such as antibodies or proteins, and drug molecules, among others. In this work, we discuss the potential applicability of QDs in breast cancer diagnostics and treatment in light of the current knowledge. We begin with introducing the molecular and histopathological features of BCs, standard therapeutic regimens, and current diagnostic methods. Further, the features of QDs, along with their uptake, biodistribution patterns, and cytotoxicity, are described. Based on the reports published in recent years, we present the progress in research on possible QD use in improving BC diagnostics and treatment efficacy as chemotherapeutic delivery vehicles and photosensitizing agents, along with the stages of their development. We also address limitations and open questions regarding this topic.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kłosowska
- Students' Scientific Association at the Department of Pharmaceutical Biochemistry (SKN No. 214), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Natalia Sobczak
- Students' Scientific Association of Biomedical and Environmental Analyses (SKN No. 85), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
27
|
Yang Y, Yao Z, Huo L. The Nf1-Q181X point mutation induces M2 macrophage polarization via the AKT/STAT pathway to promote smooth muscle cell proliferation and migration. Mol Biol Rep 2024; 51:946. [PMID: 39215899 DOI: 10.1007/s11033-024-09887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Increased case reports have shown that patients with NF1 have an increased risk of extensive vascular vasculopathy. Previous studies demonstrated the presence of macrophages and smooth muscle cells in the neoplastic intima of carotid arteries after injury in Nf1+/- mice. However, whether NF1 gene mutations affect macrophage polarization and macrophage-smooth muscle cell interactions remains to be elucidated. METHODS Scratch assay and transwell assay were utilized to detect cell migration ability. The dye 2',7'dichlorofluorescin diacetate and neutral red stain were used to assess intracellular ROS production and cell phagocytosis function, respectively. Proteins and mRNA expression were determined by western blot, RT-qPCR, and immunofluorescence. Finally, the macrophage (MAC) and vascular smooth muscle cell (VSMC) co-culture system was used to detect cellular crosstalk. RESULTS Cell function assays confirmed that the Nf1-Q181X point mutation attenuated the phagocytosis of bone marrow-derived macrophages (BMDMs) and promoted the migration and ROS production of BMDMs. Moreover, we found that the Nf1-Q181X point mutation inhibited M1 but promoted M2 macrophage polarization by down-regulating p38, ERK, and JNK and up-regulating the Akt/STAT3 signaling pathway, respectively. Furthermore, in the MAC-VSMC co-culture system, we demonstrated that Nf1-Q181X point mutation-activated M2 BMDMs promoted proliferation and migration of VSMCs and induced the transformation of VSMCs from contractile phenotype to synthetic phenotype. CONCLUSION The findings suggest that the Nf1-Q181X point mutation can mediate macrophage polarization and promote smooth muscle cell proliferation and migration, providing clinical clues for the treatment of NF1-complicated vasculopathy.
Collapse
Affiliation(s)
- Yang Yang
- Central Laboratory, Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, 100038, China
| | - Zhichao Yao
- Central Laboratory, Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, 100038, China
| | - Lirong Huo
- Central Laboratory, Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
28
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the role of exosomal miRNAs in metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608894. [PMID: 39372783 PMCID: PMC11451750 DOI: 10.1101/2024.08.20.608894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Exosomal microRNAs (exomiRs), transported via exosomes, play a pivotal role in intercellular communication. In cancer, exomiRs influence tumor progression by regulating key cellular processes such as proliferation, angiogenesis, and metastasis. Their role in mediating communication between cancer cells and the tumor microenvironment highlights their significance as potential diagnostic and therapeutic targets. Methodology In this study, we aimed to characterize the role of exomiRs in influencing the pre-metastatic niche (PMN). Across 7 tumor types, including 4 cell lines and three tumors, we extracted high confidence exomiRs (Log FC >= 2 in exosomes relative to control) and their targets (experimentally identified and targeted by at least 2 exomiRs). Subsequently, we identified enriched pathways and selected the top 100 high-confidence exomiR targets based on the frequency of their appearance in the enriched pathways. These top 100 targets were consistently used throughout the analysis. Results Cancer cell line and tumor derived ExomiRs have significantly higher GC content relative to genomic background. Pathway enriched among the top exomiR targets included general cancer-associated processes such as "wound healing" and "regulation of epithelial cell proliferation", as well as cancer-specific processes, such as "regulation of angiogenesis in kidney" (KIRC), "ossification" in lung (LUAD), and "positive regulation of cytokine production" in pancreatic cancer (PAAD). Similarly, 'Pathways in cancer' and 'MicroRNAs in cancer' ranked among the top 10 enriched KEGG pathways in all cancer types. ExomiR targets were not only enriched for cancer-specific tumor suppressor genes (TSG) but are also downregulated in pre-metastatic niche formed in lungs compared to normal lung. Motif analysis shows high similarity among motifs identified from exomiRs across cancer types. Our analysis recapitulates exomiRs associated with M2 macrophage differentiation and chemoresistance such as miR-21 and miR-222-3p, regulating signaling pathways such as PTEN/PI3/Akt, NF-κB, etc. Cox regression indicated that exomiR targets are significantly associated with overall survival of patients in TCGA. Lastly, a Support Vector Machine (SVM) model using exomiR target gene expression classified responders and non-responders to neoadjuvant chemotherapy with an AUROC of 0.96 (in LUAD), higher than other previously reported gene signatures. Conclusion Our study characterizes the pivotal role of exomiRs in shaping the PMN in diverse cancers, underscoring their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Medical Research, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, 06800, Ankara, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
29
|
Valdez-Salazar F, Jiménez-Del Rio LA, Padilla-Gutiérrez JR, Valle Y, Muñoz-Valle JF, Valdés-Alvarado E. Advances in Melanoma: From Genetic Insights to Therapeutic Innovations. Biomedicines 2024; 12:1851. [PMID: 39200315 PMCID: PMC11351162 DOI: 10.3390/biomedicines12081851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Advances in melanoma research have unveiled critical insights into its genetic and molecular landscape, leading to significant therapeutic innovations. This review explores the intricate interplay between genetic alterations, such as mutations in BRAF, NRAS, and KIT, and melanoma pathogenesis. The MAPK and PI3K/Akt/mTOR signaling pathways are highlighted for their roles in tumor growth and resistance mechanisms. Additionally, this review delves into the impact of epigenetic modifications, including DNA methylation and histone changes, on melanoma progression. The tumor microenvironment, characterized by immune cells, stromal cells, and soluble factors, plays a pivotal role in modulating tumor behavior and treatment responses. Emerging technologies like single-cell sequencing, CRISPR-Cas9, and AI-driven diagnostics are transforming melanoma research, offering precise and personalized approaches to treatment. Immunotherapy, particularly immune checkpoint inhibitors and personalized mRNA vaccines, has revolutionized melanoma therapy by enhancing the body's immune response. Despite these advances, resistance mechanisms remain a challenge, underscoring the need for combined therapies and ongoing research to achieve durable therapeutic responses. This comprehensive overview aims to highlight the current state of melanoma research and the transformative impacts of these advancements on clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuel Valdés-Alvarado
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.V.-S.)
