1
|
Ng B, Avey DR, Lopes KDP, Fujita M, Vialle RA, Vyas H, Kearns NA, Tasaki S, Iatrou A, Tissera SD, Chang TH, Xu J, Yu C, Sultan F, Menon V, Gaiteri C, De Jager PL, Bennett DA, Wang Y. Spatial Expression of Long Non-Coding RNAs in Human Brains of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.27.620550. [PMID: 39554066 PMCID: PMC11565709 DOI: 10.1101/2024.10.27.620550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators of physiological and pathological processes, with their dysregulation increasingly implicated in aging and Alzheimer's disease (AD). Using spatial transcriptomics, we analyzed 78 postmortem brain sections from 21 ROSMAP participants to map the spatial expression of lncRNAs in the dorsolateral prefrontal cortex of aged human brains. Compared to mRNAs, lncRNAs exhibited greater subregion-specific expression, with enrichment in antisense and lincRNA biotypes. Network analysis identified 193 gene modules across eight subregions, including lncRNA-enriched modules involved in critical biological processes. We also identified AD differentially expressed (DE) lncRNAs, which showed greater subregion specificity than AD DE mRNAs. Gene set enrichment analysis highlighted the involvement of these AD DE lncRNAs in epigenetic regulation and chromatin remodeling, including enrichment for HDAC target genes such as OIP5-AS1. Statistical modeling suggested that interactions between OIP5-AS1 and HDAC proteins, particularly HDAC11, were associated with tau tangles in excitatory neurons and plaque burden in microglia. This study provides a comprehensive resource of lncRNA spatial expression in the aged human brain and uncovers potential functional roles of lncRNAs in AD pathogenesis.
Collapse
|
2
|
Wang X, Guo T, Niu L, Zheng B, Huang W, Xu H, Huang W. Engineered targeting OIP5 sensitizes bladder cancer to chemotherapy resistance via TRIP12-PPP1CB-YBX1 axis. Oncogene 2024; 43:2850-2867. [PMID: 39155295 DOI: 10.1038/s41388-024-03136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Chemoresistance is an important cause of treatment failure in bladder cancer, and identifying genes that confer drug resistance is an important step toward developing new therapeutic strategies to improve treatment outcomes. In the present study, we show that gemcitabine plus cisplatin (GEM/DDP) therapy induces NF-κB signaling, which promotes p65-mediated transcriptional activation of OIP5. OIP5 recruits the E3 ubiquitin ligase TRIP12 to bind to and degrade the phosphatase PPP1CB, thereby enhancing the transcription factor activity of YBX1. This in turn upregulates drug-resistance-related genes under the transcriptional control of YBX1, leading to chemoresistance. Moreover, PPP1CB degradation can enhance the phosphorylation activity of IKKβ, triggering the NF-κB signaling cascade, which further stimulates OIP5 gene expression, thus forming a negative feedback regulatory loop. Consistently, elevated OIP5 expression was associated with chemoresistance and poor prognosis in patients with bladder cancer. Furthermore, we used a CRISPR/Cas9-based engineered gene circuit, which can monitor the progression of chemoresistance in real-time, to induce OIP5 knockout upon detection of increased NF-κB signaling. The gene circuit significantly inhibited tumor cell growth in vivo, underscoring the potential for synergy between gene therapy and chemotherapy in the treatment of cancer.
