1
|
Karimi-Sani I, Molavi Z, Naderi S, Mirmajidi SH, Zare I, Naeimzadeh Y, Mansouri A, Tajbakhsh A, Savardashtaki A, Sahebkar A. Personalized mRNA vaccines in glioblastoma therapy: from rational design to clinical trials. J Nanobiotechnology 2024; 22:601. [PMID: 39367418 PMCID: PMC11453023 DOI: 10.1186/s12951-024-02882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Glioblastomas (GBMs) are the most common and aggressive malignant brain tumors, presenting significant challenges for treatment due to their invasive nature and localization in critical brain regions. Standard treatment includes surgical resection followed by radiation and adjuvant chemotherapy with temozolomide (TMZ). Recent advances in immunotherapy, including the use of mRNA vaccines, offer promising alternatives. This review focuses on the emerging use of mRNA vaccines for GBM treatment. We summarize recent advancements, evaluate current obstacles, and discuss notable successes in this field. Our analysis highlights that while mRNA vaccines have shown potential, their use in GBM treatment is still experimental. Ongoing research and clinical trials are essential to fully understand their therapeutic potential. Future developments in mRNA vaccine technology and insights into GBM-specific immune responses may lead to more targeted and effective treatments. Despite the promise, further research is crucial to validate and optimize the effectiveness of mRNA vaccines in combating GBM.
Collapse
Affiliation(s)
- Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Molavi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Naderi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh-Habibeh Mirmajidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atena Mansouri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Wang X. The Potential of mRNA Vaccines to Fight Against Viruses. Viral Immunol 2024; 37:383-391. [PMID: 39418074 DOI: 10.1089/vim.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Vaccines have always been a critical tool in preventing infectious diseases. However, the development of traditional vaccines often takes a long time and may struggle to address the challenge of rapidly mutating viruses. The emergence of mRNA technology has brought revolutionary changes to vaccine development, particularly in rapidly responding to the threat of emerging viruses. The global promotion of mRNA vaccines against severe acute respiratory syndrome coronavirus 2 has demonstrated the importance of mRNA technology. Also, mRNA vaccines targeting viruses such as influenza, respiratory syncytial virus, and Ebola are under development. These vaccines have shown promising preventive effects and safety profiles in clinical trials, although the duration of immune protection is still under evaluation. However, the development of mRNA vaccines also faces many challenges, such as stability, efficacy, and individual differences in immune response. Researchers adopt various strategies to address these challenges. Anyway, mRNA vaccines have shown enormous potential in combating viral diseases. With further development and technological maturity, mRNA vaccines are expected to have a profound impact on public health and vaccine equity. This review discussed the potential of mRNA vaccines to fight against viruses, current progress in clinical trials, challenges faced, and future prospects, providing a comprehensive scientific basis and reference for future research.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Clinical Laboratory, National Clinical Research Center for Child Health Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Tapescu I, Madsen PJ, Lowenstein PR, Castro MG, Bagley SJ, Fan Y, Brem S. The transformative potential of mRNA vaccines for glioblastoma and human cancer: technological advances and translation to clinical trials. Front Oncol 2024; 14:1454370. [PMID: 39399167 PMCID: PMC11466887 DOI: 10.3389/fonc.2024.1454370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Originally devised for cancer control, mRNA vaccines have risen to the forefront of medicine as effective instruments for control of infectious disease, notably their pivotal role in combating the COVID-19 pandemic. This review focuses on fundamental aspects of the development of mRNA vaccines, e.g., tumor antigens, vector design, and precise delivery methodologies, - highlighting key technological advances. The recent, promising success of personalized mRNA vaccines against pancreatic cancer and melanoma illustrates the potential value for other intractable, immunologically resistant, solid tumors, such as glioblastoma, as well as the potential for synergies with a combinatorial, immunotherapeutic approach. The impact and progress in human cancer, including pancreatic cancer, head and neck cancer, bladder cancer are reviewed, as are lessons learned from first-in-human CAR-T cell, DNA and dendritic cell vaccines targeting glioblastoma. Going forward, a roadmap is provided for the transformative potential of mRNA vaccines to advance cancer immunotherapy, with a particular focus on the opportunities and challenges of glioblastoma. The current landscape of glioblastoma immunotherapy and gene therapy is reviewed with an eye to combinatorial approaches harnessing RNA science. Preliminary preclinical and clinical data supports the concept that mRNA vaccines could be a viable, novel approach to prolong survival in patients with glioblastoma.
Collapse
Affiliation(s)
- Iulia Tapescu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter J. Madsen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Stephen J. Bagley
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Fan
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Steven Brem
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Strika Z, Petković K, Likić R. Effectiveness and Safety of mRNA Vaccines in the Therapy of Glioblastoma. J Pers Med 2024; 14:993. [PMID: 39338247 PMCID: PMC11433450 DOI: 10.3390/jpm14090993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma (GBM) is the most common and most malignant primary brain tumor, presenting significant treatment challenges due to its heterogeneity, invasiveness, and resistance to conventional therapies. Despite aggressive treatment protocols, the prognosis remains poor, with a median survival time of approximately 15 months. Recent advancements in mRNA vaccine technology, particularly the development of lipid nanoparticles (LNPs), have revitalized interest in mRNA-based therapies. These vaccines offer unique advantages, including rapid production, personalization based on tumor-specific mutations, and a strong induction of both humoral and cellular immune responses. mRNA vaccines have demonstrated potential in preclinical models, showing significant tumor regression and improved survival rates. Early-phase clinical trials have indicated that mRNA vaccines are safe and can induce robust immune responses in GBM patients. Combining mRNA vaccines with other immunotherapeutic approaches, such as checkpoint inhibitors, has shown synergistic effects, further enhancing their efficacy. However, challenges such as optimizing delivery systems and overcoming the immunosuppressive tumor microenvironment remain. Future research should focus on addressing these challenges and exploring combination therapies to maximize therapeutic benefits. Large-scale, randomized clinical trials are essential to validate the efficacy and safety of mRNA vaccines in GBM therapy. The potential to reshape the tumor microenvironment and establish long-term immunological memory underscores the transformative potential of mRNA vaccines in cancer immunotherapy.