| |
Collapse
|
30
|
Nain A, Joshi A, Debnath S, Choudhury S, Thomas J, Satija J, Huang CC, Chatterjee K. A 4D printed nanoengineered super bioactive hydrogel scaffold with programmable deformation for potential bifurcated vascular channel construction. J Mater Chem B 2024; 12:7604-7617. [PMID: 38984474 DOI: 10.1039/d4tb00498a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Four-dimensional (4D) printing of hydrogels enabled the fabrication of complex scaffold geometries out of static parts. Although current 4D fabrication strategies are promising for creating vascular parts such as tubes, developing branched networks or tubular junctions is still challenging. Here, for the first time, a 4D printing approach is employed to fabricate T-shaped perfusable bifurcation using an extrusion-based multi-material 3D printing process. An alginate/methylcellulose-based dual-component hydrogel system (with defined swelling behavior) is nanoengineered with carbonized alginate (∼100 nm) to introduce anti-oxidative, anti-inflammatory, and anti-thrombotic properties and shape-shifting properties. A computational model to predict shape deformations in the printed hydrogels with defined infill angles was designed and further validated experimentally. Shape deformations of the 3D-printed flat sheets were achieved by ionic cross-linking. An undisrupted perfusion of a dye solution through a T-junction with minimal leakage mimicking blood flow through vessels is also demonstrated. Moreover, human umbilical vein endothelial and fibroblast cells seeded with printed constructs show intact morphology and excellent cell viability. Overall, the developed strategy paves the way for manufacturing self-actuated vascular bifurcations with remarkable anti-thrombotic properties to potentially treat coronary artery diseases.
Collapse
Affiliation(s)
- Amit Nain
- Department of Material Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
- Department of Applied Mechanics & Biomedical Engineering, Indian Institute of Technology-Madras, 600036, Tamil Nadu, India
| | - Akshat Joshi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Souvik Debnath
- Department of Material Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Jobin Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Jitendra Satija
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology and Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Kaushik Chatterjee
- Department of Material Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
31
|
van Eijck CWF, Vadgama D, van Eijck CHJ, Wilmink JW. Metformin boosts antitumor immunity and improves prognosis in upfront resected pancreatic cancer: an observational study. J Natl Cancer Inst 2024; 116:1374-1383. [PMID: 38530777 PMCID: PMC11308183 DOI: 10.1093/jnci/djae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Beyond demographic and immune factors, metabolic considerations, particularly metformin's recognized impact in oncology, warrant exploration in treating pancreatic cancer. This study aimed to investigate the influence of metformin on patient survival and its potential correlation with distinct immune profiles in pancreatic ductal adenocarcinoma (PDAC) tumors. METHODS We included 82 upfront resected and 66 gemcitabine-based neoadjuvant chemoradiotherapy (nCRT)-treated patients from the PREOPANC randomized controlled trial (RCT). Transcriptomic NanoString immunoprofiling was performed for a subset of 96 available resected specimens. RESULTS Disparities in survival outcomes and immune profiles were apparent between metformin and non-metformin users in upfront resected patients but lacking in nCRT-treated patients. Compared to non-metformin users, upfront resected metformin users showed a higher median overall survival (OS) of 29 vs 14 months and a better 5-year OS rate of 19% vs 5%. Furthermore, metformin use was a favorable prognostic factor for OS in the upfront surgery group (HR = 0.56; 95% CI = 0.32 to 0.99). Transcriptomic data revealed that metformin users significantly underexpressed genes related to pro-tumoral immunity, including monocyte to M2 macrophage polarization and activation. Furthermore, the relative abundance of anti-inflammatory CD163+ MRC1+ M2 macrophages in non-metformin users and immune-activating CD1A+ CD1C+ dendritic cells in metformin users was heightened (P < .001). CONCLUSION This study unveils immune profile changes resulting from metformin use in upfront resected pancreatic cancer patients, possibly contributing to prolonged survival outcomes. Specifically, metformin use may decrease the abundance and activity of pro-tumoral M2 macrophages and increase the recruitment and function of tumor-resolving DCs, favoring antitumor immunity.[PREOPANC trial EudraCT: 2012-003181-40].