Collapse
Affiliation(s)
- Xianteng Wang
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ting Guo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Liman Niu
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
| | - Binbin Zheng
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Haibo Xu
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Sethi SC, Shrestha RL, Balachandra V, Durairaj G, Au WC, Nirula M, Karpova TS, Kaiser P, Basrai MA. β-TrCP-Mediated Proteolysis of Mis18β Prevents Mislocalization of CENP-A and Chromosomal Instability. Mol Cell Biol 2024; 44:429-442. [PMID: 39135477 PMCID: PMC11486186 DOI: 10.1080/10985549.2024.2382445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 10/15/2024] Open
Abstract
Restricting the localization of evolutionarily conserved histone H3 variant CENP-A to the centromere is essential to prevent chromosomal instability (CIN), an important hallmark of cancers. Overexpressed CENP-A mislocalizes to non-centromeric regions and contributes to CIN in yeast, flies, and human cells. Centromeric localization of CENP-A is facilitated by the interaction of Mis18β with CENP-A specific chaperone HJURP. Cellular levels of Mis18β are regulated by β-transducin repeat containing protein (β-TrCP), an F-box protein of SCF (Skp1, Cullin, F-box) E3-ubiquitin ligase complex. Here, we show that defects in β-TrCP-mediated proteolysis of Mis18β contributes to the mislocalization of endogenous CENP-A and CIN in a triple-negative breast cancer (TNBC) cell line, MDA-MB-231. CENP-A mislocalization in β-TrCP depleted cells is dependent on high levels of Mis18β as depletion of Mis18β suppresses mislocalization of CENP-A in these cells. Consistent with these results, endogenous CENP-A is mislocalized in cells overexpressing Mis18β alone. In summary, our results show that β-TrCP-mediated degradation of Mis18β prevents mislocalization of CENP-A and CIN. We propose that deregulated expression of Mis18β may be one of the key mechanisms that contributes to chromosome segregation defects in cancers.
Collapse
Affiliation(s)
- Subhash Chandra Sethi
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Roshan Lal Shrestha
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vinutha Balachandra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Geetha Durairaj
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Wei-Chun Au
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Nirula
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tatiana S. Karpova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Munira A. Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Naik A, Lattab B, Qasem H, Decock J. Cancer testis antigens: Emerging therapeutic targets leveraging genomic instability in cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200768. [PMID: 38596293 PMCID: PMC10876628 DOI: 10.1016/j.omton.2024.200768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cancer care has witnessed remarkable progress in recent decades, with a wide array of targeted therapies and immune-based interventions being added to the traditional treatment options such as surgery, chemotherapy, and radiotherapy. However, despite these advancements, the challenge of achieving high tumor specificity while minimizing adverse side effects continues to dictate the benefit-risk balance of cancer therapy, guiding clinical decision making. As such, the targeting of cancer testis antigens (CTAs) offers exciting new opportunities for therapeutic intervention of cancer since they display highly tumor specific expression patterns, natural immunogenicity and play pivotal roles in various biological processes that are critical for tumor cellular fitness. In this review, we delve deeper into how CTAs contribute to the regulation and maintenance of genomic integrity in cancer, and how these mechanisms can be exploited to specifically target and eradicate tumor cells. We review the current clinical trials targeting aforementioned CTAs, highlight promising pre-clinical data and discuss current challenges and future perspectives for future development of CTA-based strategies that exploit tumor genomic instability.
Collapse
Affiliation(s)
- Adviti Naik
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Boucif Lattab
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Hanan Qasem
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
5
|
Hiura K, Watanabe M, Hirose N, Nakano K, Okamura T, Sasaki H, Sasaki N. Mitotic Spindle Positioning (MISP) Facilitates Colorectal Cancer Progression by Forming a Complex with Opa Interacting Protein 5 (OIP5) and Activating the JAK2-STAT3 Signaling Pathway. Int J Mol Sci 2024; 25:3061. [PMID: 38474305 DOI: 10.3390/ijms25053061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Patients with inflammatory bowel disease (IBD) who experience long-term chronic inflammation of the colon are at an increased risk of developing colorectal cancer (CRC). Mitotic spindle positioning (MISP), an actin-binding protein, plays a role in mitosis and spindle positioning. MISP is found on the apical membrane of the intestinal mucosa and helps stabilize and elongate microvilli, offering protection against colitis. This study explored the role of MISP in colorectal tumorigenesis using a database, human CRC cells, and a mouse model for colitis-induced colorectal tumors triggered by azoxymethane (AOM)/dextran sodium sulfate (DSS) treatment. We found that MISP was highly expressed in colon cancer patient tissues and that reduced MISP expression inhibited cell proliferation. Notably, MISP-deficient mice showed reduced colon tumor formation in the AOM/DSS-induced colitis model. Furthermore, MISP was found to form a complex with Opa interacting protein 5 (OIP5) in the cytoplasm, influencing the expression of OIP5 in a unidirectional manner. We also observed that MISP increased the levels of phosphorylated STAT3 in the JAK2-STAT3 signaling pathway, which is linked to tumorigenesis. These findings indicate that MISP could be a risk factor for CRC, and targeting MISP might provide insights into the mechanisms of colitis-induced colorectal tumorigenesis.
