1
|
Armstrong Suthahar SS, Nettersheim FS, Alimadadi A, Wang E, Billitti M, Resto-Trujillo N, Roy P, Hedrick CC, Ley K, Orecchioni M. Olfr2-positive macrophages originate from monocytes proliferate in situ and present a pro-inflammatory foamy-like phenotype. Cardiovasc Res 2024; 120:1577-1589. [PMID: 39229899 DOI: 10.1093/cvr/cvae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 09/05/2024] Open
Abstract
AIMS Olfactory receptor 2 (Olfr2) has been identified in a minimum of 30% of vascular macrophages, and its depletion was shown to reduce atherosclerosis progression. Mononuclear phagocytes, including monocytes and macrophages within the vessel wall, are major players in atherosclerosis. Single-cell RNA sequencing studies revealed that atherosclerotic artery walls encompass several monocytes and vascular macrophages, defining at least nine distinct subsets potentially serving diverse functions in disease progression. This study investigates the functional phenotype and ontogeny of Olfr2-expressing vascular macrophages in atherosclerosis. METHODS AND RESULTS Olfr2+ macrophages rapidly increase in Apoe-/- mice's aorta when fed a Western diet (WD). Mass cytometry showed that Olfr2+ cells are clustered within the CD64 high population and enriched for CD11c and Ccr2 markers. Olfr2+ macrophages express many pro-inflammatory cytokines, including Il1b, Il6, Il12, and Il23, and chemokines, including Ccl5, Cx3cl1, Cxcl9, and Ccl22. By extracting differentially expressed genes from bulk RNA sequencing (RNA-seq) of Olfr2+ vs. Olfr2- macrophages, we defined a signature that significantly mapped to single-cell data of plaque myeloid cells, including monocytes, subendothelial MacAir, and Trem2Gpnmb foamy macrophages. By adoptive transfer experiments, we identified that Olfr2 competent monocytes from CD45.1Apoe-/-Olfr2+/+ mice transferred into CD45.2Apoe-/-Olfr2-/- recipient mice fed WD for 12 weeks, accumulate in the atherosclerotic aorta wall already at 72 h, and differentiate in macrophages. Olfr2+ macrophages showed significantly increased BrdU incorporation compared to Olfr2- macrophages. Flow cytometry confirmed that at least 50% of aortic Olfr2+ macrophages are positive for BODIPY staining and have increased expression of both tumour necrosis factor and interleukin 6 compared to Olfr2- macrophages. Gene set enrichment analysis of the Olfr2+ macrophage signature revealed a similar enrichment pattern in human atherosclerotic plaques, particularly within foamy/TREM2hi-Mφ and monocytes. CONCLUSIONS In summary, we conclude that Olfr2+ macrophages in the aorta originate from monocytes and can accumulate at the early stages of disease progression. These cells can undergo differentiation into MacAir and Trem2Gpnmb foamy macrophages, exhibiting proliferative and pro-inflammatory potentials. This dynamic behaviour positions them as key influencers in shaping the myeloid landscape within the atherosclerotic plaque.