Collapse
Affiliation(s)
- Casper W F van Eijck
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Disha Vadgama
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Johanna W Wilmink
- Department of Medical Oncology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Ganguly K, Luthfikasari R, Randhawa A, Dutta SD, Patil TV, Acharya R, Lim KT. Stimuli-Mediated Macrophage Switching, Unraveling the Dynamics at the Nanoplatforms-Macrophage Interface. Adv Healthc Mater 2024; 13:e2400581. [PMID: 38637323 DOI: 10.1002/adhm.202400581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Macrophages play an essential role in immunotherapy and tissue regeneration owing to their remarkable plasticity and diverse functions. Recent bioengineering developments have focused on using external physical stimuli such as electric and magnetic fields, temperature, and compressive stress, among others, on micro/nanostructures to induce macrophage polarization, thereby increasing their therapeutic potential. However, it is difficult to find a concise review of the interaction between physical stimuli, advanced micro/nanostructures, and macrophage polarization. This review examines the present research on physical stimuli-induced macrophage polarization on micro/nanoplatforms, emphasizing the synergistic role of fabricated structure and stimulation for advanced immunotherapy and tissue regeneration. A concise overview of the research advancements investigating the impact of physical stimuli, including electric fields, magnetic fields, compressive forces, fluid shear stress, photothermal stimuli, and multiple stimulations on the polarization of macrophages within complex engineered structures, is provided. The prospective implications of these strategies in regenerative medicine and immunotherapeutic approaches are highlighted. This review will aid in creating stimuli-responsive platforms for immunomodulation and tissue regeneration.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
33
|
Zhao R, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zheng Y, Gu H, Zhao D, Madhunapantula SV, Zhu X, Liu J, Fan R. Cuproptosis, the novel type of oxidation-induced cell death in thoracic cancers: can it enhance the success of immunotherapy? Cell Commun Signal 2024; 22:379. [PMID: 39068453 PMCID: PMC11282696 DOI: 10.1186/s12964-024-01743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Copper is an important metal micronutrient, required for the balanced growth and normal physiological functions of human organism. Copper-related toxicity and dysbalanced metabolism were associated with the disruption of intracellular respiration and the development of various diseases, including cancer. Notably, copper-induced cell death was defined as cuproptosis which was also observed in malignant cells, representing an attractive anti-cancer instrument. Excess of intracellular copper leads to the aggregation of lipoylation proteins and toxic stress, ultimately resulting in the activation of cell death. Differential expression of cuproptosis-related genes was detected in normal and malignant tissues. Cuproptosis-related genes were also linked to the regulation of oxidative stress, immune cell responses, and composition of tumor microenvironment. Activation of cuproptosis was associated with increased expression of redox-metabolism-regulating genes, such as ferredoxin 1 (FDX1), lipoic acid synthetase (LIAS), lipoyltransferase 1 (LIPT1), dihydrolipoamide dehydrogenase (DLD), drolipoamide S-acetyltransferase (DLAT), pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1), and pyruvate dehydrogenase E1 subunit beta (PDHB)). Accordingly, copper-activated network was suggested as an attractive target in cancer therapy. Mechanisms of cuproptosis and regulation of cuproptosis-related genes in different cancers and tumor microenvironment are discussed in this study. The analysis of current findings indicates that therapeutic regulation of copper signaling, and activation of cuproptosis-related targets may provide an effective tool for the improvement of immunotherapy regimens.
Collapse
Affiliation(s)
- Ruiwen Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Olga Sukocheva
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia.
| | - Edmund Tse
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yulia Aleksandrova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yufei Zheng
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Gu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Deyao Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - SabbaRao V Madhunapantula
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Xiaorong Zhu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junqi Liu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruitai Fan
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
34
|
Zhang Y, Cao J, Yuan Z, Zuo H, Yao J, Tu X, Gu X. Construction and validation of prognostic signatures related to mitochondria and macrophage polarization in gastric cancer. Front Oncol 2024; 14:1433874. [PMID: 39132501 PMCID: PMC11310369 DOI: 10.3389/fonc.2024.1433874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Background Increasing evidence reveals the involvement of mitochondria and macrophage polarisation in tumourigenesis and progression. This study aimed to establish mitochondria and macrophage polarisation-associated molecular signatures to predict prognosis in gastric cancer (GC) by single-cell and transcriptional data. Methods Initially, candidate genes associated with mitochondria and macrophage polarisation were identified by differential expression analysis and weighted gene co-expression network analysis. Subsequently, candidate genes were incorporated in univariateCox analysis and LASSO to acquire prognostic genes in GC, and risk model was created. Furthermore, independent prognostic indicators were screened by combining risk score with clinical characteristics, and a nomogram was created to forecast survival in GC patients. Further, in single-cell data analysis, cell clusters and cell subpopulations were yielded, followed by the completion of pseudo-time analysis. Furthermore, a more comprehensive immunological analysis was executed to uncover the relationship between GC and immunological characteristics. Ultimately, expression level of prognostic genes was validated through public datasets and qRT-PCR. Results A risk model including six prognostic genes (GPX3, GJA1, VCAN, RGS2, LOX, and CTHRC1) associated with mitochondria and macrophage polarisation was developed, which was efficient in forecasting the survival of GC patients. The GC patients were categorized into high-/low-risk subgroups in accordance with median risk score, with the high-risk subgroup having lower survival rates. Afterwards, a nomogram incorporating risk score and age was generated, and it had significant predictive value for predicting GC survival with higher predictive accuracy than risk model. Immunological analyses revealed showed higher levels of M2 macrophage infiltration in high-risk subgroup and the strongest positive correlation between risk score and M2 macrophages. Besides, further analyses demonstrated a better outcome for immunotherapy in low-risk patients. In single-cell and pseudo-time analyses, stromal cells were identified as key cells, and a relatively complete developmental trajectory existed for stromal C1 in three subclasses. Ultimately, expression analysis revealed that the expression trend of RGS2, GJA1, GPX3, and VCAN was consistent with the results of the TCGA-GC dataset. Conclusion Our findings demonstrated that a novel prognostic model constructed in accordance with six prognostic genes might facilitate the improvement of personalised prognosis and treatment of GC patients.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, China
| | - Jian Cao
- Department of Gastroenterology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, China
| | - Zhen Yuan
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, China
| | - Hao Zuo
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, China
| | - Jiacong Yao
- Alliance Biotechnology Company, Hangzhou, China
| | - Xiaodie Tu
- Alliance Biotechnology Company, Hangzhou, China
| | - Xinhua Gu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, China
| |
Collapse
|
35
|
Vasilevska J, Cheng PF, Lehmann J, Ramelyte E, Gómez JM, Dimitriou F, Sella F, Ferretti D, Salas-Bastos A, Jordaan WS, Levesque MP, Dummer R, Sommer L. Monitoring melanoma patients on treatment reveals a distinct macrophage population driving targeted therapy resistance. Cell Rep Med 2024; 5:101611. [PMID: 38942020 PMCID: PMC11293307 DOI: 10.1016/j.xcrm.2024.101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/30/2024]
Abstract
Resistance to targeted therapy remains a major clinical challenge in melanoma. To uncover resistance mechanisms, we perform single-cell RNA sequencing on fine-needle aspirates from resistant and responding tumors of patients undergoing BRAFi/MEKi treatment. Among the genes most prominently expressed in resistant tumors is POSTN, predicted to signal to a macrophage population associated with targeted therapy resistance (TTR). Accordingly, tumors from patients with fast disease progression after therapy exhibit high POSTN expression levels and high numbers of TTR macrophages. POSTN polarizes human macrophages toward a TTR phenotype and promotes resistance to targeted therapy in a melanoma mouse model, which is associated with a phenotype change in intratumoral macrophages. Finally, polarized TTR macrophages directly protect human melanoma cells from MEKi-induced killing via CD44 receptor expression on melanoma cells. Thus, interfering with the protective activity of TTR macrophages may offer a strategy to overcome resistance to targeted therapy in melanoma.
