1
|
Su Y, Zeng X, Zhang L, Bian Y, Wang Y, Ma B. ABTrans: A Transformer-based Model for Predicting Interaction between Anti-Aβ Antibodies and Peptides. Interdiscip Sci 2024:10.1007/s12539-024-00664-5. [PMID: 39466358 DOI: 10.1007/s12539-024-00664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Antibodies against Aβ peptide have been recently approved to treat Alzheimer's disease, underscoring the importance of understanding their interactions for developing more potent treatments. Here we investigated the interaction between anti-Aβ antibodies and various peptides using a deep learning model. Our model, ABTrans, was trained on dodecapeptide sequences from phage display experiments and known anti-Aβ antibody sequences sourced from public sources. It classified the binding ability between anti-Aβ antibodies and dodecapeptides into four levels: not binding, weak binding, medium binding, and strong binding, achieving an accuracy of 0.83. Using ABTrans, we examined the cross-reaction of anti-Aβ antibodies with other human amyloidogenic proteins, revealing that Aducanumab and Donanemab exhibited the least cross-reactivity. Additionally, we systematically screened interactions between eleven selected anti-Aβ antibodies and all human proteins to identify potential off-target candidates.
Collapse
Affiliation(s)
- Yuhong Su
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xincheng Zeng
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingfeng Zhang
- School of Electrical Engineering and Computer Science, University of Ottawa, 75 Laurier Ave, Ottawa, K1N 6N5, Canada
| | - Yanlin Bian
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangjing Wang
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Digiwiser Biological, Inc, Shanghai, 200240, China.
| |
Collapse
|
2
|
Abu-Shmais AA, Vukovich MJ, Wasdin PT, Suresh YP, Marinov TM, Rush SA, Gillespie RA, Sankhala RS, Choe M, Joyce MG, Kanekiyo M, McLellan JS, Georgiev IS. Antibody sequence determinants of viral antigen specificity. mBio 2024; 15:e0156024. [PMID: 39264172 PMCID: PMC11481873 DOI: 10.1128/mbio.01560-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Throughout life, humans experience repeated exposure to viral antigens through infection and vaccination, resulting in the generation of diverse, antigen-specific antibody repertoires. A paramount feature of antibodies that enables their critical contributions in counteracting recurrent and novel pathogens, and consequently fostering their utility as valuable targets for therapeutic and vaccine development, is the exquisite specificity displayed against their target antigens. Yet, there is still limited understanding of the determinants of antibody-antigen specificity, particularly as a function of antibody sequence. In recent years, experimental characterization of antibody repertoires has led to novel insights into fundamental properties of antibody sequences but has been largely decoupled from at-scale antigen specificity analysis. Here, using the LIBRA-seq technology, we generated a large data set mapping antibody sequence to antigen specificity for thousands of B cells, by screening the repertoires of a set of healthy individuals against 20 viral antigens representing diverse pathogens of biomedical significance. Analysis uncovered virus-specific patterns in variable gene usage, gene pairing, somatic hypermutation, as well as the presence of convergent antiviral signatures across multiple individuals, including the presence of public antibody clonotypes. Notably, our results showed that, for B-cell receptors originating from different individuals but leveraging an identical combination of heavy and light chain variable genes, there is a specific CDRH3 identity threshold above which B cells appear to exclusively share the same antigen specificity. This finding provides a quantifiable measure of the relationship between antibody sequence and antigen specificity and further defines experimentally grounded criteria for defining public antibody clonality.IMPORTANCEThe B-cell compartment of the humoral immune system plays a critical role in the generation of antibodies upon new and repeated pathogen exposure. This study provides an unprecedented level of detail on the molecular characteristics of antibody repertoires that are specific to each of the different target pathogens studied here and provides empirical evidence in support of a 70% CDRH3 amino acid identity threshold in pairs of B cells encoded by identical IGHV:IGL(K)V genes, as a means of defining public clonality and therefore predicting B-cell antigen specificity in different individuals. This is of exceptional importance when leveraging public clonality as a method to annotate B-cell receptor data otherwise lacking antigen specificity information. Understanding the fundamental rules of antibody-antigen interactions can lead to transformative new approaches for the development of antibody therapeutics and vaccines against current and emerging viruses.