Collapse
Affiliation(s)
- Zdeslav Strika
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Karlo Petković
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Robert Likić
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Division of Clinical Pharmacology and Therapeutics, Department of Internal Medicine, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Gao Y, Yang L, Li Z, Peng X, Li H. mRNA vaccines in tumor targeted therapy: mechanism, clinical application, and development trends. Biomark Res 2024; 12:93. [PMID: 39217377 PMCID: PMC11366172 DOI: 10.1186/s40364-024-00644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Malignant tumors remain a primary cause of human mortality. Among the various treatment modalities for neoplasms, tumor vaccines have consistently shown efficacy and promising potential. These vaccines offer advantages such as specificity, safety, and tolerability, with mRNA vaccines representing promising platforms. By introducing exogenous mRNAs encoding antigens into somatic cells and subsequently synthesizing antigens through gene expression systems, mRNA vaccines can effectively induce immune responses. Katalin Karikó and Drew Weissman were awarded the 2023 Nobel Prize in Physiology or Medicine for their great contributions to mRNA vaccine research. Compared with traditional tumor vaccines, mRNA vaccines have several advantages, including rapid preparation, reduced contamination, nonintegrability, and high biodegradability. Tumor-targeted therapy is an innovative treatment modality that enables precise targeting of tumor cells, minimizes damage to normal tissues, is safe at high doses, and demonstrates great efficacy. Currently, targeted therapy has become an important treatment option for malignant tumors. The application of mRNA vaccines in tumor-targeted therapy is expanding, with numerous clinical trials underway. We systematically outline the targeted delivery mechanism of mRNA vaccines and the mechanism by which mRNA vaccines induce anti-tumor immune responses, describe the current research and clinical applications of mRNA vaccines in tumor-targeted therapy, and forecast the future development trends of mRNA vaccine application in tumor-targeted therapy.
Collapse
Affiliation(s)
- Yu Gao
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Zhenning Li
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, 110001, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
6
|
Chen B, Yang Y, Wang X, Yang W, Lu Y, Wang D, Zhuo E, Tang Y, Su J, Tang G, Shao S, Gu K. mRNA vaccine development and applications: A special focus on tumors (Review). Int J Oncol 2024; 65:81. [PMID: 38994758 PMCID: PMC11251742 DOI: 10.3892/ijo.2024.5669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer is characterized by unlimited proliferation and metastasis, and traditional therapeutic strategies usually result in the acquisition of drug resistance, thus highlighting the need for more personalized treatment. mRNA vaccines transfer the gene sequences of exogenous target antigens into human cells through transcription and translation to stimulate the body to produce specific immune responses against the encoded proteins, so as to enable the body to obtain immune protection against said antigens; this approach may be adopted for personalized cancer therapy. Since the recent coronavirus pandemic, the development of mRNA vaccines has seen substantial progress and widespread adoption. In the present review, the development of mRNA vaccines, their mechanisms of action, factors influencing their function and the current clinical applications of the vaccine are discussed. A focus is placed on the application of mRNA vaccines in cancer, with the aim of highlighting unique advances and the remaining challenges of this novel and promising therapeutic approach.
Collapse
Affiliation(s)
- Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yipin Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wenzhi Yang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - You Lu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Daoyue Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yanchao Tang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Junhong Su
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Guozheng Tang
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Song Shao
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
7
|
Aghajani M, Jalilzadeh N, Aghebati-Maleki A, Yari A, Tabnak P, Mardi A, Saeedi H, Aghebati-Maleki L, Baradaran B. Current approaches in glioblastoma multiforme immunotherapy. Clin Transl Oncol 2024; 26:1584-1612. [PMID: 38512448 DOI: 10.1007/s12094-024-03395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/08/2024] [Indexed: 03/23/2024]
Abstract
Glioblastoma multiform (GBM) is the most prevalent CNS (central nervous system) tumor in adults, with an average survival length shorter than 2 years and rare metastasis to organs other than CNS. Despite extensive attempts at surgical resecting, the inherently permeable nature of this disease has rendered relapse nearly unavoidable. Thus, immunotherapy is a feasible alternative, as stimulated immune cells can enter into the remote and inaccessible tumor cells. Immunotherapy has revolutionized patient upshots in various malignancies and might introduce different effective ways for GBM patients. Currently, researchers are exploring various immunotherapeutic strategies in patients with GBM to target both the innate and acquired immune responses. These approaches include reprogrammed tumor-associated macrophages, the use of specific antibodies to inhibit tumor progression and metastasis, modifying tumor-associated macrophages with antibodies, vaccines that utilize tumor-specific dendritic cells to activate anti-tumor T cells, immune checkpoint inhibitors, and enhanced T cells that function against tumor cells. Despite these findings, there is still room for improving the response faults of the many currently tested immunotherapies. This study aims to review the currently used immunotherapy approaches with their molecular mechanisms and clinical application in GBM.