Collapse
Affiliation(s)
- Koki Hiura
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Masaki Watanabe
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Naoki Hirose
- The Institute of Experimental Animal Sciences, Faculty of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hayato Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| |
Collapse
|
6
|
Zhang X, Gu W, Lin A, Duan R, Lian L, Huang Y, Li T, Sun Q. The role of OIP5 in the carcinogenesis and progression of ovarian cancer. J Ovarian Res 2023; 16:185. [PMID: 37660035 PMCID: PMC10474646 DOI: 10.1186/s13048-023-01265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Opa interacting protein 5 (OIP5), which is a cancer/testis-specific gene, plays a cancer-promoting role in various types of human cancer. However, the role of OIP5 in the carcinogenesis and progression of ovarian cancer remains unknown. METHODS We first analyzed the expression of OIP5 in ovarian cancer and various human tumors with the Sangerbox online analysis tool. GSE12470, GSE14407 and GSE54388 were downloaded from the Gene Expression Omnibus (GEO) database, and GEO2R was used to screen differentially expressed genes in ovarian cancer tissues. Gene Ontology (GO) enrichment analysis was used to explore the related biological processes. Receiver operating characteristic (ROC) curve was generated to evaluate the predictive ability of OIP5 for ovarian cancer. Next, RT-PCR, immunohistochemistry and Western blotting were utilized to evaluate the expression of OIP5 in ovarian cancer. CCK8, EdU proliferation assays and colony formation assays were used to measure cell proliferation, cell cycle progression was examined by PI staining and flow cytometry, and cell apoptosis was examined by Caspase3/7 activity assays. The effect of OIP5 on the migration and invasion of ovarian cancer cells was analyzed with Transwell assays. RESULTS We found that OIP5 is highly expressed in ovarian cancer through bioinformatics analysis, and importantly, OIP5 may be an important biomarker for the prognosis and diagnosis of ovarian cancer. RT-PCR assays, immunohistochemistry and Western blotting were also used to confirm the high expression of OIP5 in ovarian cancer. Subsequently, we demonstrated that the proliferation and migration of the ovarian cancer cell line A2780 were significantly inhibited after OIP5 gene silencing, apoptosis was increased and cell cycle progression was arrested at the G1 phase. CONCLUSION This study indicated that OIP5 was highly expressed in ovarian cancer and that downregulation of OIP5 inhibited the proliferation, migration and invasion of ovarian cancer cells, induced cell cycle arrest and promoted cell apoptosis. Therefore, OIP5 may be an important biomarker for the early diagnosis and potential target for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gynecology and Obstetrics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Wenjie Gu
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Aiqin Lin
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Renjie Duan
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Likai Lian
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Yuanyuan Huang
- Department of Gynecology and Obstetrics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Tiechen Li
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, P.R. China.
| | - Qing Sun
- Department of Gynecology and Obstetrics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China.