Collapse
Affiliation(s)
- Alexandra A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew J. Vukovich
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Perry T. Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yukthi P. Suresh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Toma M. Marinov
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Scott A. Rush
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Rebecca A. Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rajeshwer S. Sankhala
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Misook Choe
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - M. Gordon Joyce
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Nasir S, Anwer F, Ishaq Z, Saeed MT, Ali A. VacSol-ML(ESKAPE) : Machine learning empowering vaccine antigen prediction for ESKAPE pathogens. Vaccine 2024; 42:126204. [PMID: 39126830 DOI: 10.1016/j.vaccine.2024.126204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The ESKAPE family, comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp., poses a significant global threat due to their heightened virulence and extensive antibiotic resistance. These pathogens contribute largely to the prevalence of nosocomial or hospital-acquired infections, resulting in high morbidity and mortality rates. To tackle this healthcare problem urgent measures are needed, including development of innovative vaccines and therapeutic strategies. Designing vaccines involves a complex and resource-intensive process of identifying protective antigens and potential vaccine candidates (PVCs) from pathogens. Reverse vaccinology (RV), an approach based on genomics, made this process more efficient by leveraging bioinformatics tools to identify potential vaccine candidates. In recent years, artificial intelligence and machine learning (ML) techniques has shown promise in enhancing the accuracy and efficiency of reverse vaccinology. This study introduces a supervised ML classification framework, to predict potential vaccine candidates specifically against ESKAPE pathogens. The model's training utilized biological and physicochemical properties from a dataset containing protective antigens and non-protective proteins of ESKAPE pathogens. Conventional autoencoders based strategy was employed for feature encoding and selection. During the training process, seven machine learning algorithms were trained and subjected to Stratified 5-fold Cross Validation. Random Forest and Logistic Regression exhibited best performance in various metrics including accuracy, precision, recall, WF1 score, and Area under the curve. An ensemble model was developed, to take collective strengths of both the algorithms. To assess efficacy of our final ensemble model, a high-quality benchmark dataset was employed. VacSol-ML(ESKAPE) demonstrated outstanding discrimination between protective vaccine candidates (PVCs) and non-protective antigens. VacSol-ML(ESKAPE), proves to be an invaluable tool in expediting vaccine development for these pathogens. Accessible to the public through both a web server and standalone version, it encourages collaborative research. The web-based and standalone tools are available at http://vacsolml.mgbio.tech/.
Collapse
Affiliation(s)
- Samavi Nasir
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Farha Anwer
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Zaara Ishaq
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Tariq Saeed
- School of Interdisciplinary Engineering & Science (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan; MGBIO (SMC Private) Ltd, National Science & Technology Park (NSTP), NUST Campus Sector H-12, Islamabad, Pakistan.
| |
Collapse
|
4
|
Zhang G, Kuang X, Zhang Y, Liu Y, Su Z, Zhang T, Wu Y. Machine-learning-based structural analysis of interactions between antibodies and antigens. Biosystems 2024; 243:105264. [PMID: 38964652 DOI: 10.1016/j.biosystems.2024.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Computational analysis of paratope-epitope interactions between antibodies and their corresponding antigens can facilitate our understanding of the molecular mechanism underlying humoral immunity and boost the design of new therapeutics for many diseases. The recent breakthrough in artificial intelligence has made it possible to predict protein-protein interactions and model their structures. Unfortunately, detecting antigen-binding sites associated with a specific antibody is still a challenging problem. To tackle this challenge, we implemented a deep learning model to characterize interaction patterns between antibodies and their corresponding antigens. With high accuracy, our model can distinguish between antibody-antigen complexes and other types of protein-protein complexes. More intriguingly, we can identify antigens from other common protein binding regions with an accuracy of higher than 70% even if we only have the epitope information. This indicates that antigens have distinct features on their surface that antibodies can recognize. Additionally, our model was unable to predict the partnerships between antibodies and their particular antigens. This result suggests that one antigen may be targeted by more than one antibody and that antibodies may bind to previously unidentified proteins. Taken together, our results support the precision of antibody-antigen interactions while also suggesting positive future progress in the prediction of specific pairing.