Collapse
Affiliation(s)
- Jelena Vasilevska
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Phil Fang Cheng
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Julia Lehmann
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Egle Ramelyte
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Julia Martínez Gómez
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Florentia Dimitriou
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Federica Sella
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Daria Ferretti
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | | | | | - Mitchell Paul Levesque
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Lukas Sommer
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
36
|
Jaroszewski A, Geysels RC, Volpini X, Pellizas CG, Motran CC, Stempin CC, Nicola JP, Cheng SY, Fozzatti L. Anaplastic thyroid cancer cell-secreted TGFβ1 plays a key role in inducing macrophage polarization of human monocytes. Am J Cancer Res 2024; 14:3626-3638. [PMID: 39113863 PMCID: PMC11301286 DOI: 10.62347/bhfa4606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Anaplastic thyroid cancer (ATC) is a clinically aggressive form of undifferentiated thyroid cancer with limited treatment options. Tumor-associated macrophages (TAMs) constitute over 50% of ATC-infiltrating cells, and their presence is associated with a poor prognosis. We have previously shown that paracrine signals released by ATC cells induced pro-tumor M2-like polarization of human monocytes. However, which soluble factors derived from ATC cells drive monocyte activation, are largely unknown. In this study we investigated the participation of transforming growth factor β1 (TGFβ1) on the phenotype of macrophage activation induced by ATC cell-derived conditioned media (CM). THP-1 cells exposed to CM derived from ATC cells and recombinant human TGFβ1 induced M2-like macrophage polarization, showing high CD163 and Dectin1 expression. Moreover, we showed that TGFβ1 induced the messenger RNA (mRNA) and protein expression of the transcription factors SNAIL and SLUG. Accordingly, increased TGFβ1 secretion from ATC cells was confirmed by enzyme-linked immunosorbent assay (ELISA). Addition of SB431542, a TGFβ receptor inhibitor, significantly decreased the Dectin1, CD163, SNAIL and SLUG expression stimulated by ATC cell-derived CM. We validated the clinical significance of the expression of TGFβ ligands, their receptors, as well as SNAIL and SLUG in human ATC by analyzing public microarray datasets. We found that the expression of the main TGFβ ligands, TGFβ1 and TGFβ3, along with their receptors, TGFR1 and TGFR2, as well as SLUG, was significantly higher in human ATC tissue samples than in normal thyroid tissues. Our findings indicate that ATC cell-secreted TGFβ1 may play a key role in M2-like macrophage polarization of human monocytes and in the up-regulation of SNAIL and SLUG transcription factors. Thus, ours results uncovered a novel mechanism involved in the activation of TAMs by soluble factors released by ATC cells, which suggest potential therapeutic targets for ATC.
Collapse
Affiliation(s)
- Agustina Jaroszewski
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| | - Romina C Geysels
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| | - Ximena Volpini
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| | - Claudia G Pellizas
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| | - Claudia C Motran
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| | - Cinthia C Stempin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| | - Juan P Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, Maryland, USA
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| |
Collapse
|
37
|
Zhang L, Gu S, Wang L, Zhao L, Li T, Zhao X, Zhang L. M2 macrophages promote PD-L1 expression in triple-negative breast cancer via secreting CXCL1. Pathol Res Pract 2024; 260:155458. [PMID: 39003998 DOI: 10.1016/j.prp.2024.155458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND M2 macrophages are known to play a significant role in the progression of triple-negative breast cancer (TNBC) by creating an immunosuppressive microenvironment. The aim of this study is to investigate the impact of M2 macrophages on TNBC and their correlation with programmed death-ligand 1 (PD-L1) expression. METHODS We employed a co-culture system to analyze the role of the mutual regulation of M2 macrophages and TNBC cells. Employing a multifaceted approach, including bioinformatics analysis, Western blotting, flow cytometry analysis, ELISA, qRT-PCR, lentivirus infection, mouse models, and IHC, we aimed to elucidate the influence and mechanism of M2 macrophages on PD-L1 expression. RESULTS The results showed a substantial infiltration of M2 macrophages in TNBC tissue, which demonstrated a positive correlation with PD-L1 expression. CXCL1 exhibited abnormally high expression in M2 macrophages and enhanced the expression of PD-L1 in TNBC cells. Notably, silencing CXCL1 or its receptor CXCR2 inhibited M2 macrophages-induced expression of PD-L1. Mechanistically, CXCL1 derived from M2 macrophages binding to CXCR2 activated the PI3K/AKT/NF-κB signaling pathway, resulting in increased PD-L1 expression in TNBC. CONCLUSION Broadly speaking, these results provide evidence for the immunosuppressive role of M2 macrophages and CXCL1 in TNBC cells, indicating their potential as therapeutic biomarkers.