Collapse
Affiliation(s)
- Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Molecular Medicine Department, Faculty of Modern Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Peyman Tabnak
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Montosa-i-Micó V, Álvarez-Torres MDM, Burgos-Panadero R, Gil-Terrón FJ, Gómez Mahiques M, Lopez-Mateu C, García-Gómez JM, Fuster-Garcia E. The prognostic relevance of a gene expression signature in MRI-defined highly vascularized glioblastoma. Heliyon 2024; 10:e31175. [PMID: 38832259 PMCID: PMC11145239 DOI: 10.1016/j.heliyon.2024.e31175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 06/05/2024] Open
Abstract
Background The vascular heterogeneity of glioblastomas (GB) remains an important area of research, since tumor progression and patient prognosis are closely tied to this feature. With this study, we aim to identify gene expression profiles associated with MRI-defined tumor vascularity and to investigate its relationship with patient prognosis. Methods The study employed MRI parameters calculated with DSC Perfusion Quantification of ONCOhabitats glioma analysis software and RNA-seq data from the TCGA-GBM project dataset. In our study, we had a total of 147 RNA-seq samples, which 15 of them also had MRI parameter information. We analyzed the gene expression profiles associated with MRI-defined tumor vascularity using differential gene expression analysis and performed Log-rank tests to assess the correlation between the identified genes and patient prognosis. Results The findings of our research reveal a set of 21 overexpressed genes associated with the high vascularity pattern. Notably, several of these overexpressed genes have been previously implicated in worse prognosis based on existing literature. Our log-rank test further validates that the collective upregulation of these genes is indeed correlated with an unfavorable prognosis. This set of genes includes a variety of molecules, such as cytokines, receptors, ligands, and other molecules with diverse functions. Conclusions Our findings suggest that the set of 21 overexpressed genes in the High Vascularity group could potentially serve as prognostic markers for GB patients. These results highlight the importance of further investigating the relationship between the molecules such as cytokines or receptors underlying the vascularity in GB and its observation through MRI and developing targeted therapies for this aggressive disease.
Collapse
Affiliation(s)
- Víctor Montosa-i-Micó
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), BDSLab, Universitat Politècnica de València, Spain
| | - María del Mar Álvarez-Torres
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), BDSLab, Universitat Politècnica de València, Spain
| | - Rebeca Burgos-Panadero
- Laboratory of Cellular and Molecular Biology, Clinical and Translational Research in Cancer Group, La Fe Health Research Institute, Valencia, Spain
| | - F. Javier Gil-Terrón
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), BDSLab, Universitat Politècnica de València, Spain
| | - Maria Gómez Mahiques
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), BDSLab, Universitat Politècnica de València, Spain
| | - Carles Lopez-Mateu
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), BDSLab, Universitat Politècnica de València, Spain
| | - Juan M. García-Gómez
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), BDSLab, Universitat Politècnica de València, Spain
| | - Elies Fuster-Garcia
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), BDSLab, Universitat Politècnica de València, Spain
| |
Collapse
|
9
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Mishchenko TA, Turubanova VD, Gorshkova EN, Krysko O, Vedunova MV, Krysko DV. Glioma: bridging the tumor microenvironment, patient immune profiles and novel personalized immunotherapy. Front Immunol 2024; 14:1299064. [PMID: 38274827 PMCID: PMC10809268 DOI: 10.3389/fimmu.2023.1299064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Glioma is the most common primary brain tumor, characterized by a consistently high patient mortality rate and a dismal prognosis affecting both survival and quality of life. Substantial evidence underscores the vital role of the immune system in eradicating tumors effectively and preventing metastasis, underscoring the importance of cancer immunotherapy which could potentially address the challenges in glioma therapy. Although glioma immunotherapies have shown promise in preclinical and early-phase clinical trials, they face specific limitations and challenges that have hindered their success in further phase III trials. Resistance to therapy has been a major challenge across many experimental approaches, and as of now, no immunotherapies have been approved. In addition, there are several other limitations facing glioma immunotherapy in clinical trials, such as high intra- and inter-tumoral heterogeneity, an inherently immunosuppressive microenvironment, the unique tissue-specific interactions between the central nervous system and the peripheral immune system, the existence of the blood-brain barrier, which is a physical barrier to drug delivery, and the immunosuppressive effects of standard therapy. Therefore, in this review, we delve into several challenges that need to be addressed to achieve boosted immunotherapy against gliomas. First, we discuss the hurdles posed by the glioma microenvironment, particularly its primary cellular inhabitants, in particular tumor-associated microglia and macrophages (TAMs), and myeloid cells, which represent a significant barrier to effective immunotherapy. Here we emphasize the impact of inducing immunogenic cell death (ICD) on the migration of Th17 cells into the tumor microenvironment, converting it into an immunologically "hot" environment and enhancing the effectiveness of ongoing immunotherapy. Next, we address the challenge associated with the accurate identification and characterization of the primary immune profiles of gliomas, and their implications for patient prognosis, which can facilitate the selection of personalized treatment regimens and predict the patient's response to immunotherapy. Finally, we explore a prospective approach to developing highly personalized vaccination strategies against gliomas, based on the search for patient-specific neoantigens. All the pertinent challenges discussed in this review will serve as a compass for future developments in immunotherapeutic strategies against gliomas, paving the way for upcoming preclinical and clinical research endeavors.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victoria D. Turubanova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Neuroscience Research Institute, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ekaterina N. Gorshkova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
11
|
Fei X, Wu J, Tian H, Jiang D, Chen H, Yan K, Wang Y, Zhao Y, Chen H, Xie X, Wang Z, Zhu W, Huang Q. Glioma stem cells remodel immunotolerant microenvironment in GBM and are associated with therapeutic advancements. Cancer Biomark 2024; 41:1-24. [PMID: 39240627 PMCID: PMC11492047 DOI: 10.3233/cbm-230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Glioma is the most common primary tumor of the central nervous system (CNS). Glioblastoma (GBM) is incurable with current treatment strategies. Additionally, the treatment of recurrent GBM (rGBM) is often referred to as terminal treatment, necessitating hospice-level care and management. The presence of the blood-brain barrier (BBB) gives GBM a more challenging or "cold" tumor microenvironment (TME) than that of other cancers and gloma stem cells (GSCs) play an important role in the TME remodeling, occurrence, development and recurrence of giloma. In this review, our primary focus will be on discussing the following topics: niche-associated GSCs and macrophages, new theories regarding GSC and TME involving pyroptosis and ferroptosis in GBM, metabolic adaptations of GSCs, the influence of the cold environment in GBM on immunotherapy, potential strategies to transform the cold GBM TME into a hot one, and the advancement of GBM immunotherapy and GBM models.