Collapse
Affiliation(s)
- Grace Zhang
- Staples High School, 70 North Avenue, Westport, CT, 06880, USA
| | - Xiaohan Kuang
- Data Science Institute, Vanderbilt University, 1001 19th Ave S, Nashville, TN, 37212, USA
| | - Yuhao Zhang
- Data Science Institute, Vanderbilt University, 1001 19th Ave S, Nashville, TN, 37212, USA
| | - Yunchao Liu
- Department of Computer Science, Vanderbilt University, 1400 18th Ave S, Nashville, TN, 37212, USA
| | - Zhaoqian Su
- Data Science Institute, Vanderbilt University, 1001 19th Ave S, Nashville, TN, 37212, USA
| | - Tom Zhang
- California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
5
|
Son A, Park J, Kim W, Lee W, Yoon Y, Ji J, Kim H. Integrating Computational Design and Experimental Approaches for Next-Generation Biologics. Biomolecules 2024; 14:1073. [PMID: 39334841 PMCID: PMC11430650 DOI: 10.3390/biom14091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Therapeutic protein engineering has revolutionized medicine by enabling the development of highly specific and potent treatments for a wide range of diseases. This review examines recent advances in computational and experimental approaches for engineering improved protein therapeutics. Key areas of focus include antibody engineering, enzyme replacement therapies, and cytokine-based drugs. Computational methods like structure-based design, machine learning integration, and protein language models have dramatically enhanced our ability to predict protein properties and guide engineering efforts. Experimental techniques such as directed evolution and rational design approaches continue to evolve, with high-throughput methods accelerating the discovery process. Applications of these methods have led to breakthroughs in affinity maturation, bispecific antibodies, enzyme stability enhancement, and the development of conditionally active cytokines. Emerging approaches like intracellular protein delivery, stimulus-responsive proteins, and de novo designed therapeutic proteins offer exciting new possibilities. However, challenges remain in predicting in vivo behavior, scalable manufacturing, immunogenicity mitigation, and targeted delivery. Addressing these challenges will require continued integration of computational and experimental methods, as well as a deeper understanding of protein behavior in complex physiological environments. As the field advances, we can anticipate increasingly sophisticated and effective protein therapeutics for treating human diseases.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Jaeho Ji
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS (Sciences for Panomics), 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
6
|
Cheng J, Liang T, Xie XQ, Feng Z, Meng L. A new era of antibody discovery: an in-depth review of AI-driven approaches. Drug Discov Today 2024; 29:103984. [PMID: 38642702 DOI: 10.1016/j.drudis.2024.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Given their high affinity and specificity for a range of macromolecules, antibodies are widely used in the treatment of autoimmune diseases, cancers, inflammatory diseases, and Alzheimer's disease (AD). Traditional experimental methods are time-consuming, expensive, and labor-intensive. Recent advances in artificial intelligence (AI) technologies provide complementary methods that can reduce the time and costs required for antibody design by minimizing failures and increasing the success rate of experimental tests. In this review, we scrutinize the plethora of AI-driven methodologies that have been deployed over the past 4 years for modeling antibody structures, predicting antibody-antigen interactions, optimizing antibody affinity, and generating novel antibody candidates. We also briefly address the challenges faced in integrating AI-based models with traditional antibody discovery pipelines and highlight the potential future directions in this burgeoning field.
