1
|
Pullarkat S, Black G, Bleakley M, Buenrostro D, Chapuis AG, Hirayama AV, Jaeger-Ruckstuhl CA, Kimble EL, Lee BM, Maloney DG, Radich J, Seaton BW, Specht JM, Turtle CJ, Woolston DW, Wright JH, Yeung CCS. qPCR assay for detection of Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Elements from CAR-T and TCR-T cells in fresh and formalin-fixed tissue. PLoS One 2024; 19:e0303057. [PMID: 38843256 PMCID: PMC11156344 DOI: 10.1371/journal.pone.0303057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
As adoptive cellular therapies become more commonplace in cancer care, there is a growing need to monitor site-specific localization of engineered cells-such as chimeric antigen receptor T (CAR-T) cells and T-cell receptor T (TCR-T) cells-in patients' tissues to understand treatment effectiveness as well as associated adverse events. Manufacturing CAR-T and TCR-T cells involves transduction with viral vectors commonly containing the WPRE gene sequence to enhance gene expression, providing a viable assay target unique to these engineered cells. Quantitative PCR (qPCR) is currently used clinically in fresh patient tissue samples and blood with target sequences specific to each immunotherapy product. Herein, we developed a WPRE-targeted qPCR assay that is broadly applicable for detection of engineered cell products in both fresh and archival formalin-fixed paraffin embedded (FFPE) tissues. Using both traditional PCR and SYBR Green PCR protocols, we demonstrate the use of this WPRE-targeted assay to successfully detect two CAR-T cell and two TCR-T cell products in FFPE tissue. Standard curve analysis reported a reproducible limit of detection at 100 WPRE copies per 20μL PCR reaction. This novel and inexpensive technique could provide better understanding of tissue abundance of engineered therapeutic T cells in both tumor and second-site toxicity tissues and provide quantitative assessment of immune effector cell trafficking in archival tissue.
Collapse
MESH Headings
- Humans
- Formaldehyde
- Hepatitis B Virus, Woodchuck/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tissue Fixation/methods
- Immunotherapy, Adoptive/methods
- Real-Time Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- Shalini Pullarkat
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Graeme Black
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Marie Bleakley
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Program in Immunology, University of Washington, Seattle, Washington, United States of America
| | - Denise Buenrostro
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Program in Immunology, University of Washington, Seattle, Washington, United States of America
| | - Aude G. Chapuis
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Program in Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Alexandre V. Hirayama
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Carla A. Jaeger-Ruckstuhl
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Erik L. Kimble
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Bo M. Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - David G. Maloney
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Jerald Radich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Brandon W. Seaton
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jennifer M. Specht
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Cameron J. Turtle
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
- Integrated Immunotherapy Research Center, Fred Hutchinson Cancer Center, Seattle, WA, United States of America
| | - David W. Woolston
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jocelyn H. Wright
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Program in Immunology, University of Washington, Seattle, Washington, United States of America
| | - Cecilia C. S. Yeung
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Yang S, Xu J, Dai Y, Jin S, Sun Y, Li J, Liu C, Ma X, Chen Z, Chen L, Hou J, Mi JQ, Chen SJ. Neutrophil activation and clonal CAR-T re-expansion underpinning cytokine release syndrome during ciltacabtagene autoleucel therapy in multiple myeloma. Nat Commun 2024; 15:360. [PMID: 38191582 PMCID: PMC10774397 DOI: 10.1038/s41467-023-44648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Cytokine release syndrome (CRS) is the most common complication of chimeric antigen receptor redirected T cells (CAR-T) therapy. CAR-T toxicity management has been greatly improved, but CRS remains a prime safety concern. Here we follow serum cytokine levels and circulating immune cell transcriptomes longitudinally in 26 relapsed/refractory multiple myeloma patients receiving the CAR-T product, ciltacabtagene autoleucel, to understand the immunological kinetics of CRS. We find that although T lymphocytes and monocytes/macrophages are the major overall cytokine source in manifest CRS, neutrophil activation peaks earlier, before the onset of severe symptoms. Intracellularly, signaling activation dominated by JAK/STAT pathway occurred prior to cytokine cascade and displayed regular kinetic changes. CRS severity is accurately described and potentially predicted by temporal cytokine secretion signatures. Notably, CAR-T re-expansion is found in three patients, including a fatal case characterized by somatic TET2-mutation, clonal expanded cytotoxic CAR-T, broadened cytokine profiles and irreversible hepatic toxicity. Together, our findings show that a latent phase with distinct immunological changes precedes manifest CRS, providing an optimal window and potential targets for CRS therapeutic intervention and that CAR-T re-expansion warrants close clinical attention and laboratory investigation to mitigate the lethal risk.
Collapse
Affiliation(s)
- Shuangshuang Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shiwei Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenglin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaolin Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lijuan Chen
- Department of Hematology, First affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Jian Hou
- Department of Hematology, Ren Ji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Harrison M, Kavanagh G, Corte TJ, Troy LK. Drug-induced interstitial lung disease: a narrative review of a clinical conundrum. Expert Rev Respir Med 2024; 18:23-39. [PMID: 38501199 DOI: 10.1080/17476348.2024.2329612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Drug-induced interstitial lung disease (DI-ILD) is increasing in incidence, due to the use of many new drugs across a broad range of cancers and chronic inflammatory diseases. The presentation and onset of DI-ILD are variable even for the same drug across different individuals. Clinical suspicion is essential for identifying these conditions, with timely drug cessation an important determinant of outcomes. AREAS COVERED This review provides a comprehensive and up-to-date summary of epidemiology, risk factors, pathogenesis, diagnosis, treatment, and prognosis of DI-ILD. Relevant research articles from PubMed and Medline searches up to September 2023 were screened and summarized. Specific drugs including immune checkpoint inhibitors, CAR-T cell therapy, methotrexate, and amiodarone are discussed in detail. The potential role of pharmacogenomic profiling for lung toxicity risk is considered. EXPERT OPINION DI-ILD is likely to be an increasingly important contributor to respiratory disability in the community. These conditions can negatively impact quality of life and patient longevity, due to associated respiratory compromise as well as cessation of evidence-based therapy for the underlying disease. This clinical conundrum is relevant to all areas of medicine, necessitating increased understanding and greater vigilance for drug-related lung toxicity.
