1
|
Mitsuno K, Suematsu M, Naito Y, Mayumi A, Yoshida H, Osone S, Imamura T, Nakazawa Y, Yagyu S, Iehara T. Selective JAK2 pathway inhibition enhances anti-leukemic functionality in CD19 CAR-T cells. Cancer Immunol Immunother 2025; 74:79. [PMID: 39891728 PMCID: PMC11787079 DOI: 10.1007/s00262-024-03927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/18/2024] [Indexed: 02/03/2025]
Abstract
The integration of molecular targeted therapeutics with chimeric antigen receptor T (CAR-T) cell therapy represents a novel strategy to amplify the anti-tumor efficacy of immunotherapy. While CD19-targeted CAR-T cells and Janus kinase (JAK) inhibitors have independently shown efficacy against certain B-cell leukemias, such as Philadelphia chromosome-like acute lymphoblastic leukemia, the concurrent use of JAK1/2 inhibitors, such as ruxolitinib, has been implicated in reducing CAR-T cell potency by inhibiting the JAK1-dependent T cell activation pathway. This study explores the combinatorial use of a selective type II JAK2 inhibitor, CHZ868, with CD19 CAR-T cells, revealing a synergistic enhancement of anti-leukemic activity across B-cell tumor models irrespective of JAK2 mutational status. CHZ868-mediated JAK2 inhibition did not induce the exhaustion of CAR-T cells, maintaining efficacy over repeated tumor challenges and significantly extending survival in mouse models engrafted with JAK2 inhibitor-resistant leukemia cells (median survival, CD19 CAR-T + CHZ868 vs. CD19 CAR-T + DMSO: 32 days vs. 26 days, p = 0.0303). Transcriptomic analyses suggest that CHZ868 impedes CAR-T cell differentiation while preserving their proliferative capacity, a crucial factor in maintaining CAR-T cell functionality. Therefore, the selective inhibition of the JAK2 pathway may potentiate CAR-T cell therapy and offer a viable treatment strategy for patients with resistant B-cell leukemias.
Collapse
Affiliation(s)
- Kohei Mitsuno
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaya Suematsu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Yuki Naito
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Azusa Mayumi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideki Yoshida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinya Osone
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Innovative Research and Liaison Organization, Shinshu University, Matsumoto, Japan.
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Zhang X, Zhang C, Lu S, Dong J, Tang N, Wang Y, Han W, Pan X, Zhang X, Liu D, Shyh-Chang N, Wang Y, Feng G, Wang H. Miltefosine reinvigorates exhausted T cells by targeting their bioenergetic state. Cell Rep Med 2024; 5:101869. [PMID: 39657666 PMCID: PMC11722131 DOI: 10.1016/j.xcrm.2024.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/05/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
T cell exhaustion presents a major challenge for the efficacy of both immune checkpoint inhibitors (ICBs) and chimeric antigen receptor T (CAR-T) cell immunotherapies. To address this issue, we generate hypofunctional CAR-T cells that imitate the exhaustion state. By screening a Food and Drug Administration (FDA)-approved small molecule library using this model, we identify miltefosine as a potent molecule that restores the impaired function of CAR-T cells in a PD-1/PD-L1-independent manner. Impressively, in the terminally exhausted state where PD-1 antibody treatment is ineffective, miltefosine still enhances CAR-T cell activity. Single-cell sequencing analysis reveals that miltefosine treatment significantly increases the population of effector cells. Mechanistically, miltefosine improves impaired glycolysis and oxidative phosphorylation in hypofunctional CAR-T cells. In both allogeneic and syngeneic tumor models, miltefosine effectively enhances the solid tumor clearance ability of CAR-T cells and T cells, demonstrating its potential as an effective immunotherapeutic drug.