Collapse
Affiliation(s)
- Lifen Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shanzhi Gu
- Department of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lu Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lin Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Lingxiao Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
38
|
Binder AK, Bremm F, Dörrie J, Schaft N. Non-Coding RNA in Tumor Cells and Tumor-Associated Myeloid Cells-Function and Therapeutic Potential. Int J Mol Sci 2024; 25:7275. [PMID: 39000381 PMCID: PMC11242727 DOI: 10.3390/ijms25137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The RNA world is wide, and besides mRNA, there is a variety of other RNA types, such as non-coding (nc)RNAs, which harbor various intracellular regulatory functions. This review focuses on small interfering (si)RNA and micro (mi)RNA, which form a complex network regulating mRNA translation and, consequently, gene expression. In fact, these RNAs are critically involved in the function and phenotype of all cells in the human body, including malignant cells. In cancer, the two main targets for therapy are dysregulated cancer cells and dysfunctional immune cells. To exploit the potential of mi- or siRNA therapeutics in cancer therapy, a profound understanding of the regulatory mechanisms of RNAs and following targeted intervention is needed to re-program cancer cells and immune cell functions in vivo. The first part focuses on the function of less well-known RNAs, including siRNA and miRNA, and presents RNA-based technologies. In the second part, the therapeutic potential of these technologies in treating cancer is discussed, with particular attention on manipulating tumor-associated immune cells, especially tumor-associated myeloid cells.
Collapse
Affiliation(s)
- Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
39
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
40
|
Song CY, Wu CY, Lin CY, Tsai CH, Chen HT, Fong YC, Chen LC, Tang CH. The stimulation of exosome generation by visfatin polarizes M2 macrophages and enhances the motility of chondrosarcoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:3790-3798. [PMID: 38497692 DOI: 10.1002/tox.24236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Chondrosarcoma is a malignant bone tumor that arises from abnormalities in cartilaginous tissue and is associated with lung metastases. Extracellular vesicles called exosomes are primarily used as mediators of intercellular signal transmission to control tumor metastasis. Visfatin is an adipokine reported to enhance tumor metastasis, but its relationship with exosome generation in chondrosarcoma motility remains undetermined. Our results found that overexpressing visfatin augments the production of exosomes from chondrosarcoma cells. Visfatin-treated chondrosarcoma exosomes educate macrophage polarization towards the M2 but not M1 phenotype. Interestingly, M2 macrophages polarized by exosomes return to chondrosarcoma cells to facilitate cell motility. According to these findings, chondrosarcoma cells emit more exosomes when treated with visfatin. The stimulation of exosome generation by visfatin polarizes M2 macrophages and enhances the motility of chondrosarcoma.
Collapse
Affiliation(s)
- Chang-Yu Song
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chih-Ying Wu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Chih-Yang Lin
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Taichung, Yunlin, Taiwan
| | - Li-Chai Chen
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
41
|
Gao J, Xiong A, Liu J, Li X, Wang J, Zhang L, Liu Y, Xiong Y, Li G, He X. PANoptosis: bridging apoptosis, pyroptosis, and necroptosis in cancer progression and treatment. Cancer Gene Ther 2024; 31:970-983. [PMID: 38553639 PMCID: PMC11257964 DOI: 10.1038/s41417-024-00765-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 07/20/2024]
Abstract
This comprehensive review explores the intricate mechanisms of PANoptosis and its implications in cancer. PANoptosis, a convergence of apoptosis, pyroptosis, and necroptosis, plays a crucial role in cell death and immune response regulation. The study delves into the molecular pathways of each cell death mechanism and their crosstalk within PANoptosis, emphasizing the shared components like caspases and the PANoptosome complex. It highlights the significant role of PANoptosis in various cancers, including respiratory, digestive, genitourinary, gliomas, and breast cancers, showing its impact on tumorigenesis and patient survival rates. We further discuss the interwoven relationship between PANoptosis and the tumor microenvironment (TME), illustrating how PANoptosis influences immune cell behavior and tumor progression. It underscores the dynamic interplay between tumors and their microenvironments, focusing on the roles of different immune cells and their interactions with cancer cells. Moreover, the review presents new breakthroughs in cancer therapy, emphasizing the potential of targeting PANoptosis to enhance anti-tumor immunity. It outlines various strategies to manipulate PANoptosis pathways for therapeutic purposes, such as targeting key signaling molecules like caspases, NLRP3, RIPK1, and RIPK3. The potential of novel treatments like immunogenic PANoptosis-initiated therapies and nanoparticle-based strategies is also explored.
Collapse
Affiliation(s)
- Jie Gao
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Jiliu Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Xiaolan Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, The First Affiliated Hospital of Medical University, Guangzhou, Guangdong, 510120, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Yao Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan friendship hospital, Chengdu, 610000, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China.
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China.
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, The First Affiliated Hospital of Medical University, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
42
|
Wang M, Cai R, Zhang Z, Feng L, Lei Z, Wang F, Yu Z, Liu L, Yang X, Guo H, Shan B, Xu S, Guo R, Cui S, Zheng Y. NIR-responsive CN-Pt-GEM hydrogel induces necroptosis and immunotherapeutic responses prevent postoperative recurrence and wound infection in lung carcinoma. J Nanobiotechnology 2024; 22:355. [PMID: 38902678 PMCID: PMC11191265 DOI: 10.1186/s12951-024-02568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Cancer recurrence following surgical resection is a major cause of treatment failure. Finding effective methods to prevent postoperative recurrence and wound infection is an important component of successful surgery. With the development of new nanotechnology, more treatment options have been provided for postoperative adjuvant therapy. This study presents an innovative hydrogel system that stimulates tumoricidal immunity after surgical resection of non-small cell lung cancer (NSCLC) and prevents cancer relapse. RESULTS The hydrogel system is based on the excellent photothermal conversion performance of single-atom platinum (CN-Pt) along with the delivery and release of the chemotherapy drug, gemcitabine (GEM). The system is coated onto the wound surface after tumor removal with subsequent near-infrared (NIR) photothermal therapy, which efficiently induces necroptosis of residual cancer cells, amplifies the levels of damage-associated molecular patterns (DAMPs), and increases the number of M1 macrophages. The significantly higher levels of phagocytic macrophages enhance tumor immunogenicity and sensitize cancer cells to CD8 + T-cell immunity to control postoperative recurrence, which has been verified using an animal model of postoperative lung cancer recurrence. The CN-Pt-GEM-hydrogel with NIR can also inhibit postoperative wound infection. CONCLUSIONS These findings introduce an alternative strategy for supplementing antitumor immunity in patients undergoing resection of NSCLC tumors. The CN-Pt-GEM-hydrogel with the NIR system also exhibits good biosafety and may be adaptable for clinical application in relation to tumor resection surgery, wound tissue filling, infection prevention, and recurrence prevention.
