1
|
Nian Z, Deng M, Ye L, Tong X, Xu Y, Xu Y, Chen R, Wang Y, Mao F, Xu C, Lu R, Mao Y, Xu H, Shen X, Xue X, Guo G. RNA epigenetic modifications in digestive tract cancers: Friends or foes. Pharmacol Res 2024; 206:107280. [PMID: 38914382 DOI: 10.1016/j.phrs.2024.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Digestive tract cancers are among the most common malignancies worldwide and have high incidence and mortality rates. Thus, the discovery of more effective diagnostic and therapeutic targets is urgently required. The development of technologies to accurately detect RNA modification has led to the identification of numerous RNA chemical modifications in humans (epitranscriptomics) that are involved in the occurrence and development of digestive tract cancers. RNA modifications can cooperatively regulate gene expression to facilitate normal physiological functions of the digestive system. However, the dysfunction of relevant RNA-modifying enzymes ("writers," "erasers," and "readers") can lead to the development of digestive tract cancers. Consequently, targeting dysregulated enzyme activity could represent a potent therapeutic strategy for the treatment of digestive tract cancers. In this review, we summarize the most widely studied roles and mechanisms of RNA modifications (m6A, m1A, m5C, m7G, A-to-I editing, pseudouridine [Ψ]) in relation to digestive tract cancers, highlight the crosstalk between RNA modifications, and discuss their roles in the interactions between the digestive system and microbiota during carcinogenesis. The clinical significance of novel therapeutic methods based on RNA-modifying enzymes is also discussed. This review will help guide future research into digestive tract cancers that are resistant to current therapeutics.
Collapse
Affiliation(s)
- Zekai Nian
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Ming Deng
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yixi Xu
- School of public administration, Hangzhou Normal University, Hangzhou, China
| | - Yiliu Xu
- Research Center of Fluid Machinery Engineering & Technology, Jiangsu University, Zhenjiang, China
| | - Ruoyao Chen
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yulin Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Feiyang Mao
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Chenyv Xu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruonan Lu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yicheng Mao
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Hanlu Xu
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Liu Y, Zhang S, Gao X, Ru Y, Gu X, Hu X. Research progress of N1-methyladenosine RNA modification in cancer. Cell Commun Signal 2024; 22:79. [PMID: 38291517 PMCID: PMC10826226 DOI: 10.1186/s12964-023-01401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 02/01/2024] Open
Abstract
N1-methyladenosine (m1A) is a post-transcriptionally modified RNA molecule that plays a pivotal role in the regulation of various biological functions and activities. Especially in cancer cell invasion, proliferation and cell cycle regulation. Over recent years, there has been a burgeoning interest in investigating the m1A modification of RNA. Most studies have focused on the regulation of m1A in cancer enrichment areas and different regions. This review provides a comprehensive overview of the methodologies employed for the detection of m1A modification. Furthermore, this review delves into the key players in m1A modification, known as the "writers," "erasers," and "readers." m1A modification is modified by the m1A methyltransferases, or writers, such as TRMT6, TRMT61A, TRMT61B, TRMT10C, NML, and, removed by the demethylases, or erasers, including FTO and ALKBH1, ALKBH3. It is recognized by m1A-binding proteins YTHDF1, TYHDF2, TYHDF3, and TYHDC1, also known as "readers". Additionally, we explore the intricate relationship between m1A modification and its regulators and their implications for the development and progression of specific types of cancer, we discuss how m1A modification can potentially facilitate the discovery of novel approaches for cancer diagnosis, treatment, and prognosis. Our summary of m1A methylated adenosine modification detection methods and regulatory mechanisms in various cancers provides useful insights for cancer diagnosis, treatment, and prognosis. Video Abstract.
Collapse
Affiliation(s)
- Yafeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, No. 24 Jinghua Road, Jianxi District, 471000, Henan, China
| | - Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, No. 24 Jinghua Road, Jianxi District, 471000, Henan, China
| | - Xiaohui Gao
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, No. 24 Jinghua Road, Jianxi District, 471000, Henan, China
| | - Yi Ru
- Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, No. 24 Jinghua Road, Jianxi District, 471000, Henan, China.
| | - Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, No. 24 Jinghua Road, Jianxi District, 471000, Henan, China.
| |
Collapse
|
3
|
Wang H, Shnaider FM, Martin E, Chiu NHL. Epitranscriptomic Mass Spectrometry. Methods Mol Biol 2024; 2822:335-349. [PMID: 38907927 DOI: 10.1007/978-1-0716-3918-4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Every chemical group that is added to any one of the canonical ribonucleotides in a transcript would create a specific RNA modification. Currently, 170+ RNA modifications have been identified. A specific epitranscriptome refers to all the RNA modifications in a given biological system and is considered to play an important role in the regulations of cellular activities. Mass spectrometry-based methods have proven to be the most accurate way to identify RNA modifications and determine the amount of each detectable modification. Relating to the recent development of mapping specific RNA modifications within a transcriptome, the profiling of all RNA modifications can serve as a prescreening tool for mapping and provides support for analyzing the data obtained from mapping. In this chapter, the details for setting up a commonly used mass spectrometry-based method to profile all the RNA modifications in specific epitranscriptomes are described, and the possible options if available are discussed.
Collapse
Affiliation(s)
- Hongzhou Wang
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Frank Morales Shnaider
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Elizabeth Martin
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Norman H L Chiu
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, USA.
- Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, Greensboro, NC, USA.
| |
Collapse
|