Collapse
Affiliation(s)
- Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Jie Wu
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Haiyan Tian
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of GCP, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Dongyi Jiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Hanchun Chen
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Ke Yan
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Yuan Wang
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yaodong Zhao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangtong Xie
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhimin Wang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Wenyu Zhu
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Qiang Huang
- Department of Neurosurgery, Second Affiliated Hospital of Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Alnukhali M, Altabbakh O, Farooqi AA, Pollack A, Daunert S, Deo S, Tao W. Activation of Stimulator of Interferon Genes (STING): Promising Strategy to Overcome Immune Resistance in Prostate Cancer. Curr Med Chem 2024; 31:6556-6571. [PMID: 38347787 PMCID: PMC11497144 DOI: 10.2174/0109298673273303231208071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 10/19/2024]
Abstract
Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.
Collapse
Affiliation(s)
- Mohammed Alnukhali
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Omar Altabbakh
- College of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL 33759, USA
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), National Institute for Genomics and Advanced Biotechnology, Islamabad 44000, Pakistan
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Leonard M. Miller School of Medicine, Clinical and Translational Science Institute, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Wensi Tao
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
13
|
Lin F, Lin EZ, Anekoji M, Ichim TE, Hu J, Marincola FM, Jones LD, Kesari S, Ashili S. Advancing personalized medicine in brain cancer: exploring the role of mRNA vaccines. J Transl Med 2023; 21:830. [PMID: 37978542 PMCID: PMC10656921 DOI: 10.1186/s12967-023-04724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Advancing personalized medicine in brain cancer relies on innovative strategies, with mRNA vaccines emerging as a promising avenue. While the initial use of mRNA vaccines was in oncology, their stunning success in COVID-19 resulted in widespread attention, both positive and negative. Regardless of politically biased opinions, which relate more to the antigenic source than form of delivery, we feel it is important to objectively review this modality as relates to brain cancer. This class of vaccines trigger robust immune responses through MHC-I and MHC-II pathways, in both prophylactic and therapeutic settings. The mRNA platform offers advantages of rapid development, high potency, cost-effectiveness, and safety. This review provides an overview of mRNA vaccine delivery technologies, tumor antigen identification, combination therapies, and recent therapeutic outcomes, with a particular focus on brain cancer. Combinatorial approaches are vital to maximizing mRNA cancer vaccine efficacy, with ongoing clinical trials exploring combinations with adjuvants and checkpoint inhibitors and even adoptive cell therapy. Efficient delivery, neoantigen identification, preclinical studies, and clinical trial results are highlighted, underscoring mRNA vaccines' potential in advancing personalized medicine for brain cancer. Synergistic combinatorial therapies play a crucial role, emphasizing the need for continued research and collaboration in this area.
Collapse
Affiliation(s)
- Feng Lin
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA.
| | - Emma Z Lin
- University of California San Diego, La Jolla, CA, 92093, USA
| | - Misa Anekoji
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| | - Thomas E Ichim
- Therapeutic Solutions International, Oceanside, CA, 92056, USA
| | - Joyce Hu
- Sonata Therapeutics, Watertown, MA, 02472, USA
| | | | - Lawrence D Jones
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| | - Santosh Kesari
- Saint John's Cancer Institute, Santa Monica, CA, 90404, USA
| | - Shashaanka Ashili
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| |
Collapse
|
14
|
Gong L, Sun X, Jia M. New gene signature from the dominant infiltration immune cell type in osteosarcoma predicts overall survival. Sci Rep 2023; 13:18271. [PMID: 37880378 PMCID: PMC10600156 DOI: 10.1038/s41598-023-45566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
The immune microenvironment of osteosarcoma (OS) has been reported to play an important role in disease progression and prognosis. However, owing to tumor heterogeneity, it is not ideal to predict OS prognosis by examining only infiltrating immune cells. This work aimed to build a prognostic gene signature based on similarities in the immune microenvironments of OS patients. Public datasets were used to examine the correlated genes, and the most consistent dominant infiltrating immune cell type was identified. The LASSO Cox regression model was used to establish a multiple-gene risk prediction signature. A nine-gene prognostic signature was generated from the correlated genes for M0 macrophages and then proven to be effective and reliable in validation cohorts. Signature comparison indicated the priority of the signature. Multivariate Cox regression models indicated that the signature risk score is an independent prognostic factor for OS patients regardless of the Huvos grade in all datasets. In addition, the results of the association between the signature risk score and chemotherapy sensitivity also showed that there was no significant difference in the sensitivity of any drugs between the low- and high-risk groups. A GSEA of GO and KEGG pathways found that antigen processing- and presentation-related biological functions and olfactory transduction receptor signaling pathways have important roles in signature functioning. Our findings showed that M0 macrophages were the dominant infiltrating immune cell type in OS and that the new gene signature is a promising prognostic model for OS patients.