Collapse
Affiliation(s)
- Xingying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenze Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shan Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxi Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yao Wang
- Chinese People's Liberation Army General Hospital, Beijing 100176, China
| | - Weidong Han
- Chinese People's Liberation Army General Hospital, Beijing 100176, China
| | - Xi Pan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Duan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Ying K, Hua N, Luo Y, Liu X, Liu M, Yang W. [Construction of HEK293T cell line stably expressing TRPM2 channel based on PiggyBac transposition system and its application in drug screening for cerebral ischemia and other diseases]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:604-614. [PMID: 39343750 PMCID: PMC11528149 DOI: 10.3724/zdxbyxb-2024-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVES To establish a cell line stably expressing the transient receptor potential melastatin 2 (TRPM2) channel for screening TRPM2 inhibitors based on PiggyBac transposition system. METHODS A plasmid PiggyBac-human TRPM2 (pPB-hTRPM2) eukaryotic expression vector was constructed using PiggyBac transposition system. The plasmid and a helper plasmid were co-transfected into HEK293T cells to express TRPM2, which was identified by fluorescence and patch-clamp assays. The high throughput screening performance was assessed with the Z ´ factor. Calcium imaging and patch clamp techniques were employed to assess the initial activity of eleven compound molecules, confirming the inhibitory effects of the primary molecules on TRPM2. The protective effect of the screened compounds on damaged cells was validated using the oxygen-glucose deprivation/reperfusion (OGD/R) injury model and CCK-8 kit. The level of cellular reactive oxygen species (ROS) was detected by flow cytometry. The neuroprotective effects of the compounds were evaluated using a transient middle cerebral artery occlusion (tMCAO) mouse model. RESULTS The HEK293T cells transfected with pPB-hTRPM2-EGFP showed high TRPM2 expression. Puromycin-resistant cells, selected through screening, exhibited robust fluorescence. Whole-cell patch results revealed that induced cells displayed classical TRPM2 current characteristics comparable to the control group, showing no significant differences (P>0.05). With a Z ´ factor of 0.5416 in calcium imaging, the model demonstrated suitability for high-throughput screening of TRPM2 inhibitors. Calcium imaging and electrophysiological experiments indicated that compound 6 significantly inhibited the TRPM2 channel. Further experiments showed that 1.0 μmol/L of compound 6 enhanced cell viability (P<0.05) and reduced the level of ROS (P<0.05) of SH-SY5Y under OGD/R injury. 0.3 and 1.0 mg/kg of compound 6 reduced the cerebral infarction volume in tMCAO mice (both P<0.05). CONCLUSIONS A stable TRPM2 gene expressing cell line has been successfully established using PiggyBac gene editing in this study. TRPM2 channel inhibitors were screened through calcium imaging and patch clamp techniques, and an inhibitor compound 6 was identified. This compound can alleviate cell damage after OGD/R by reducing cellular ROS levels and has a protective effect against cerebral ischemia-reperfusion injury in mice.
Collapse
Affiliation(s)
- Kaiyue Ying
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ning Hua
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanping Luo
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingyu Liu
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Liu
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Yang
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Diaby M, Wu H, Gao B, Shi S, Wang B, Wang S, Wang Y, Wu Z, Chen C, Wang X, Song C. A Naturally Active Spy Transposon Discovered from the Insect Genome of Colletes gigas as a Promising Novel Gene Transfer Tool. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400969. [PMID: 38774947 PMCID: PMC11304231 DOI: 10.1002/advs.202400969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Indexed: 08/09/2024]
Abstract
Novel active DNA transposons, such as Spy transposons from the PHIS superfamily, are identified through bioinformatics in this study. The native transposases cgSpy and cvSpy displayed transposition activities of approximately 85% and 35% compared to the hyperactive piggyBac transposase (hyPB). The cgSpy transposon showed unique characteristics, including a lack of overproduction inhibition and reduced efficiency for insertion sizes between 3.1 to 8.5 kb. Integration preferences of cgSpy are found in genes and regulatory regions, making it suitable for genetic manipulation. Evaluation in T-cell engineering demonstrated that cgSpy-mediated chimeric antigen receptor (CAR) modification is comparable to the PB system, indicating its potential utility in cell therapy. This study unveils the promising application of the active native transposase, Spy, from Colletes gigas, as a valuable tool for genetic engineering, particularly in T-cell manipulation.
Collapse
Affiliation(s)
- Mohamed Diaby
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Han Wu
- School of Basic Medical SciencesShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdong518055China
| | - Bo Gao
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Shasha Shi
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Bingqing Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Saisai Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Yali Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Zherui Wu
- School of Basic Medical SciencesShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdong518055China
| | - Cai Chen
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Xiaoyan Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Chengyi Song
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| |
Collapse
|
5
|
Hu J, Liu X. Generation of CAR-T SCM: CAR-T with super clutch. Int Immunopharmacol 2024; 136:112379. [PMID: 38833844 DOI: 10.1016/j.intimp.2024.112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
CAR-T therapy has demonstrated effectiveness in hematological malignancies and is now striding into solid tumor areas. One of the main roadblocks of CAR-T therapy is T cell exhaustion normally aroused by T cell terminal differentiation due to persistent contact with antigen in vivo or in vitro manufacturing process. TSCM positions as the first, and pivotal step of naïve T cell differentiation to downstream memory and effector stages. Researchers highly seek to restrain CAR-T cells at the TSCM stage during manufacture as TSCM percentage in CAR-T products is strongly associated with better treatment response. We reviewed the recent strategies regarding CAR-TSCM generation from aspects of starting source, manufacturing process, CAR assembly, transcription factor and metabolism regulation, etc.