Collapse
Affiliation(s)
- Meng Wang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Rui Cai
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Zhiwu Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Ziying Lei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Fengpin Wang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Zhongjian Yu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Lu Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Xia Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Huili Guo
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Bingjie Shan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Shiting Xu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Shuzhong Cui
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Yanfang Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.
- State Key Laboratory of Respiratory Disease, Guangzhou, China.
| |
Collapse
|
43
|
Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. J Hematol Oncol 2024; 17:44. [PMID: 38863020 PMCID: PMC11167803 DOI: 10.1186/s13045-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Macrophages infiltrating tumour tissues or residing in the microenvironment of solid tumours are known as tumour-associated macrophages (TAMs). These specialized immune cells play crucial roles in tumour growth, angiogenesis, immune regulation, metastasis, and chemoresistance. TAMs encompass various subpopulations, primarily classified into M1 and M2 subtypes based on their differentiation and activities. M1 macrophages, characterized by a pro-inflammatory phenotype, exert anti-tumoural effects, while M2 macrophages, with an anti-inflammatory phenotype, function as protumoural regulators. These highly versatile cells respond to stimuli from tumour cells and other constituents within the tumour microenvironment (TME), such as growth factors, cytokines, chemokines, and enzymes. These stimuli induce their polarization towards one phenotype or another, leading to complex interactions with TME components and influencing both pro-tumour and anti-tumour processes.This review comprehensively and deeply covers the literature on macrophages, their origin and function as well as the intricate interplay between macrophages and the TME, influencing the dual nature of TAMs in promoting both pro- and anti-tumour processes. Moreover, the review delves into the primary pathways implicated in macrophage polarization, examining the diverse stimuli that regulate this process. These stimuli play a crucial role in shaping the phenotype and functions of macrophages. In addition, the advantages and limitations of current macrophage based clinical interventions are reviewed, including enhancing TAM phagocytosis, inducing TAM exhaustion, inhibiting TAM recruitment, and polarizing TAMs towards an M1-like phenotype. In conclusion, while the treatment strategies targeting macrophages in precision medicine show promise, overcoming several obstacles is still necessary to achieve an accessible and efficient immunotherapy.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Linrui Zhu Chen
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - María Paniagua-Sancho
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain.
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, 56017, Italy.
| |
Collapse
|
44
|
Wang L, Li X, Xu C, Wang D, Ma C, Wang Z, Li Y, Li Z. Unveiling novel cell clusters and biomarkers in glioblastoma and its peritumoral microenvironment at the single-cell perspective. J Transl Med 2024; 22:551. [PMID: 38851695 PMCID: PMC11162569 DOI: 10.1186/s12967-024-05313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly heterogeneous, recurrent and aggressively invasive primary malignant brain tumor. The heterogeneity of GBM results in poor targeted therapy. Therefore, the aim of this study is to depict the cellular landscape of GBM and its peritumor from a single-cell perspective. Discovering new cell subtypes and biomarkers, and providing a theoretical basis for precision therapy. METHODS We collected 8 tissue samples from 4 GBM patients to perform 10 × single-cell transcriptome sequencing. Quality control and filtering of data by Seurat package for clustering. Inferring copy number variations to identify malignant cells via the infercnv package. Functional enrichment analysis was performed by GSVA and clusterProfiler packages. STRING database and Cytoscape software were used to construct protein interaction networks. Inferring transcription factors by pySCENIC. Building cell differentiation trajectories via the monocle package. To infer intercellular communication networks by CellPhoneDB software. RESULTS We observed that the tumor microenvironment (TME) varies among different locations and different GBM patients. We identified a proliferative cluster of oligodendrocytes with high expression of mitochondrial genes. We also identified two clusters of myeloid cells, one primarily located in the peritumor exhibiting an M1 phenotype with elevated TNFAIP8L3 expression, and another in the tumor and peritumor showing a proliferative tendency towards an M2 phenotype with increased DTL expression. We identified XIST, KCNH7, SYT1 and DIAPH3 as potential factors associated with the proliferation of malignant cells in GBM. CONCLUSIONS These biomarkers and cell clusters we discovered may serve as targets for treatment. Targeted drugs developed against these biomarkers and cell clusters may enhance treatment efficacy, optimize immune therapy strategies, and improve the response rates of GBM patients to immunotherapy. Our findings provide a theoretical basis for the development of individualized treatment and precision medicine for GBM, which may be used to improve the survival of GBM patients.
Collapse
Affiliation(s)
- Liping Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xinyi Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Chengshi Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Danwen Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Chao Ma
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Zefen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China.
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China.