Collapse
Affiliation(s)
| | - Felix Sebastian Nettersheim
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| | - Ahmad Alimadadi
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Erpei Wang
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| | - Monica Billitti
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| | - Natalya Resto-Trujillo
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Payel Roy
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Catherine C Hedrick
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
- Department of Medicine, Augusta University, 1120 15th St BA 8412, Augusta, GA 30912, USA
| | - Klaus Ley
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
- Department of Physiology, Augusta University, 1462 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Marco Orecchioni
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
- Department of Pharmacology & Toxicology, Augusta University, 1459 Laney Walker Blvd, Augusta, GA 30901, USA
| |
Collapse
|
2
|
Ren H, Zhang R, Zhang H, Bian C. Ecnomotopic olfactory receptors in metabolic regulation. Biomed Pharmacother 2024; 179:117403. [PMID: 39241572 DOI: 10.1016/j.biopha.2024.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Olfactory receptors are seven-transmembrane G-protein-coupled receptors on the cell surface. Over the past few decades, evidence has been mounting that olfactory receptors are not unique to the nose and that their ectopic existence plays an integral role in extranasal diseases. Coupled with the discovery of many natural or synthetic odor-compound ligands, new roles of ecnomotopic olfactory receptors regulating blood glucose, obesity, blood pressure, and other metabolism-related diseases are emerging. Many well-known scientific journals have called for attention to extranasal functions of ecnomotopic olfactory receptors. Thus, the prospect of ecnomotopic olfactory receptors in drug target research has been greatly underestimated. Here, we have provided an overview for the role of ecnomotopic olfactory receptors in metabolic diseases, focusing on their effects on various metabolic tissues, and discussed the possible molecular biological and pathophysiological mechanisms, which provide the basis for drug development and clinical application targeting the function of ecnomotopic olfactory receptors via literature machine learning and screening.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ruijing Zhang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haibo Zhang
- Departments of Infectious Disease, the Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Che Bian
- Department of General Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
3
|
Shi K, Jiao Y, Yang L, Yuan G, Jia J. New insights into the roles of olfactory receptors in cardiovascular disease. Mol Cell Biochem 2024; 479:1615-1626. [PMID: 38761351 DOI: 10.1007/s11010-024-05024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Olfactory receptors (ORs) are G protein coupled receptors (GPCRs) with seven transmembrane domains that bind to specific exogenous chemical ligands and transduce intracellular signals. They constitute the largest gene family in the human genome. They are expressed in the epithelial cells of the olfactory organs and in the non-olfactory tissues such as the liver, kidney, heart, lung, pancreas, intestines, muscle, testis, placenta, cerebral cortex, and skin. They play important roles in the normal physiological and pathophysiological mechanisms. Recent evidence has highlighted a close association between ORs and several metabolic diseases. Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality globally. Furthermore, ORs play an essential role in the development and functional regulation of the cardiovascular system and are implicated in the pathophysiological mechanisms of CVDs, including atherosclerosis (AS), heart failure (HF), aneurysms, and hypertension (HTN). This review describes the specific mechanistic roles of ORs in the CVDs, and highlights the future clinical application prospects of ORs in the diagnosis, treatment, and prevention of the CVDs.
Collapse
Affiliation(s)
- Kangru Shi
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yang Jiao
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jue Jia
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
4
|
Wellford SA, Moseman EA. Olfactory immunology: the missing piece in airway and CNS defence. Nat Rev Immunol 2024; 24:381-398. [PMID: 38097777 DOI: 10.1038/s41577-023-00972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Beito MR, Ashraf S, Odogwu D, Harmancey R. Role of Ectopic Olfactory Receptors in the Regulation of the Cardiovascular-Kidney-Metabolic Axis. Life (Basel) 2024; 14:548. [PMID: 38792570 PMCID: PMC11122380 DOI: 10.3390/life14050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Olfactory receptors (ORs) represent one of the largest yet least investigated families of G protein-coupled receptors in mammals. While initially believed to be functionally restricted to the detection and integration of odors at the olfactory epithelium, accumulating evidence points to a critical role for ectopically expressed ORs in the regulation of cellular homeostasis in extranasal tissues. This review aims to summarize the current state of knowledge on the expression and physiological functions of ectopic ORs in the cardiovascular system, kidneys, and primary metabolic organs and emphasizes how altered ectopic OR signaling in those tissues may impact cardiovascular-kidney-metabolic health.