Collapse
Affiliation(s)
- Liping Gong
- Department of Academic Research, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Xifeng Sun
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Ming Jia
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
15
|
Hotchkiss KM, Batich KA, Mohan A, Rahman R, Piantadosi S, Khasraw M. Dendritic cell vaccine trials in gliomas: Untangling the lines. Neuro Oncol 2023; 25:1752-1762. [PMID: 37289203 PMCID: PMC10547519 DOI: 10.1093/neuonc/noad088] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Glioblastoma is a deadly brain tumor without any significantly successful treatments to date. Tumor antigen-targeted immunotherapy platforms including peptide and dendritic cell (DC) vaccines, have extended survival in hematologic malignancies. The relatively "cold" tumor immune microenvironment and heterogenous nature of glioblastoma have proven to be major limitations to translational application and efficacy of DC vaccines. Furthermore, many DC vaccine trials in glioblastoma are difficult to interpret due to a lack of contemporaneous controls, absence of any control comparison, or inconsistent patient populations. Here we review glioblastoma immunobiology aspects that are relevant to DC vaccines, review the clinical experience with DC vaccines targeting glioblastoma, discuss challenges in clinical trial design, and summarize conclusions and directions for future research for the development of effective DC vaccines for patients.
Collapse
Affiliation(s)
- Kelly M Hotchkiss
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristen A Batich
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Aditya Mohan
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven Piantadosi
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA(S.P.)
| | - Mustafa Khasraw
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
16
|
Wu Y, Li Z, Lin H, Wang H. Identification of Tumor Antigens and Immune Subtypes of High-grade Serous Ovarian Cancer for mRNA Vaccine Development. J Cancer 2023; 14:2655-2669. [PMID: 37779866 PMCID: PMC10539400 DOI: 10.7150/jca.87184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
High-grade serous ovarian cancer (HGSC) is the most common pathology of ovarian cancer and has aggressive characteristics and poor prognosis. mRNA vaccines are a novel tool for cancer immune treatment and may play an important role in HGSC therapy. Our study aimed to explore tumour antigens for vaccine development and identify potential populations amenable to vaccine treatment. Based on transcription data from The Cancer Genome Atlas (TCGA), we identified four tumour-specific antigens for vaccine production: ARPC1B, ELF3, VSTM2L, and IL27RA. In addition to being associated with HGSC patient prognosis, the expression of these antigens was positively correlated with the abundances of antigen-presenting cells (APCs). Furthermore, we stratified HGSC samples into three immune subtypes (IS1-IS3) with different immune characteristics. A corhort from ICGC (International Cancer Genome Consortium) was used to validate. Patients of IS3 had the best prognosis, while patients of IS1 were most likely to benefit from vaccination. There was substantial heterogeneity in immune signatures and immune-associated molecule expression in HGSC. Finally, weighted gene coexpression network analysis (WGCNA) was employed to cluster immune-related genes and explore potential biomarkers related to vaccination. In conclusion, we identified four potential tumour antigens for mRNA vaccine production for HGSC treatment, and the immune subtype could be an important indicator to select suitable HGSC patients to receive vaccination.
Collapse
Affiliation(s)
- Yanxuan Wu
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhifeng Li
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hong Lin
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongbiao Wang
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
17
|
Liu Z, Xu Y, Wang Y, Weng S, Xu H, Ren Y, Guo C, Liu L, Zhang Z, Han X. Immune-related interaction perturbation networks unravel biological peculiars and clinical significance of glioblastoma. IMETA 2023; 2:e127. [PMID: 38867932 PMCID: PMC10989959 DOI: 10.1002/imt2.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/27/2023] [Accepted: 06/16/2023] [Indexed: 06/14/2024]
Abstract
The immune system is an interacting network of plentiful molecules that could better characterize the relationship between immunity and cancer. This study aims to investigate the behavioral patterns of immune-related interaction perturbation networks in glioblastoma. An immune-related interaction-perturbation framework was introduced to characterize four heterogeneous subtypes using RNA-seq data of TCGA/CGGA glioblastoma tissues and GTEx normal brain tissues. The stability and robustness of the four subtypes were validated in public datasets and our in-house cohort. In the four subtypes, C1 was an inflammatory subtype with high immune infiltration, low tumor purity, and potential response to immunotherapy; C2, an invasive subtype, was featured with dismal prognosis, telomerase reverse transcriptase promoter mutations, moderate levels of immunity, and stromal constituents, as well as sensitivity to receptor tyrosine kinase signaling inhibitors; C3 was a proliferative subtype with high tumor purity, immune-desert microenvironment, sensitivity to phosphatidylinositol 3'-kinase signaling inhibitor and DNA replication inhibitors, and potential resistance to immunotherapy; C4, a synaptogenesis subtype with the best prognosis, exhibited high synaptogenesis-related gene expression, prevalent isocitrate dehydrogenase mutations, and potential sensitivity to radiotherapy and chemotherapy. Overall, this study provided an attractive platform from the perspective of immune-related interaction perturbation networks, which might advance the tailored management of glioblastoma.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
| | - Yudi Xu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuhui Wang
- Department of Clinical LaboratoryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Siyuan Weng
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hui Xu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuqing Ren
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunguang Guo
- Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Long Liu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xinwei Han
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
| |
Collapse
|
18
|