- Brain Glioma Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
45
|
Marafie SK, Al-Mulla F, Abubaker J. mTOR: Its Critical Role in Metabolic Diseases, Cancer, and the Aging Process. Int J Mol Sci 2024; 25:6141. [PMID: 38892329 PMCID: PMC11173325 DOI: 10.3390/ijms25116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The mammalian target of rapamycin (mTOR) is a pivotal regulator, integrating diverse environmental signals to control fundamental cellular functions, such as protein synthesis, cell growth, survival, and apoptosis. Embedded in a complex network of signaling pathways, mTOR dysregulation is implicated in the onset and progression of a range of human diseases, including metabolic disorders such as diabetes and cardiovascular diseases, as well as various cancers. mTOR also has a notable role in aging. Given its extensive biological impact, mTOR signaling is a prime therapeutic target for addressing these complex conditions. The development of mTOR inhibitors has proven advantageous in numerous research domains. This review delves into the significance of mTOR signaling, highlighting the critical components of this intricate network that contribute to disease. Additionally, it addresses the latest findings on mTOR inhibitors and their clinical implications. The review also emphasizes the importance of developing more effective next-generation mTOR inhibitors with dual functions to efficiently target the mTOR pathways. A comprehensive understanding of mTOR signaling will enable the development of effective therapeutic strategies for managing diseases associated with mTOR dysregulation.
Collapse
Affiliation(s)
- Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait;
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
46
|
Yu F, Fang P, Fang Y, Chen D. Circ_0027791 contributes to the growth and immune evasion of hepatocellular carcinoma via the miR-496/programmed cell death ligand 1 axis in an m6A-dependent manner. ENVIRONMENTAL TOXICOLOGY 2024; 39:3721-3733. [PMID: 38546290 DOI: 10.1002/tox.24188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/03/2024] [Accepted: 02/10/2024] [Indexed: 05/16/2024]
Abstract
Emerging evidence indicates the critical roles of circular RNAs in the development of multiple cancers, containing hepatocellular carcinoma (HCC). Herein, our present research reported the biological function and mechanism of circ_0027791 in HCC progression. Circ_0027791, microRNA-496 (miR-496), programmed cell death ligand 1 (PDL1), and methyltransferase-like 3 (METTL3) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, proliferation, invasion, and sphere formation ability were detected using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, 5-ethynyl-2'-deoxyuridine, transwell, and sphere formation assays. Macrophage polarization was detected using flow cytometry assay. To understand the role of circ_0027791 during the immune escape, HCC cells were cocultured with peripheral blood mononuclear cells or cytokine-induced killer (CIK) cells in vitro. A xenograft mouse model was applied to assess the function of circ_0027791 in vivo. After prediction using circinteractome and miRDB, the binding between miR-496 and circ_0027791 or PDL1 was validated based on a dual-luciferase reporter assay. Interaction between METTL3 and circ_0027791 was determined using methylated RNA immunoprecipitation (MeRIP)-qPCR, RIP-qPCR, and RNA pull-down assays. Circ_0027791, PDL1, and METTL3 expression were upregulated, and miR-496 was decreased in HCC patients and cells. Moreover, circ_0027791 knockdown might repress proliferation, invasion, sphere formation, M2 macrophage polarization, and antitumor immune response. Circ_0027791 knockdown repressed HCC tumor growth in vivo. In mechanism, circ_0027791 functioned as a sponge for miR-496 to increase PDL1 expression. In addition, METTL3 mediated the m6A methylation of circ_0027791 and stabilized its expression. METTL3-induced circ_0027791 facilitated HCC cell progression partly regulating the miR-496/PDL1 axis, which provided a new prognostic and therapeutic marker for HCC.
Collapse
Affiliation(s)
- Furong Yu
- Department of Medical Technology, Anhui Medical College, Hefei, China
| | - Peifei Fang
- School of Basic Medicine, Anhui Medical College, Hefei, Anhi, China
| | - Yonghong Fang
- Department of Medical Technology, Anhui Medical College, Hefei, China
| | - Daojun Chen
- Department of Medical Technology, Anhui Medical College, Hefei, China
| |
Collapse
|
47
|
Xun J, Hu Z, Wang M, Jiang X, Liu B, Han Y, Gao R, Wu X, Zhang A, Yang S, Wang X, Yu X, Zhang Q. Hydroxygenkwanin suppresses peritoneal metastasis in colorectal cancer by modulating tumor-associated macrophages polarization. Chem Biol Interact 2024; 396:111038. [PMID: 38719169 DOI: 10.1016/j.cbi.2024.111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Peritoneal metastasis is an important cause of high mortality and poor prognosis in colorectal cancer (CRC) patients. Therefore, the development of compounds with unique anti-CRC Peritoneal metastasis activities is urgently needed to improve the survival of CRC patients. Hydroxygenkwanin (HGK),a natural flavonoid compound, have been shown to display anti-inflammatory, antioxidant, antitumor, and immunoregulatory effects. Here, we employed CRC peritoneal metastasis mouse model with MC38 cells to examine the antitumor activity of HGK. The result showed that HGK not only inhibited peritoneal metastasis, but also significantly increased the proportion of M1-like macrophages while decreasing the proportion of M2-like macrophages within the tumor microenvironment (TME). Furthermore, we demonstrated that the inhibitory effect of HGK on peritoneal metastasis of CRC depended on macrophages in vitro and in vivo. Moreover, we revealed that HGK promoted the polarization of TAMs into M1-like macrophages and inhibited their polarization into M2-like macrophages in a LPS- or IL-4-induced bone marrow-derived macrophages (BMDMs) model and co-culture system. Finally, we also investigated the regulatory mechanism of HGK on TAMs polarization that HGK may active p-STAT5, p-NF-κB signaling in M1-like macrophages and inhibit p-STAT6, JMJD3, PPARγ expression in M2-like macrophages. Taken together, our findings suggest that HGK is a natural candidate for effective prevention of peritoneal metastasis in colorectal cancer, which provides a potential strategy for clinical treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jing Xun
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Zhibo Hu
- Graduate School, Tianjin Medical University, Tianjin, 300100, China
| | - Meilin Wang
- Graduate School, Tianjin Medical University, Tianjin, 300100, China
| | - Xiaolin Jiang
- Graduate School, Tianjin Medical University, Tianjin, 300100, China
| | - Bin Liu
- Graduate School, Tianjin Medical University, Tianjin, 300100, China
| | - Yingdi Han
- Graduate School, Tianjin Medical University, Tianjin, 300100, China
| | - Ruifang Gao
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, 300020, China
| | - Xueliang Wu
- The First Affiliated Hospital of Hebei North University, Hebei, 075000, China
| | - Aimin Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Shimin Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Ximo Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Xiangyang Yu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China.