Collapse
Affiliation(s)
| | | | | | - Romain Harmancey
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.R.B.); (S.A.); (D.O.)
| |
Collapse
|
6
|
Li X, Wang G, Wang X, Li W, Li N, Liu X, Fan W, He S, Han Y, Su G, Cao Q, Yang P, Hou S. OR11H1 Missense Variant Confers the Susceptibility to Vogt-Koyanagi-Harada Disease by Mediating Gadd45g Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306563. [PMID: 38168905 PMCID: PMC10953539 DOI: 10.1002/advs.202306563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Vogt-Koyanagi-Harada (VKH) disease is a severe autoimmune disease. Herein, whole-exome sequencing (WES) study are performed on 2,573 controls and 229 VKH patients with follow-up next-generation sequencing (NGS) in a collection of 2,380 controls and 2,278 VKH patients. A rare c.188T>C (p Val63Ala) variant in the olfactory receptor 11H1 (OR11H1) gene is found to be significantly associated with VKH disease (rs71235604, Pcombined = 7.83 × 10-30 , odds ratio = 3.12). Functional study showes that OR11H1-A63 significantly increased inflammatory factors production and exacerbated barrier function damage. Further studies using RNA-sequencing find that OR11H1-A63 markedly increased growth arrest and DNA-damage-inducible gamma (GADD45G) expression. Moreover, OR11H1-A63 activates the MAPK and NF-κB pathways, and accelerates inflammatory cascades. In addition, inhibiting GADD45G alleviates inflammatory factor secretion, likely due to the regulatory effect of GADD45G on the MAPK and NF-κB pathways. Collectively, this study suggests that the OR11H1-A63 missense mutation may increase susceptibility to VKH disease in a GADD45G-dependent manner.
Collapse
Affiliation(s)
- Xingran Li
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Guoqing Wang
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Xiaotang Wang
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Wanqian Li
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Na Li
- Department of Laboratory MedicineBeijing Tongren Hospital, Capital Medical UniversityBeijing100005China
| | - Xianyang Liu
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Wei Fan
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Siyuan He
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Yue Han
- Beijing Novogene Bioinformatics Technology Co.,LtdBeijing100600China
| | - Guannan Su
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Qingfeng Cao
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Peizeng Yang
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Shengping Hou
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Ophthalmology & Visual Sciences Key LaboratoryBeijing Tongren HospitalCapital Medical UniversityBeijing100730China
| |
Collapse
|
7
|
Wu C, Xu M, Dong J, Cui W, Yuan S. The structure and function of olfactory receptors. Trends Pharmacol Sci 2024; 45:268-280. [PMID: 38296675 DOI: 10.1016/j.tips.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Olfactory receptors (ORs) form the most important chemosensory receptor family responsible for our sense of smell in the nasal olfactory epithelium. This receptor family belongs to the class A G protein-coupled receptors (GPCRs). Recent research has indicated that ORs are involved in many nonolfactory physiological processes in extranasal tissue, such as the brain, pancreas, and testes, and implies the possible role of their dysregulation in various diseases. The recently released structures of OR51E2 and consensus OR52 have also unveiled the uniqueness of ORs from other class A GPCR members. In this review, we discuss these recent developments and computational modeling efforts toward understanding the structural properties of unresolved ORs, which could guide potential future OR-targeted drug discovery.
Collapse
Affiliation(s)
- Chenyang Wu
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China; The Research Center for Computer-aided Drug Discovery, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Marc Xu
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China; The Research Center for Computer-aided Drug Discovery, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junlin Dong
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China; The Research Center for Computer-aided Drug Discovery, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Cui
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China
| | - Shuguang Yuan
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China; AlphaMol Science Ltd, Shenzhen 518055, China.