Collapse
Affiliation(s)
- Megan Harrison
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Grace Kavanagh
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Tamera J Corte
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Lauren K Troy
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
4
|
Epperly R, Giordani VM, Mikkilineni L, Shah NN. Early and Late Toxicities of Chimeric Antigen Receptor T-Cells. Hematol Oncol Clin North Am 2023; 37:1169-1188. [PMID: 37349152 PMCID: PMC10592597 DOI: 10.1016/j.hoc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
As chimeric antigen receptor (CAR) T-cell therapy is increasingly integrated into clinical practice across a range of malignancies, identifying and treating inflammatory toxicities will be vital to success. Early experiences with CD19-targeted CAR T-cell therapy identified cytokine release syndrome and neurotoxicity as key acute toxicities and led to unified initiatives to mitigate the influence of these complications. In this section, we provide an update on the current state of CAR T-cell-related toxicities, with an emphasis on emerging acute toxicities affecting additional organ systems and considerations for delayed toxicities and late effects.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1130, Memphis, TN 38105, USA
| | - Victoria M Giordani
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Building 10, Room 1W-3750, 9000 Rockville Pike MSC 1104, Bethesda, MD 20892, USA; Pediatric Hematology/Oncology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Lekha Mikkilineni
- Blood and Marrow Transplantation & Cellular Therapy, Stanford University, Palo Alto, CA, USA; Stanford School of Medicine, 300 Pasteur Drive, Room H0101, Stanford, CA 94305, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Building 10, Room 1W-3750, 9000 Rockville Pike MSC 1104, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Zipper R, Loeb DM, Lee MA, Oliver-Krasinski J, Liszewski MC, Fraint E. Respiratory Failure Due to Idiopathic Pneumonia Syndrome in a Pediatric Patient After Recipient-derived Allogeneic Chimeric Antigen Receptor T-Cell Therapy. J Pediatr Hematol Oncol 2023; 45:e775-e780. [PMID: 37314946 DOI: 10.1097/mph.0000000000002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/08/2023] [Indexed: 06/16/2023]
Abstract
Idiopathic pneumonia syndrome (IPS) is a life-threatening complication of hematopoietic cell transplantation, but it is not clearly described following chimeric antigen receptor (CAR) T-cell therapy. We describe a child who developed IPS after receiving tisagenlecleucel for post-hematopoietic cell transplantation relapsed acute lymphoblastic leukemia and had a remarkable improvement after treatment with corticosteroids and etanercept. We discuss the implications of cytokine signaling in IPS and immunologic considerations of allogeneic CAR T cells. We anticipate that the incidence of IPS and other allogeneic phenomena will be observed more often as allogeneic CAR T cells are employed in more varied settings with more mismatched donors.
Collapse
Affiliation(s)
| | - David M Loeb
- Division of Pediatric Hematology, Oncology, and Cellular Therapy, Children's Hospital at Montefiore
| | - Michelle A Lee
- Division of Pediatric Hematology, Oncology, and Cellular Therapy, Children's Hospital at Montefiore
| | | | - Mark C Liszewski
- Departments of Pediatrics
- Radiology, Children's Hospital at Montefiore
| | - Ellen Fraint
- Division of Pediatric Hematology, Oncology, and Cellular Therapy, Children's Hospital at Montefiore
| |
Collapse
|
6
|
Nath K, Wudhikarn K, Alarcon Tomas A, Perales MA. Safety evaluation of axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma. Expert Opin Drug Saf 2023; 22:5-15. [PMID: 36737060 PMCID: PMC9975047 DOI: 10.1080/14740338.2023.2177268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION CD19-directed chimeric antigen receptor (CAR) T-cell therapy is a highly effective therapy for patients with relapsed/refractory large B-cell lymphoma (LBCL) and three CD19 CAR T-cell products (axicabtagene ciloleucel, tisagenlecleucel and lisocabtagene maraleucel) are currently approved for this indication. Despite the clinical benefit of CD19 directed CAR T-cell therapy, this treatment is associated with significant morbidity from treatment-emergent toxicities. AREAS COVERED This Review discusses the safety considerations of axicabtagene ciloleucel in patients with LBCL. This includes discussion of the frequently observed immune-mediated toxicities of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Additionally, we review CAR T-cell therapy related cytopenias, infection, organ dysfunction and the more recently described hemophagocytic lymphohistiocytosis. EXPERT OPINION A thorough understanding of the toxicities associated with CD19-directed CAR T-cell therapy will facilitate the optimal selection of patients for this therapy. Furthermore, knowledge of preventative measures of CAR T-cell related complications, and early recognition and appropriate intervention will lead to the safe administration of these therapies, and ultimately improved outcomes for our patients.
Collapse
Affiliation(s)
- Karthik Nath
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kitsada Wudhikarn
- Division of Hematology and Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ana Alarcon Tomas
- Division of Hematology and Hemotherapy, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|