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China.
| |
Collapse
|
48
|
van Eijck CWF, Real FX, Malats N, Vadgama D, van den Bosch TPP, Doukas M, van Eijck CHJ, Mustafa DAM. GATA6 identifies an immune-enriched phenotype linked to favorable outcomes in patients with pancreatic cancer undergoing upfront surgery. Cell Rep Med 2024; 5:101557. [PMID: 38733987 PMCID: PMC11148804 DOI: 10.1016/j.xcrm.2024.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
This study underscores GATA6's role in distinguishing classical and basal-like pancreatic ductal adenocarcinoma (PDAC) phenotypes. Retrospective studies associate GATA6 immunohistochemistry (IHC) expression with survival outcomes, warranting prospective validation. In a prospective treatment-naive cohort of patients with resected PDAC, GATA6 IHC proves a prognostic discriminator, associating high GATA6 expression with extended survival and the classical PDAC phenotype. However, GATA6's prognostic significance is numerically lower after gemcitabine-based neoadjuvant chemoradiotherapy compared to its significance in patients treated with upfront surgery. Furthermore, GATA6 is implicated in immunomodulation, although a comprehensive investigation of its immunological role is lacking. Treatment-naive PDAC tumors with varying GATA6 expression yield distinct immunological landscapes. Tumors highly expressing GATA6 show reduced infiltration of immunosuppressive regulatory T cells and M2 macrophages but increased infiltration of immune-stimulating, antigen-presenting, and activated T cells. Our findings caution against solely relying on GATA6 for molecular subtyping in clinical trials and open avenues for exploring immune-based combination therapies.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, Madrid, Spain.
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre, Madrid, Spain; Centro de Investigación Biomédica en Red-Cáncer, Madrid, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, Madrid, Spain; Centro de Investigación Biomédica en Red-Cáncer, Madrid, Spain
| | - Disha Vadgama
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Thierry P P van den Bosch
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Michail Doukas
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Dana A M Mustafa
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Centre, Rotterdam, the Netherlands; The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
49
|
Zhong Z, Deng W, Wu J, Shang H, Tong Y, He Y, Huang Q, Ba X, Chen Z, Tang K. Cell membrane coated nanoparticles as a biomimetic drug delivery platform for enhancing cancer immunotherapy. NANOSCALE 2024; 16:8708-8738. [PMID: 38634521 DOI: 10.1039/d4nr00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Cancer immunotherapy, a burgeoning modality for cancer treatment, operates by activating the autoimmune system to impede the growth of malignant cells. Although numerous immunotherapy strategies have been employed in clinical cancer therapy, the resistance of cancer cells to immunotherapeutic medications and other apprehensions impede the attainment of sustained advantages for most patients. Recent advancements in nanotechnology for drug delivery hold promise in augmenting the efficacy of immunotherapy. However, the efficacy is currently constrained by the inadequate specificity of delivery, low rate of response, and the intricate immunosuppressive tumor microenvironment. In this context, the investigation of cell membrane coated nanoparticles (CMNPs) has revealed their ability to perform targeted delivery, immune evasion, controlled release, and immunomodulation. By combining the advantageous features of natural cell membranes and nanoparticles, CMNPs have demonstrated their unique potential in the realm of cancer immunotherapy. This review aims to emphasize recent research progress and elucidate the underlying mechanisms of CMNPs as an innovative drug delivery platform for enhancing cancer immunotherapy. Additionally, it provides a comprehensive overview of the current immunotherapeutic strategies involving different cell membrane types of CMNPs, with the intention of further exploration and optimization.
Collapse
Affiliation(s)
- Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
50
|
Wang C, Li Y, Wang L, Han Y, Gao X, Li T, Liu M, Dai L, Du R. SPP1 represents a therapeutic target that promotes the progression of oesophageal squamous cell carcinoma by driving M2 macrophage infiltration. Br J Cancer 2024; 130:1770-1782. [PMID: 38600327 PMCID: PMC11130281 DOI: 10.1038/s41416-024-02683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Tumour-associated macrophages (TAMs) are an important component of the tumour microenvironment (TME). However, the crosstalk between oesophageal squamous cell carcinoma (ESCC) cells and TAMs remains largely unexplored. METHODS Clinical samples and the TCGA database were used to evaluate the relevance of SPP1 and TAM infiltration in ESCC. Mouse models were constructed to investigate the roles of macrophages educated by SPP1 in ESCC. Macrophage phenotypes were determined using qRT‒PCR and immunohistochemical staining. RNA sequencing was performed to elucidate the mechanism. RESULTS Increasing expression of SPP1 correlated with M2-like TAM accumulation in ESCC, and they both predicted poor prognosis in the ESCC cohort. Knockdown of SPP1 significantly inhibited the infiltration of M2 TAMs in xenograft tumours. In vivo mouse model experiments showed that SPP1-mediated education of macrophages plays an essential role in the progression of ESCC. Mechanistically, SPP1 recruited macrophages and promoted M2 polarisation via CD44/PI3K/AKT signalling activation and then induced VEGFA and IL6 secretion to sustain ESCC progression. Finally, blockade of SPP1 with RNA aptamer significantly inhibited tumour growth and M2 TAM infiltration in xenograft mouse models. CONCLUSIONS This study highlights SPP1-mediated crosstalk between ESCC cells and TAMs in ESCC. SPP1 could serve as a potential target in ESCC therapy.
Collapse
Affiliation(s)
- Chen Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Nuclear Medicine, Xinxiang Central Hospital, Xinxiang, 453002, Henan, China
| | - Yutong Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Linhong Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaohui Gao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Man Liu
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, 450000, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Renle Du
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|