Coleman DJL, Keane P, Luque-Martin R, Chin PS, Blair H, Ames L, Kellaway SG, Griffin J, Holmes E, Potluri S, Assi SA, Bushweller J, Heidenreich O, Cockerill PN, Bonifer C. Gene regulatory network analysis predicts cooperating transcription factor regulons required for FLT3-ITD+ AML growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549495. [PMID: 37503022 PMCID: PMC10370108 DOI: 10.1101/2023.07.18.549495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
AML is a heterogenous disease caused by different mutations. We have previously shown that each mutational sub-type develops its specific gene regulatory network (GRN) with transcription factors interacting with multiple gene modules, many of which are transcription factor genes themselves. Here we hypothesized that highly connected nodes within such networks comprise crucial regulators of AML maintenance. We tested this hypothesis using FLT3-ITD mutated AML as a model and conducted an shRNA drop-out screen informed by this analysis. We show that AML-specific GRNs predict identifying crucial regulatory modules required for AML but not normal cellular growth. Furthermore, our work shows that all modules are highly connected and regulate each other. The careful multi-omic analysis of the role of one (RUNX1) module by shRNA and chemical inhibition shows that this transcription factor and its target genes stabilize the GRN of FLT3-ITD AML and that its removal leads to GRN collapse and cell death.
Collapse
Affiliation(s)
- Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Rosario Luque-Martin
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU, UK
| | - Paulynn S Chin
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU, UK
| | - Luke Ames
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - James Griffin
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Elizabeth Holmes
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Sandeep Potluri
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - John Bushweller
- University of Virginia, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU, UK
- Prinses Máxima Centrum for Pediatric Oncology, Postbus 113, 3720 AC Bilthoven, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| |
Collapse
|
19
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
20
|
Wu W, Chen L, Jia G, Tang Q, Han B, Xia S, Jiang Q, Liu H. Inhibition of FGFR3 upregulates MHC-I and PD-L1 via TLR3/NF-kB pathway in muscle-invasive bladder cancer. Cancer Med 2023; 12:15676-15690. [PMID: 37283287 PMCID: PMC10417096 DOI: 10.1002/cam4.6172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Improving the potency of immune response is paramount among issues concerning immunotherapy of muscle-invasive bladder cancer (MIBC). METHODS On the basis of immune subtypes, we investigated possible molecular mechanisms involved in tumor immune escape in MIBC. According to the 312 immune-related genes, three MIBC immune subtypes were clustered. RESULTS Cluster 2 subtype is characterized by FGFR3 mutations and has a better clinical prognosis. However, the expression levels of MHC-I and immune checkpoints genes were the lowest, indicating that this subtype is subject to immune escape and has a low response rate to immunotherapy. Bioinformatics analysis and immunofluorescence staining of clinical samples revealed that the FGFR3 is involved in the immune escape in MIBC. Besides, after FGFR3 knockout with siRNA in RT112 and UMUC14 cells, the TLR3/NF-kB pathway was significantly activated and was accompanied by upregulation of MHC-I and PD-L1 gene expression. Furthermore, the use of TLR3 agonists poly(I:C) can further improve the effect. CONCLUSION Together, our results suggest that FGFR3 might involve in immunosuppression by inhibition of NF-kB pathway in BC. Considering that TLR3 agonists are currently approved for clinical treatment as immunoadjuvants, our study might provide more insights for improving the efficacy of immunotherapy in MIBC.
Collapse
Affiliation(s)
- WenBo Wu
- Department of UrologyShanghai General HospitalShanghaiChina
- Shanghai JiaoTong University School of MedicineShanghaiChina
| | - Lei Chen
- Department of UrologyShanghai General HospitalShanghaiChina
| | - GaoZhen Jia
- Department of UrologyShanghai General HospitalShanghaiChina
| | - QiLin Tang
- Department of UrologyShanghai General HospitalShanghaiChina
- Shanghai JiaoTong University School of MedicineShanghaiChina
| | - BangMin Han
- Department of UrologyShanghai General HospitalShanghaiChina
| | - ShuJie Xia
- Department of UrologyShanghai General HospitalShanghaiChina
| | - Qi Jiang
- Department of UrologyShanghai General HospitalShanghaiChina
| | - HaiTao Liu
- Department of UrologyShanghai General HospitalShanghaiChina
- Shanghai JiaoTong University School of MedicineShanghaiChina
| |
Collapse
|
21
|
Zhang S, Liu Q, Wei Y, Xiong Y, Gu Y, Huang Y, Tang F, Ouyang Y. Anterior gradient-2 regulates cell communication by coordinating cytokine-chemokine signaling and immune infiltration in breast cancer. Cancer Sci 2023. [PMID: 36853166 DOI: 10.1111/cas.15775] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
Anterior gradient-2 (AGR2) is crucial to breast cancer progression. However, its role in the tumor immune microenvironment remains unclear. RNA sequencing expression profiles and associated clinical information were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases, respectively. The AGR2 expression patterns were verified using clinical samples of breast cancer. Based on single-cell transcriptomic data, AGR2 expression patterns were identified and cell communication analysis was carried out. Furthermore, the roles of AGR2 in breast tumor progression were explored by a series of functional experiments. We found that DNA methylation was an important mechanism for regulating the expression patterns of AGR2. Patients with AGR2 low expression displayed an immune "hot" and immunosuppressive phenotype characterized by high abundance of tumor immune cell infiltration and increased enrichment scores for transforming growth factor-β (TGF-β) and epithelial-mesenchymal transition pathways, whereas patients with AGR2 high expression showed an opposite immunologic feature with a lack of immune cell infiltration, suggestive of an immune "cold" and desert phenotype. Moreover, single-cell analysis further revealed that AGR2 in malignant cells alters cell-cell interactions by coordinating cytokine-chemokine signaling and immune infiltration. Notably, two immunotherapy cohorts revealed that AGR2-coexpressed genes could serve as prognostic indicators of patient survival. In conclusion, AGR2 could promote breast cancer progression by affecting the tumor immune microenvironment. Patients with AGR2 low expression could be suitable for combination treatment with immune checkpoint inhibitor agents and TGF-β blockers. Therefore, this study provides a theoretical foundation for developing a strategy for personalized immunotherapy to patients with breast cancer.