Collapse
Affiliation(s)
- Jinhui Hu
- Department of Laboratory Medicine, Gongli Hospital, No. 219, Miaopu Road, Pudong, Shanghai, 200135, China.
| | - Xiang Liu
- TriArm Therapeutics Inc, Building 5, Niudun Road, Pudong New District, Shanghai, 201203, China.
| |
Collapse
|
6
|
Tang WT, Sugimura R. Breakthroughs in synthetic controlling strategies for precision in CAR-T therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:61-100. [PMID: 39461755 DOI: 10.1016/bs.pmbts.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chimeric antigen receptors (CAR) are synthetic receptors engineered to target a user-defined antigen. They comprise an extracellular single-chain variable fragment for target recognition and intracellular signalling domains commonly derived from immune cells. CAR-T cells have proven to be successful in therapy of some cancers. CAR-T cells are activated upon antigen-priming and subsequent intracellular signalling. However, tonic signalling in CAR-T cells remains a challenge in developing CAR-T therapeutics of high efficacy as it causes early T-cell exhaustion, limiting therapeutic persistence. Moreover, a poor choice of target antigen leads to off-target cytotoxicity, often hampering the host's survival. In addition, conventional methods of delivering CAR gene circuits utilise viral vectors, such as lentiviruses and retroviruses, which insert the CAR gene circuits into transcriptionally active sites in the genome. This increases the risks of malignant transformation due to improper genome integration. Optimisation in CAR-T engineering, from the architecture of CAR gene circuits to the structure of CAR and the behaviour of CAR-T cells, is paramount to ensure high efficacy, persistence, and precision in CAR-T therapy. This review provides insights into engineering CAR-T cells for precision in cancer therapy by highlighting the key strategies recently developed to optimise the function and efficiency of CARs. The delivery method of CAR gene circuits, circuit and structural modification of CAR, T-cell phenotype manipulation and T-cell arming will be discussed to accentuate their interplay in regulating CAR-T therapy's safety, precision, and efficacy.
Collapse
Affiliation(s)
- Wang Tik Tang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China.
| |
Collapse
|
7
|
Scheller L, Tebuka E, Rambau PF, Einsele H, Hudecek M, Prommersberger SR, Danhof S. BCMA CAR-T cells in multiple myeloma-ready for take-off? Leuk Lymphoma 2024; 65:143-157. [PMID: 37997705 DOI: 10.1080/10428194.2023.2276676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Although the approval of new drugs has improved the clinical outcome of multiple myeloma (MM), it was widely regarded as incurable over the past decades. However, recent advancements in groundbreaking immunotherapies, such as chimeric antigen receptor T cells (CAR-T), have yielded remarkable results in heavily pretreated relapse/refractory patients, instilling hope for a potential cure. CAR-T are genetically modified cells armed with a novel receptor to specifically recognize and kill tumor cells. Among the potential targets for MM, the B-cell maturation antigen (BCMA) stands out since it is highly and almost exclusively expressed on plasma cells. Here, we review the currently approved BCMA-directed CAR-T products and ongoing clinical trials in MM. Furthermore, we explore innovative approaches to enhance BCMA-directed CAR-T and overcome potential reasons for treatment failure. Additionally, we explore the side effects associated with these novel therapies and shed light on accessibility of CAR-T therapy around the world.