Collapse
Affiliation(s)
- Jin Cheng
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Tianjian Liang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Li Meng
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| |
Collapse
|
7
|
Li D, Pucci F, Rooman M. Prediction of Paratope-Epitope Pairs Using Convolutional Neural Networks. Int J Mol Sci 2024; 25:5434. [PMID: 38791470 PMCID: PMC11121317 DOI: 10.3390/ijms25105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Antibodies play a central role in the adaptive immune response of vertebrates through the specific recognition of exogenous or endogenous antigens. The rational design of antibodies has a wide range of biotechnological and medical applications, such as in disease diagnosis and treatment. However, there are currently no reliable methods for predicting the antibodies that recognize a specific antigen region (or epitope) and, conversely, epitopes that recognize the binding region of a given antibody (or paratope). To fill this gap, we developed ImaPEp, a machine learning-based tool for predicting the binding probability of paratope-epitope pairs, where the epitope and paratope patches were simplified into interacting two-dimensional patches, which were colored according to the values of selected features, and pixelated. The specific recognition of an epitope image by a paratope image was achieved by using a convolutional neural network-based model, which was trained on a set of two-dimensional paratope-epitope images derived from experimental structures of antibody-antigen complexes. Our method achieves good performances in terms of cross-validation with a balanced accuracy of 0.8. Finally, we showcase examples of application of ImaPep, including extensive screening of large libraries to identify paratope candidates that bind to a selected epitope, and rescoring and refining antibody-antigen docking poses.
Collapse
Affiliation(s)
- Dong Li
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (D.L.); (F.P.)
- Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (D.L.); (F.P.)
- Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (D.L.); (F.P.)
- Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| |
Collapse
|
8
|
Bravi B. Development and use of machine learning algorithms in vaccine target selection. NPJ Vaccines 2024; 9:15. [PMID: 38242890 PMCID: PMC10798987 DOI: 10.1038/s41541-023-00795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024] Open
Abstract
Computer-aided discovery of vaccine targets has become a cornerstone of rational vaccine design. In this article, I discuss how Machine Learning (ML) can inform and guide key computational steps in rational vaccine design concerned with the identification of B and T cell epitopes and correlates of protection. I provide examples of ML models, as well as types of data and predictions for which they are built. I argue that interpretable ML has the potential to improve the identification of immunogens also as a tool for scientific discovery, by helping elucidate the molecular processes underlying vaccine-induced immune responses. I outline the limitations and challenges in terms of data availability and method development that need to be addressed to bridge the gap between advances in ML predictions and their translational application to vaccine design.
Collapse
Affiliation(s)
- Barbara Bravi
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
9
|
Zhang G, Su Z, Zhang T, Wu Y. Machine-learning-based Structural Analysis of Interactions between Antibodies and Antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570397. [PMID: 38106177 PMCID: PMC10723427 DOI: 10.1101/2023.12.06.570397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Computational analysis of paratope-epitope interactions between antibodies and their corresponding antigens can facilitate our understanding of the molecular mechanism underlying humoral immunity and boost the design of new therapeutics for many diseases. The recent breakthrough in artificial intelligence has made it possible to predict protein-protein interactions and model their structures. Unfortunately, detecting antigen-binding sites associated with a specific antibody is still a challenging problem. To tackle this challenge, we implemented a deep learning model to characterize interaction patterns between antibodies and their corresponding antigens. With high accuracy, our model can distinguish between antibody-antigen complexes and other types of protein-protein complexes. More intriguingly, we can identify antigens from other common protein binding regions with an accuracy of higher than 70% even if we only have the epitope information. This indicates that antigens have distinct features on their surface that antibodies can recognize. Additionally, our model was unable to predict the partnerships between antibodies and their particular antigens. This result suggests that one antigen may be targeted by more than one antibody and that antibodies may bind to previously unidentified proteins. Taken together, our results support the precision of antibody-antigen interactions while also suggesting positive future progress in the prediction of specific pairing.
Collapse
Affiliation(s)
- Grace Zhang
- Staples High School, 70 North Avenue, Westport, CT 06880
| | - Zhaoqian Su
- Data Science Institute, Vanderbilt University, 1001 19th Ave S, Nashville, TN, 37212
| | - Tom Zhang
- California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|