Collapse
Affiliation(s)
- Shichao Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Qin Liu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yimei Wei
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yu Xiong
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yan Gu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Ya Huang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Fuzhou Tang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yan Ouyang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| |
Collapse
|
22
|
Hu J, Yuan Z, Jiang Y, Mo Z. Identification of Five Tumor Antigens for Development and Two Immune Subtypes for Personalized Medicine of mRNA Vaccines in Papillary Renal Cell Carcinoma. J Pers Med 2023; 13:jpm13020359. [PMID: 36836593 PMCID: PMC9965942 DOI: 10.3390/jpm13020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Increasing evidence has revealed the promise of mRNA-type cancer vaccines as a new direction for cancer immune treatment in several solid tumors, however, its application in papillary renal cell carcinoma (PRCC) remains unclear. The purpose of this study was to identify potential tumor antigens and robust immune subtypes for the development and appropriate use of anti-PRCC mRNA vaccines, respectively. Raw sequencing data and clinical information of PRCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The cBioPortal was utilized for the visualization and comparison of genetic alterations. The TIMER was used to assess the correlation between preliminary tumor antigens and the abundance of infiltrated antigen presenting cells (APCs). Immune subtypes were determined by the consensus clustering algorithm, and clinical and molecular discrepancies were further explored for a deeper understanding of immune subtypes. Five tumor antigens, including ALOX15B, HS3ST2, PIGR, ZMYND15 and LIMK1, were identified for PRCC, which were correlated with patients' prognoses and infiltration levels of APCs. Two immune subtypes (IS1 and IS2) were disclosed with obviously distinct clinical and molecular characteristics. Compared with IS2, IS1 exhibited a significantly immune-suppressive phenotype, which largely weakened the efficacy of the mRNA vaccine. Overall, our study provides some insights for the design of anti-PRCC mRNA vaccines and, more importantly, the selection of suitable patients to be vaccinated.
Collapse
Affiliation(s)
- Jianpei Hu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhongze Yuan
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yifen Jiang
- Department of Medical Record Management Center, The People’s Hospital of Yubei District of Chongqing City, Chongqing 401120, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Correspondence:
| |
Collapse
|
23
|
Kung CY, Fang WL, Hung YP, Huang KH, Chen MH, Chao Y, Lin SC, Li AFY, Lo SS, Wu CW. Comparison of the mutation patterns between tumor tissue and cell-free DNA in stage IV gastric cancer. Aging (Albany NY) 2023; 15:777-790. [PMID: 36779847 PMCID: PMC9970310 DOI: 10.18632/aging.204512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Compared to stage I-III gastric cancer (GC), the level of cell-free DNA (cfDNA) was significantly higher in stage IV GC. The mutation patterns of different metastatic patterns between cfDNA and tumor DNA in stage IV GC have not yet been reported. We used next-generation sequencing (NGS) to analyze cfDNA and tumor DNA in 56 stage IV GC patients. Tumor DNA and cfDNA were analyzed using a 29-gene NGS panel. In tumor samples, the most commonly mutated gene was TP53 (64%), followed by ARID1A (62%), KMT2C (60%) and KMT2D (58%). In cfDNA samples, the most commonly mutated genes were FAT4 (19%) and MACF1 (19%), followed by KMT2D (18%), ARID1A (14%) and LRP1B (14%). The concordance of mutation patterns in these 29 genes was 42.0% between cfDNA and tumor DNA. A specificity of 100% was found when using the mutation status of cfDNA to predict mutations in tumor samples. The sensitivity of the mutation status of cfDNA to predict mutation in tumor samples was highest in FAT4 (88.9%), followed by MACF1 (80%), CDH1 (75%) and PLB1 (75%). For cfDNA with PLB1 mutations, patients were more likely to develop distant lymphatic metastasis than peritoneal metastasis. Patients with multiple-site metastases had significantly more mutated spots than patients with single-site metastasis. Due to the high sensitivity and specificity of some genes in the prediction of mutation in tumor samples, monitoring the mutation pattern of cfDNA may be useful in the stage IV GC treatment.