Collapse
Affiliation(s)
- Lukas Scheller
- Medizinische Klinik und Poliklinik II und Lehrstuhl für zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- Interdisziplinäres Zentrum für Klinische Forschung (IZKF), Universitätsklinikum Würzburg, Würzburg, Germany
| | - Erius Tebuka
- Department of Pathology, Catholic University of Health and Allied Sciences (CUHAS), Mwanza, Tanzania
- Else-Kröner-Center Würzburg-Mwanza, Catholic University of Health and Allied Sciences (CUHAS), Mwanza, Tanzania
| | - Peter Fabian Rambau
- Department of Pathology, Catholic University of Health and Allied Sciences (CUHAS), Mwanza, Tanzania
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II und Lehrstuhl für zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II und Lehrstuhl für zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Sabrina Rebecca Prommersberger
- Medizinische Klinik und Poliklinik II und Lehrstuhl für zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Sophia Danhof
- Medizinische Klinik und Poliklinik II und Lehrstuhl für zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Chinsuwan T, Hirabayashi K, Mishima S, Hasegawa A, Tanaka M, Mochizuki H, Shimoi A, Murakami T, Yagyu S, Shimizu K, Nakazawa Y. Ligand-based, piggyBac-engineered CAR-T cells targeting EGFR are safe and effective against non-small cell lung cancers. Mol Ther Oncolytics 2023; 31:100728. [PMID: 37822488 PMCID: PMC10562194 DOI: 10.1016/j.omto.2023.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in various cancers, including non-small cell lung cancer (NSCLC), and in some somatic cells at a limited level, rendering it an attractive antitumor target. In this study, we engineered chimeric antigen receptor (CAR)-T cells using the piggyBac transposon system, autologous artificial antigen-presenting cells, and natural ligands of EGFR. We showed that this approach yielded CAR-T cells with favorable phenotypes and CAR positivity. They exhibited potent antitumor activity against NSCLC both in vitro and in vivo. When administered to tumor-bearing mice and non-tumor-bearing cynomolgus macaques, they did not elicit toxicity despite their cross-reactivity to both murine and simian EGFRs. In total we tested three ligands and found that the CAR candidate with the highest affinity consistently displayed greater potency without adverse events. Taken together, our results demonstrate the feasibility and safety of targeting EGFR-expressing NSCLCs using ligand-based, piggyBac-engineered CAR-T cells. Our data also show that lowering the affinity of CAR molecules is not always beneficial.
Collapse
Affiliation(s)
- Thanyavi Chinsuwan
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Koichi Hirabayashi
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Shuji Mishima
- Division of General Thoracic Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Aiko Hasegawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Miyuki Tanaka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Hidemi Mochizuki
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Ina Research Inc., Ina, Nagano, Japan
| | - Akihito Shimoi
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Ina Research Inc., Ina, Nagano, Japan
| | - Takashi Murakami
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Iruma, Saitama, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Kimihiro Shimizu
- Division of General Thoracic Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano, Japan
| |
Collapse
|
9
|
Bi Y, Kong R, Peng Y, Yu H, Zhou Z. Umbilical cord blood and peripheral blood-derived regulatory T cells therapy: Progress in type 1 diabetes. Clin Immunol 2023; 255:109716. [PMID: 37544491 DOI: 10.1016/j.clim.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Regulatory T cells (Tregs) are key regulators for the inflammatory response and play a role in maintaining the immune tolerance. Type 1 diabetes (T1D) is a relatively common autoimmune disease that results from the loss of immune tolerance to β-cell-associated antigens. Preclinical models have demonstrated the safety and efficacy of Tregs given in transplant rejection and autoimmune diseases such as T1D. Adoptive transfer of Tregs has been utilized in clinical trials for over a decade. However, the achievement of the adoptive transfer of Tregs therapy in clinical application remains challenging. In this review, we highlight the characterization of Tregs and compare the differences between umbilical cord blood and adult peripheral blood-derived Tregs. Additionally, we summarize conditional modifications in the expansion of Tregs in clinical trials, especially for the treatment of T1D. Finally, we discuss the existing technical challenges for Tregs in clinical trials for the treatment of T1D.
Collapse
Affiliation(s)
- Yuanjie Bi
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ran Kong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yani Peng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
10
|
Suematsu M, Yagyu S, Yoshida H, Osone S, Nakazawa Y, Sugita K, Imamura T, Iehara T. Targeting FLT3-specific chimeric antigen receptor T cells for acute lymphoblastic leukemia with KMT2A rearrangement. Cancer Immunol Immunother 2023; 72:957-968. [PMID: 36214866 DOI: 10.1007/s00262-022-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
Abstract
CD19-specific chimeric antigen receptor T (CAR T) immunotherapy is used to treat B-cell malignancies. However, antigen-escape mediated relapse following CAR T therapy has emerged as a major concern. In some relapsed cases, especially KMT2A rearrangement-positive B-acute lymphoblastic leukemia (KMT2A-r B-ALL), most of the B-cell antigens are lost via lineage conversion to the myeloid phenotype, rendering multi-B-cell-antigen-targeted CAR T cell therapy ineffective. Fms-related tyrosine kinase-3 (FLT3) is highly expressed in KMT2A-r B-ALL; therefore, in this study, we aimed to evaluate the antitumor efficacy of CAR T cells targeting both CD19 and FLT3 in KMT2A-r B-ALL cells. We developed piggyBac transposon-mediated CAR T cells targeting CD19, FLT3, or both (dual) and generated CD19-negative KMT2A-r B-ALL models through CRISPR-induced CD19 gene-knockout (KO). FLT3 CAR T cells showed antitumor efficacy against CD19-KO KMT2A-r B-ALL cells both in vitro and in vivo; dual-targeted CAR T cells showed cytotoxicity against wild-type (WT) and CD19-KO KMT2A-r B-ALL cells, whereas CD19 CAR T cells demonstrated cytotoxicity only against WT KMT2A-r B-ALL cells in vitro. Therefore, targeting FLT3-specific CAR T cells would be a promising strategy for KMT2A-r B-ALL cells even with CD19-negative relapsed cases.