| |
Collapse
|
8
|
Li X, Sun S, Zhang H. RNA sequencing reveals differential long noncoding RNA expression profiles in bacterial and viral meningitis in children. BMC Med Genomics 2024; 17:50. [PMID: 38347610 PMCID: PMC10863080 DOI: 10.1186/s12920-024-01820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND We aimed to investigate the involvement of long non-coding RNA (lncRNA) in bacterial and viral meningitis in children. METHODS The peripheral blood of five bacterial meningitis patients, five viral meningitis samples, and five healthy individuals were collected for RNA sequencing. Then, the differentially expressed lncRNA and mRNA were detected in bacterial meningitis vs. controls, viral meningitis vs. healthy samples, and bacterial vs. viral meningitis patients. Besides, co-expression and the competing endogenous RNA (ceRNA) networks were constructed. Receiver operating characteristic curve (ROC) analysis was performed. RESULTS Compared with the control group, 2 lncRNAs and 32 mRNAs were identified in bacterial meningitis patients, and 115 lncRNAs and 54 mRNAs were detected in viral meningitis. Compared with bacterial meningitis, 165 lncRNAs and 765 mRNAs were identified in viral meningitis. 2 lncRNAs and 31 mRNAs were specific to bacterial meningitis, and 115 lncRNAs and 53 mRNAs were specific to viral meningitis. The function enrichment results indicated that these mRNAs were involved in innate immune response, inflammatory response, and immune system process. A total of 8 and 1401 co-expression relationships were respectively found in bacterial and viral meningitis groups. The ceRNA networks contained 1 lncRNA-mRNA pair and 4 miRNA-mRNA pairs in viral meningitis group. GPR68 and KIF5C, identified in bacterial meningitis co-expression analysis, had an area under the curve (AUC) of 1.00, while the AUC of OR52K2 and CCR5 is 0.883 and 0.698, respectively. CONCLUSIONS Our research is the first to profile the lncRNAs in bacterial and viral meningitis in children and may provide new insight into understanding meningitis regulatory mechanisms.
Collapse
Affiliation(s)
- Xin Li
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Hebei Medical University, No. 215 West Heping Street, Shijiazhuang, Hebei, 050000, China
- First Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang, 050000, China
| | - Suzhen Sun
- First Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang, 050000, China
| | - Huifeng Zhang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Hebei Medical University, No. 215 West Heping Street, Shijiazhuang, Hebei, 050000, China.
- First Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
9
|
Zhang Q, Wei H, Huang G, Jin L. CCL7 and olfactory transduction pathway activation play an important role in the formation of CaOx and CaP kidney stones. Front Genet 2024; 14:1267545. [PMID: 38235001 PMCID: PMC10791818 DOI: 10.3389/fgene.2023.1267545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Background: The deposition of calcium oxalate (CaOx) and calcium phosphate (CaP) is the most common cause of kidney stone disease (KSD). Whether KSDs caused by CaOx and CaP have common genetic targets or signaling pathways remained unclear. Methods: The present study utilized public data GSE73680 to analyze differentially expressed genes between CaOx or CaP tissues and normal tissues, respectively. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of co-DEGs were performed. The protein-protein interaction (PPI) network was constructed to identify hub genes, and the top hub gene was selected for gene set enrichment analysis (GSEA). Finally, real-time PCR of patients' urine was performed to validate the bioinformatic results. Results: In total, 155 significantly co-upregulated DEGs and 64 co-downregulated DEGs were obtained from the datasets. The Gene Ontology analysis showed that DEGs were significantly enriched in chemical stimulus in sensory perception, detection of chemical stimulus in sensory perception of smell, and olfactory receptor activity. The KEGG analysis showed that the olfactory transduction pathway was significantly enriched. According to protein-protein interaction, 10 genes were identified as the hub genes, and CCL7 was the top hub gene. The olfactory transduction, maturity-onset diabetes of the young, linoleic acid metabolism, and fat digestion and absorption were significantly enriched in the high-CCL7 subgroup by GSEA. In total, 9 patients who had primarily CaOx mixed with some CaP stones and 9 healthy subjects were enrolled. The RT-PCR results showed that CCL7 level in the stone group was significantly higher than that in the control group (p < 0.05). For the olfactory transduction pathway, the expression of OR10A5, OR9A2, and OR1L3 was significantly upregulated in the stone group compared with the control group (p < 0.05). Conclusion: CCL7 may play a key role in the development of both CaOx and CaP, and this process may depend on olfactory transduction pathway activation.