Collapse
Affiliation(s)
- Ching-Yun Kung
- Department of Surgery, Division of General Surgery, Taipei Veterans General Hospital, Taipei, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Liang Fang
- Department of Surgery, Division of General Surgery, Taipei Veterans General Hospital, Taipei, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ping Hung
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Department of Oncology, Center of Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Hung Huang
- Department of Surgery, Division of General Surgery, Taipei Veterans General Hospital, Taipei, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Huang Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Department of Oncology, Center of Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Department of Oncology, Center of Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Chieh Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Anna Fen-Yau Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Department of Anatomical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Su-Shun Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - Chew-Wun Wu
- Department of Surgery, Division of General Surgery, Taipei Veterans General Hospital, Taipei, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
24
|
Li H, He J, Li M, Li K, Pu X, Guo Y. Immune landscape-based machine-learning-assisted subclassification, prognosis, and immunotherapy prediction for glioblastoma. Front Immunol 2022; 13:1027631. [PMID: 36532035 PMCID: PMC9751405 DOI: 10.3389/fimmu.2022.1027631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction As a malignant brain tumor, glioblastoma (GBM) is characterized by intratumor heterogeneity, a worse prognosis, and highly invasive, lethal, and refractory natures. Immunotherapy has been becoming a promising strategy to treat diverse cancers. It has been known that there are highly heterogeneous immunosuppressive microenvironments among different GBM molecular subtypes that mainly include classical (CL), mesenchymal (MES), and proneural (PN), respectively. Therefore, an in-depth understanding of immune landscapes among them is essential for identifying novel immune markers of GBM. Methods and results In the present study, based on collecting the largest number of 109 immune signatures, we aim to achieve a precise diagnosis, prognosis, and immunotherapy prediction for GBM by performing a comprehensive immunogenomic analysis. Firstly, machine-learning (ML) methods were proposed to evaluate the diagnostic values of these immune signatures, and the optimal classifier was constructed for accurate recognition of three GBM subtypes with robust and promising performance. The prognostic values of these signatures were then confirmed, and a risk score was established to divide all GBM patients into high-, medium-, and low-risk groups with a high predictive accuracy for overall survival (OS). Therefore, complete differential analysis across GBM subtypes was performed in terms of the immune characteristics along with clinicopathological and molecular features, which indicates that MES shows much higher immune heterogeneity compared to CL and PN but has significantly better immunotherapy responses, although MES patients may have an immunosuppressive microenvironment and be more proinflammatory and invasive. Finally, the MES subtype is proved to be more sensitive to 17-AAG, docetaxel, and erlotinib using drug sensitivity analysis and three compounds of AS-703026, PD-0325901, and MEK1-2-inhibitor might be potential therapeutic agents. Conclusion Overall, the findings of this research could help enhance our understanding of the tumor immune microenvironment and provide new insights for improving the prognosis and immunotherapy of GBM patients.
Collapse
|
25
|
Ke Y. Perspectives on mRNA Vaccine Development for Cancer. J Interferon Cytokine Res 2022; 42:592-593. [DOI: 10.1089/jir.2022.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Youqiang Ke
- Department of Molecular & Clinical Cancer Medicine, Liverpool University, Liverpool, United Kingdom
| |
Collapse
|
26
|
Zolotovskaia MA, Kovalenko MA, Tkachev VS, Simonov AM, Sorokin MI, Kim E, Kuzmin DV, Karademir-Yilmaz B, Buzdin AA. Next-Generation Grade and Survival Expression Biomarkers of Human Gliomas Based on Algorithmically Reconstructed Molecular Pathways. Int J Mol Sci 2022; 23:7330. [PMID: 35806337 PMCID: PMC9266372 DOI: 10.3390/ijms23137330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
In gliomas, expression of certain marker genes is strongly associated with survival and tumor type and often exceeds histological assessments. Using a human interactome model, we algorithmically reconstructed 7494 new-type molecular pathways that are centered each on an individual protein. Each single-gene expression and gene-centric pathway activation was tested as a survival and tumor grade biomarker in gliomas and their diagnostic subgroups (IDH mutant or wild type, IDH mutant with 1p/19q co-deletion, MGMT promoter methylated or unmethylated), including the three major molecular subtypes of glioblastoma (proneural, mesenchymal, classical). We used three datasets from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas, which in total include 527 glioblastoma and 1097 low grade glioma profiles. We identified 2724 such gene and 2418 pathway survival biomarkers out of total 17,717 genes and 7494 pathways analyzed. We then assessed tumor grade and molecular subtype biomarkers and with the threshold of AUC > 0.7 identified 1322/982 gene biomarkers and 472/537 pathway biomarkers. This suggests roughly two times greater efficacy of the reconstructed pathway approach compared to gene biomarkers. Thus, we conclude that activation levels of algorithmically reconstructed gene-centric pathways are a potent class of new-generation diagnostic and prognostic biomarkers for gliomas.
Collapse
Affiliation(s)
- Marianna A. Zolotovskaia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
| | - Max A. Kovalenko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
| | | | - Alexander M. Simonov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
- Omicsway Corp., Walnut, CA 91789, USA;
| | - Maxim I. Sorokin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
- Omicsway Corp., Walnut, CA 91789, USA;
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia;
| | - Ella Kim
- Clinic for Neurosurgery, Laboratory of Experimental Neurooncology, Johannes Gutenberg University Medical Centre, Langenbeckstrasse 1, 55124 Mainz, Germany;
| | - Denis V. Kuzmin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
| | - Betul Karademir-Yilmaz
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul 34854, Turkey;
| | - Anton A. Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|