Collapse
Affiliation(s)
- Masaya Suematsu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Hideki Yoshida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shinya Osone
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
11
|
Yagyu S, Nakazawa Y. piggyBac-transposon-mediated CAR-T cells for the treatment of hematological and solid malignancies. Int J Clin Oncol 2023; 28:736-747. [PMID: 36859566 DOI: 10.1007/s10147-023-02319-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Since the introduction of the use of chimeric antigen receptor T-cell therapy (CAR-T therapy) dramatically changed the therapeutic strategy for B cell tumors, various CAR-T cell products have been developed and applied to myeloid and solid tumors. Although viral vectors have been widely used to produce genetically engineered T cells, advances in genetic engineering have led to the development of methods for producing non-viral, gene-modified CAR-T cells. Recent progress has revealed that non-viral CAR-T cells have a significant impact not only on the simplicity of the production process and the accessibility of non-viral vectors but also on the function of the cells themselves. In this review, we focus on piggyBac-transposon-based CAR-T cells among non-viral, gene-modified CAR-T cells and discuss their characteristics, preclinical development, and recent clinical applications.
Collapse
Affiliation(s)
- Shigeki Yagyu
- Innovative Research and Liaison Organization, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan. .,Center for Advanced Research of Gene and Cell Therapy, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan. .,Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan.
| | - Yozo Nakazawa
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan.,Department of Pediatrics, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, Japan.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan
| |
Collapse
|
12
|
Zhang X, Zhang H, Lan H, Wu J, Xiao Y. CAR-T cell therapy in multiple myeloma: Current limitations and potential strategies. Front Immunol 2023; 14:1101495. [PMID: 36891310 PMCID: PMC9986336 DOI: 10.3389/fimmu.2023.1101495] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Over the last decade, the survival outcome of patients with multiple myeloma (MM) has been substantially improved with the emergence of novel therapeutic agents, such as proteasome inhibitors, immunomodulatory drugs, anti-CD38 monoclonal antibodies, selective inhibitors of nuclear export (SINEs), and T cell redirecting bispecific antibodies. However, MM remains an incurable neoplastic plasma cell disorder, and almost all MM patients inevitably relapse due to drug resistance. Encouragingly, B cell maturation antigen (BCMA)-targeted chimeric antigen receptor T (CAR-T) cell therapy has achieved impressive success in the treatment of relapsed/refractory (R/R) MM and brought new hopes for R/R MM patients in recent years. Due to antigen escape, the poor persistence of CAR-T cells, and the complicated tumor microenvironment, a significant population of MM patients still experience relapse after anti-BCMA CAR-T cell therapy. Additionally, the high manufacturing costs and time-consuming manufacturing processes caused by the personalized manufacturing procedures also limit the broad clinical application of CAR-T cell therapy. Therefore, in this review, we discuss current limitations of CAR-T cell therapy in MM, such as the resistance to CAR-T cell therapy and the limited accessibility of CAR-T cell therapy, and summarize some optimization strategies to overcome these challenges, including optimizing CAR structure, such as utilizing dual-targeted/multi-targeted CAR-T cells and armored CAR-T cells, optimizing manufacturing processes, combing CAR-T cell therapy with existing or emerging therapeutic approaches, and performing subsequent anti-myeloma therapy after CAR-T cell therapy as salvage therapy or maintenance/consolidation therapy.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Hematology, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Zhang
- School of Medicine, Jishou University, Jishou, China
| | - Huixuan Lan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jinming Wu
- Department of Hematology, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Xiao
- Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, China
| |
Collapse
|