Collapse
Affiliation(s)
- Qiankun Zhang
- Division of Nephrology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui Hospital of Zhejiang University, Lishui, China
| | - Hhuiling Wei
- Division of Nephrology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui Hospital of Zhejiang University, Lishui, China
| | - Gang Huang
- Division of Traditional Chinese Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui Hospital of Zhejiang University, Lishui, China
| | - Lie Jin
- Division of Nephrology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui Hospital of Zhejiang University, Lishui, China
| |
Collapse
|
10
|
Mougeot JLC, Beckman MF, Morton DS, Noll J, Steuerwald NM, Brennan MT, Bahrani Mougeot F. Human oral mucosa and oral microbiome interactions following supragingival plaque reconstitution in healthy volunteers: a diet-controlled balanced design proof-of-concept model to investigate oral pathologies. J Oral Microbiol 2023; 15:2246279. [PMID: 37621744 PMCID: PMC10446812 DOI: 10.1080/20002297.2023.2246279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Changes in the oral microbiome may contribute to oral pathologies, especially in patients undergoing cancer therapy. Interactions between oral microbiome and oral mucosa may exacerbate inflammation. We determined whether probiotic-controlled plaque formation could impact proximal oral mucosa gene expression profiles in healthy volunteers. A 3-weeks balanced sample collection design from healthy volunteers (HVs) was implemented. At Week-1 plaques samples and labial mucosa brush biopsies were obtained from HVs in the morning (N = 4) and/or in the afternoon (N = 4), and groups were flipped at Week-3. A fruit yogurt and tea diet were given 2-4hrs before sample collection. mRNA gene expression analysis was completed using RNA-Seq and DESeq2. Bacterial taxa relative abundance was determined by 16S HOMINGS. Bacterial diversity changes and metabolic pathway enrichment were determined using PRIMERv7 and LEfSe programs. Alpha- and beta-diversities did not differ morning (AM) vs. afternoon (PM). The most affected KEGG pathway was Toll-like receptor signaling in oral mucosa. Eighteen human genes and nine bacterial genes were differentially expressed in plaque samples. Increased activity for 'caries-free' health-associated calcifying Corynebacterium matruchotii and reduced activity for Aggregatibacter aphrophilus, an opportunistic pathogen, were observed. Microbial diversity was not altered after 8 hours plaque formation in healthy individuals as opposed to gene expression.
Collapse
Affiliation(s)
- Jean-Luc C. Mougeot
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Micaela F. Beckman
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Darla S. Morton
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Jenene Noll
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Nury M. Steuerwald
- Molecular Biology and Genomics Core Facility, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Michael T. Brennan
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Farah Bahrani Mougeot
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
11
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Do Synthetic Fragrances in Personal Care and Household Products Impact Indoor Air Quality and Pose Health Risks? J Xenobiot 2023; 13:121-131. [PMID: 36976159 PMCID: PMC10051690 DOI: 10.3390/jox13010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Fragrance compounds (synthetic fragrances or natural essential oils) comprise formulations of specific combinations of individual materials or mixtures. Natural or synthetic scents are core constituents of personal care and household products (PCHPs) that impart attractiveness to the olfactory perception and disguise the unpleasant odor of the formula components of PCHPs. Fragrance chemicals have beneficial properties that allow their use in aromatherapy. However, because fragrances and formula constituents of PCHPs are volatile organic compounds (VOCs), vulnerable populations are exposed daily to variable indoor concentrations of these chemicals. Fragrance molecules may trigger various acute and chronic pathological conditions because of repetitive human exposure to indoor environments at home and workplaces. The negative impact of fragrance chemicals on human health includes cutaneous, respiratory, and systemic effects (e.g., headaches, asthma attacks, breathing difficulties, cardiovascular and neurological problems) and distress in workplaces. Pathologies related to synthetic perfumes are associated with allergic reactions (e.g., cutaneous and pulmonary hypersensitivity) and potentially with the perturbation of the endocrine-immune-neural axis. The present review aims to critically call attention to odorant VOCs, particularly synthetic fragrances and associated formula components of PCHPs, potentially impacting indoor air quality and negatively affecting human health.
Collapse
|