| |
Collapse
|
7
|
Zhou S, Lu Y, Chen Y, Gan W. Identification of an immunogenic cell death-related gene signature predicts survival and sensitivity to immunotherapy in clear cell renal carcinoma. Sci Rep 2023; 13:4449. [PMID: 36932108 PMCID: PMC10023707 DOI: 10.1038/s41598-023-31493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Immunogenic cell death (ICD) is the trigger of adaptive immune responses. However, the role of ICD-related genes in clear cell renal carcinoma (ccRCC) remains unclear. We aimed to identify biomarkers associated with ICD and develop an ICD-related predictive model that predicts the immune microenvironment, prognosis, and response to immunotherapy in ccRCC. Our study included 739 patients (603 in the training set and 136 in the validation set) with clinicopathologic information and transcriptome sequencing data. Consensus clustering, principal component analysis (PCA), weighted gene co-expression network analysis (WGCNA), univariate COX analysis, multivariate COX analysis, and the Lasso-Cox algorithm were applied to shrink predictors and construct a predictive signature of overall survival (OS). We used CIBERSORT, ESTIMATE, and TIMER in the R package IOBR to evaluate the tumor microenvironment and immune infiltration pattern of each sample. Finally, the single cell sequencing results of immune cells in ccRCC were used to verify the results of immune infiltration analysis, and the performance of the prognostic model was evaluated by calibration curves and c-index. This study revealed that inability of the initial immune response and primary immunodeficiency were significantly enriched in the ICD subgroup with poor prognosis. We found that the ten candidate ICD genes (CALR, ENTPD1, FOXP3, HSP90AA1, IFNB1, IFNG, IL6, LY96, PIK3CA, and TLR4) could affect the prognosis of ccRCC (p < 0.05). The prediction model (PRE) we constructed can not only predict the long-term survival probability but also evaluate the landscape of immune infiltration in ccRCC. Our study demonstrated that low infiltration of dendritic cells in ccRCC implies a poor prognosis, whereas the degree of CTL infiltration is less important. An individualized prediction model was created to predict the 1-, 2-, 3-, and 5-year survival and responsiveness of ccRCC patients to immunotherapy, which may serve as a potent tool for clinicians to make better treatment decisions and thus improve the overall survival (OS) of ccRCC patients in the future.
Collapse
Affiliation(s)
- Shuoming Zhou
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanwen Lu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxin Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Pan M, Wang Y, Wang Z, Duan H, Shao C, Ding P, Lei J, Zhao J, Ma Z, Zhang F, Han J, Yan X. The mitosis-related gene OIP5 is a potential biomarker in pan-cancer. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:117. [PMID: 36819584 PMCID: PMC9929809 DOI: 10.21037/atm-22-6640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/07/2023] [Indexed: 01/31/2023]
Abstract
Background OIP5 is found at the centromere and plays an important role in recruiting centromere protein-A (CENP-A) through interacting with Holliday junction recognition protein during cell mitosis. OIP5 is considered to be a cancer-testis specific gene, but its function in tumor development remains unclear. Increased expression of OIP5 has been reported in testis as well as in different cancers; however, the underlying mechanisms remain obscure. Methods Data were collected from the Genotype-Tissue Expression project, the Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas (TCGA) to analyze the effect of OIP5 in many common cancers. Analyses of the differential expression of OIP5 and its relationships with prognosis, the tumor microenvironment, immune infiltration, immune regulation, neoantigen production, and genomic stability in various cancers were performed using R software. Results Expression of OIP5 was significantly increased in 34 common tumor types compared with matched healthy samples; however, no significant increases were observed in pheochromocytoma and paraganglioma or kidney chromophobe. Elevated OIP5 expression predicted dismal overall survival in 14 tumors. The function of OIP5 in tumor-infiltrating immune cells (TIIC) was analyzed, and OIP5 might inhibit TIIC infiltration in the tumor microenvironment; a positive correlation was found in thymoma, while a negative correlation was observed in lung squamous cell carcinoma and lung adenocarcinoma. High OIP5 expression was related to immune regulation and neoantigen production, particularly in terms of the levels of immune regulatory molecules and the number of neoantigens produced in lung adenocarcinoma, uterine corpus endometrial carcinoma, breast cancer, stomach adenocarcinoma, low-grade glioma, and prostate adenocarcinoma. It was also associated with increased cell genome instability in lung adenocarcinoma. Gene set enrichment analysis revealed potential critical effects of OIP5 on the cell cycle, base excision repair, homologous recombination, DNA replication, the p53 signaling pathway, and mismatch repair pathways. Conclusions High expression of OIP5 is found in many common tumors and predicts a dismal prognostic outcome. The gene is an important recruitment factor for CENP-A and may promote tumor progression by affecting the tumor immune microenvironment and genomic stability. Therefore, OIP5 can serve as a potential candidate factor to predict cancer prognosis and guide the use of therapeutics.
Collapse
Affiliation(s)
- Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Jie Lei
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fan Zhang
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| |
Collapse
|